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Effects of exogenous bile acids 
(BAs) on growth, lipid profile, 
digestive enzymes, and immune 
responses of thinlip mullet, Liza 
ramada
Mohsen Abdel‑Tawwab 1, Hany M. R. Abdel‑Latif 2*, Mohammed F. El Basuini 3,4, 
Asmaa M. El‑Nokrashy 5, Asmaa A. Khaled 6, Mohamed Kord 7, Ali A. Soliman 8, 
Mohamed Zaki 9, Abd‑Elaziz Nour 9, Eman M. H. Labib 10 & Hala Saber Khalil 11,12*

An eight‑week trial was designed to explore the dietary effects of commercially purchased exogenous 
bile acids (BAs) on growth, whole‑body composition, lipid profile, intestinal digestive enzymes, liver 
function enzymes, oxidative stress biomarkers, and serum immunity of thinlip mullet, Liza ramada. 
Four triplicate groups (10.50 ± 0.05 g) were fed four soybean meal (SBM)‑based diets supplied with 
several BAs levels at 0 (control), 50, 130, or 350 mg/kg feed. Results indicated that the growth 
was significantly increased in groups fed BAs‑based diets, especially at 130 mg/kg feed. The body 
composition analysis showed that feeding fish on diets supplied with BAs up to 130 mg/kg decreased 
moisture (%) alongside increased crude protein (%). However, the body composition of fish fed a diet 
with 350 mg BAs/kg had the lowest moisture (%) and the highest crude protein (%). Moreover, there 
were significant increases in the intestinal (protease, α‑amylase, and lipase) enzyme activities in the 
groups supplied with BAs up to 130 mg BAs/kg. Liver function enzymes (aspartate aminotransferase 
and alanine aminotransferase enzyme activities) were significantly decreased in BAs‑supplemented 
groups compared to those fed the BAs‑free group. On the other hand, the control group had higher 
total cholesterol, triglycerides, and low‑density lipoprotein alongside the lower high‑density 
lipoprotein than BAs‑supplemented groups, especially at 350 mg BAs/kg feed. BAs significantly 
decreased hepatic malondialdehyde concentrations and increased the activity of hepatic catalase, 
superoxide dismutase, and total antioxidant capacity compared with those reared on the control diet. 
Serum lysozyme, respiratory burst, and alternative complement activities were significantly increased 
in BAs‑supplied groups, particularly in the group supplied with 130 mg BAs/kg compared to those fed 
on the control diet. Accordingly, our findings recommend that including 130 mg BAs/kg in an SBM‑
based diet enhanced the growth, digestive enzyme activities, and liver functions, alleviated oxidative 
stress, boosted serum immunity, and lowered lipid metabolites in thinlip mullet. These findings will be 
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beneficial for improving the quality of feed prepared for feeding mullets and an effective alternative 
strategy to support mullet farming.

In the Mediterranean region, there are several mullet species (Mugilidae family), such as thicklip grey mullet 
(Chelon labrosus), thinlip mullet (Liza ramada), flathead grey mullet (Mugil cephalus), golden grey mullet (Liza 
aurata), and leaping mullet (Liza saliens)1. Thinlip mullet is characterized by its high commercial value in the 
markets. It can feed on zooplankton, dead plant matter, and detritus available at the lowest trophic  level2. In 
addition, it can consume artificially formulated feeds in different culture  systems3.

As it is well known, the prices of fishmeal (FM), a primary protein source in aquafeeds, have been substantially 
 increased4, mostly due to (a) the extension of aquaculture production with continually increased  demand5,6 and 
(b) the shortage of its  production7. Moreover, In Egypt and several other developing countries, there is another 
problem of importation of FM from its producers worldwide, because of the decrease of foreign  currency8. Thus, 
the aqua-culturists and fish farmers seek to find suitable FM alternatives such as insect  meals9,  mealworms10, 
soybean protein  concentrate11, high protein distillers dried  grains12, among others. On the other hand, plant 
protein sources, including soybean meal (SBM), are commonly utilized to replace FM in aquafeeds as a result 
of their high availability and low prices paralleled to  FM13. However, SBM should not be used as a major and 
single protein source in fish diets since it lacks certain essential nutrients, particularly cholesterol. According to 
Lin, et al.14, the amount of cholesterol in the shrimp hepatopancreas and the hemolymph was reduced linearly 
as dietary SBM inclusion increased. The impacts of hypocholesterolemia may also be induced by a lack of cho-
lesterol in SBM, and poor cholesterol consumption caused by the presence of anti-nutritional substances such 
as saponin, phytosterol, and non-starch  polysaccharides15. Hence, utilizing functional feed additives to improve 
the quality of aquafeeds, such as antioxidants, pellet binders, and exogenous enzymes, could be considered from 
the practical ways to mitigate the aforementioned negative  effects16–18.

Bile acids (BAs) are sterols with amphipathic properties, mainly synthesized in the liver from cholesterol and 
then released in the intestinal lumen after the intake of  diets19. BAs are the core components of bile, considered 
a natural fat  emulsifier20, and exert a pivotal role in mammalian lipid  metabolism21. They also help to maintain 
cholesterol homeostasis in the  body22. For aquacultural uses, their safety margin makes them a possible supple-
ment in aquafeeds in some fish  species23,24, until their use is confirmed in a wide range of finfish species after 
several practical laboratory-based experiments. Previous studies elucidated that optimum BAs supplementation 
could efficiently enhance productive and hepatic  health25–27 and lessen the negative impacts of plant protein 
sources when being added to  diets28.

Several types of exogenous BAs can be efficiently used in aquafeed, such as chenodeoxycholic acid (CDCA), 
taurocholic acid sodium, hyocholic acid (HCA), hyodeoxycholic acid (HDCA), and sodium  taurolithocholate29. 
With a particular concern, exogenous BAs extracted from pig bile (porcine source) provoked positive effects 
in the improvement of amino acids metabolic pathways in juvenile European eel  livers30. Exogenous BAs origi-
nated from Ox bile also alleviated hepatitis caused by high dietary starch in Micropterus salmoides31. Moreover, 
exogenous BAs comprised of a mixture of taurocholic acid (TCA) and glycocholic acid (GCA) (in a ratio of 2:1) 
participated in dietary lipid digestion in Oncorhynchus mykiss32. Of interest, dietary taurocholic acid sodium 
promoted growth and reduced lipid accumulation in hybrid groupers fed on a high-lipid  diet33.

Using exogenous BAs containing different levels of HDCA, CDCA, and HCA extracted from various sources 
have been previously tested in several finfish species with proven efficacy and presented several advantageous 
uses. Our latterly published paper showed that exogenous BAs (Runeon®) composed of a mixture of HCA, CDCA, 
and HDCA considerably enhanced the growth and non-specific immunity of Pangasianodon hypophthalmus19. 
Although the obtained results, concerns should be taken into account while choosing dietary doses as higher 
doses can induce hepatoxic  effects34. According to the benefits of exogenous BAs supplementation as described in 
the literature, the existing research paper was designed to assess the dietary impacts of various levels of Runeon® 
on growth, body composition, digestive enzymes, and physiological responses of thinlip mullet-fed a SBM as a 
plant-based protein.

Materials and methods
Ethical statement
The animal study was examined and authorized by the Institutional Animal Care and Use Committee with an 
Approval Code ALEXU-IACUC: 19/22/10/20/3/25. All methods in this study were performed following the 
relevant guidelines and regulations and arrive guidelines.

Bile acids (BAs) and formulation of test diets
Four iso-nitrogenous and iso-lipidic diets were formulated according to the data presented in Table 1. Exogenous 
BAs powder (RUNEON®; 99% purity) extracted from a porcine source was procured from Shandong Longchang 
Animal Health Product Co., Ltd. (Shandong, China). In BAs powder, the contents of HCA, HDCA, and CDCA 
were 8.00%, 70.90%, and 20.20%, respectively (data presented from the manufacturer). The exogenous BAs 
were supplemented with the basal diet using levels such as 0 (control diet), 50, 130, and 350 mg/kg. The selected 
BAs doses were mixed thoroughly for 30 min with the diet ingredients. A suitable amount of water was added 
to each kg feed during the mixing procedures to moisten the diets and get dough. The generated dough was 
then passed across a meat mincer to form pelletized diets with a 0.5 mm diameter. The formulated test diets 
were then dried out in the open air (< 10% moisture), then preserved in plastic bags, and kept in a refrigerator 
(− 4 °C) until utilized.
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Fish acclimation, husbandry, and rearing conditions
Hatchery-reared thinlip mullets were procured from Gamasa, located near the coastal shoreline of the Mediter-
ranean Sea, Daqahliya Province, Egypt. Fish were then transferred to the National Institute of Oceanography 
and Fisheries at Baltim Research Station, Egypt. All fish were left in four cement raceways for one month to be 
acclimated to the new rearing conditions and to allow them to feed on a formulated pelleted diet. The long accli-
mation period was selected because mullet species usually refuse commercially formulated pelleted diets during 
acclimation once they are captured from the  wild36. During the adaptation period, fish were offered a pelleted 
commercial tilapia diet (35% crude protein). Fish were then stocked with a mean initial weight of 10.50 ± 0.05 g 
(means ± S.E.) into 12 hapas with dimensions (0.7 m × 0.7 m × 1.0 m) that were fixed in the raceway ponds. To 
maintain adequate aeration, all hapas were kept with fish (10 fish/hapa) and were supplied by two air stones 
linked with blower motors. For eight weeks, fish were fed on the relevant test diets three times per day (8.00 am, 
2.00 pm, and 8.00 pm) until full satiety. Water quality parameters were regularly monitored at weekly intervals. 
The water parameters as dissolved oxygen, temperature, pH, nitrite, salinity, and unionized ammonia values 
in all hapas were kept at 6.6 ± 0.3 mg/L, 27.0 ± 1.5 °C, 7.5 ± 0.5, 0.03 ± 0.01 mg/L, 7.0‰, and 0.03 ± 0.01 mg/L, 
respectively. All these parameters were within the suitable range for fish rearing.

Growth performance, feed utilization, and somatic indices
At the end of the feeding trial (8 weeks), fish from each hapa were netted, gathered, counted, and group-weighed. 
Following that, the fish were aseptically necropsied, and the viscera and liver were removed, and weighed, and 
somatic indices were assessed. The Fulton condition (K) factor, viscera somatic index (VSI), and hepato-somatic 
index (HSI) were also assessed. Equations used for evaluation of the growth and feed utilization indices such as 
weight gain percentage (WG%), specific growth ratio (SGR), feed intake (FI), feed conversion ratio (FCR), and 
fish survival (%) have been previously published in our recent  paper37.

WG % = 100 × (Wt60 – Wt0) / Wt0.
SGR (%/day) = 100 [Ln Wt60—Ln Wt0] / 60.
Feed intake (FI; g feed per fish) = total feed consumed/fish number per hapa.
FCR = FI (g)/ WG (g).
Fish survival (SR %) = 100 [Number of fish after 60 days/ Number of fish at the start].
K factor (%) = 100 × body weight (g)/ [body length (cm)]3.
VSI (%) = 100 [viscera weight (g) /body weight (g)].
HSI (%) = 100 [liver weight (g)/body weight (g)].

Table 1.  Components (g/kg diet) and proximate chemical analysis (% on DM basis) of the control and 
experimentally formulated diets used for feeding thinlip mullet (Liza ramada) in the present study. 1  and 
2 Vitamin premix and Mineral  premix3. Gross energy was expressed based on NRC35 as 16.7, 37.4, and 
16.7 kJ/g for protein, lipid, and carbohydrates, orderly.

Ingredients (g/kg diet) Diet 1 Diet 2 Diet 3 Diet 4

Soybean meal (46% CP) 460 460 460 460

Meat and bone meal (53% CP) 100 100 100 100

Ground corn (7.5% CP) 100 100 100 100

Wheat bran 160 160 160 160

Rice bran 120 120 120 120

Fish oil 5 5 5 5

Soybean oil 5 5 5 5

Vitamins  premix1 10 10 10 10

Minerals  premix2 10 10 10 10

Dicalcium Phosphate 20 20 20 20

Carboxy-methylcellulose 10 9.95 9.87 9.65

Exogenous BAs 0 0.05 0.13 0.35

Total 1000 1000 1000 1000

Proximate analysis

Dry matter 89.65 89.68 89.67 89.69

Crude protein 28.44 28.44 28.44 28.44

Total lipid 5.86 5.82 5.89 5.85

Crude fiber 7.05 6.92 6.96 6.94

Ash 10.24 10.39 10.43 10.41

NFE 48.41 48.43 48.28 48.36

Gross energy (MJ/kg) 17.12 17.11 17.12 17.11
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Proximate chemical analysis
According to protocols described by the Association of Official Analytical  Chemists38, the proximate chemi-
cal contents of diets and whole fish body were assessed. After 105 °C oven drying up to a constant dry weight, 
moisture content was assessed. A Kjettech autoanalyzer (Model 1030 Tecator Hoganas Sweden) was utilized to 
assess crude protein content, and a Soxtec extractor (Lab-Line Instruments, Inc., Melrose Park, Illinois, USA) was 
used to determine the total lipid content. After samples were burned at 550 °C for six hours in a muffle furnace 
(Thermolyne Corporation, Dubuque, Iowa, USA), the weight loss was used to quantify the amount of ash (%).

Blood and tissues sampling
Fish in all hapas were starved for one day following the feeding trial to collect blood and tissue samples. Before 
autopsy, fish were anesthetized using clove oil (5 mg/L) and blood samples from caudal veins were taken from 
fish in each hapa (10 fish/group) and divided between two sets of Eppendorf tubes. One set of samples was col-
lected with sodium heparin (20 U/L) as an anticoagulant and used for measuring white blood cell (WBC) count, 
red blood cell (RBC) count, hemoglobin (Hb), and hematocrit (Hct %). The second set was collected without 
anticoagulant and centrifugated at 5000 × g for 20 min to collect serum to assess serum biochemical indices. 
Fish were dissected after blood samples, and the mid-intestine and liver were sampled under aseptic conditions. 
They were washed and promptly homogenized in a physiologically normal saline solution. After that, the tubes 
were centrifugated at 10,000 × g for 10 min in a cooling centrifuge (Thermo Scientific) at 4 °C. The supernatant 
was collected in test tubes and kept at − 20 °C until usage.

Haemato‑biochemical analysis
RBC and WBC counts were manually determined using Hayek’s solution diluent and a Neubauer’s 
 hemocytometer39. Based on van Kampen and  Zijlstra40, thecyanomethaemoglobin technique was used to deter-
mine the Hb concentrations. To determine the Hct%, fresh blood was deposited in capillary glass tubes imme-
diately after sampling and spun for 10 min in a micro-hematocrit centrifuge. Next, the packed cell volume was 
determined. The mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpus-
cular hemoglobin concentration (MCHC) were assayed according  to41. Serum biochemical indices such as ala-
nine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (T-CHO), triglycerides (TG), 
low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) were measured 
via using diagnostic kits (Spinreact, S.A., Gerona, Spain).

Digestive enzyme activities
Using commercial diagnostic kits (Cusabio Biotech Co. Ltd., Wuhan, Hubei, China), digestive enzyme activi-
ties were assessed in the middle intestine samples per manufacturer recommendations. The α-amylase enzyme 
activities were assessed in accordance with the methodology explained by  Bernfeld42. The protease enzyme 
activities were estimated by the casein digestion method previously described  by43. The lipase enzyme activities 
were assayed according to the method  of44. The levels of α-amylase, protease, and lipase enzyme activities in the 
fish intestinal samples were assessed as Units per mg/protein.

Liver antioxidant variables and immunological assays
Hepatic catalase (CAT) and superoxide dismutase (SOD) were measured using protocols described  in45,46, with 
the aid of diagnostic kits (MyBioSource Inc., San Diego, California, USA) according to the producer’s instruc-
tions. The total antioxidant capacity (TAC) of the hepatic specimens was also estimated in harmony with the 
ferric reduction antioxidant power (FRAP) assay described by Benzie and  Strain47 at an optical density OD of 
593 nm. Malondialdehyde (MDA) contents were evaluated (as lipid peroxidation indicator) in hepatic tissues 
at an OD of 532 nm by thiobarbituric acid substances (TBARS) according to the assay previously  described48,49. 
According to  Ellis50, serum lysozyme activity (LYZ) was assayed as the amount of the enzyme, which led to a 
decline in absorbance of 0.001 min/1 mL serum. The nitro blue tetrazolium (NBT) test (Sigma-Aldrich, USA) 
was used to evaluate the respiratory burst activity (RBA), which was then quantified via a spectrophotometer at 
OD = 540  nm51. According to the  Yano52 technique, alternative complement activity (ACH50; U/mL) in which 
the serum concentration that causes 50% hemolysis was determined in each group.

Statistical analysis
The data were examined for the normality of distribution and the homogeneity of variances among BAs-sup-
plemented groups by Kolmogorov–Smirnov and Bartlett’s tests, respectively. Data were investigated by one-way 
ANOVA to evaluate BAs effects on the different measurements. Differences among means were statistically 
significant at P < 0.05. Analysis was performed by the SPSS program and GraphPad Prism X8.

Results
Effects of BAs on growth, somatic indices, and feed utilization
The highest growth indices, including Wt60 (Fig. 1A), WG% (Fig. 1B), SGR (Fig. 1C), and FI (Fig. 1D), were 
noted in BAs-supplied fish, especially in the groups fed on diets with 130 mg/kg feed compared with those fed 
control diet. Oppositely, non-significant differences (P > 0.05) were noted in FCR values (Fig. 1E) and survival 
rates (%) (Fig. 1F) among the test groups. In the same sense, no significant differences (P > 0.05) were also 
detected in the biometric indices including K factor, HSI, and VSI (Table 2), among the experimental groups.
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Effects of BAs on the whole‑body composition
The proximate chemical composition of whole-body of thinlip mullet (Table 2) presented that fish fed on a diet 
supplied with 350 mg BAs/kg showed the lowest moisture content (64.5%) accompanied by the highest protein 
content (18.4%). However, non-significant differences (P > 0.05) were perceived in the contents of lipids (%) and 
ash (%) in the whole body of fish fed on diets supplied with different BAs levels, and their ranges were 7.3% – 7.6% 
and 4.7% – 4.8%, respectively (Table 2).

(A) (B)   (C) 

(D) (E) (F)

0.0 50 130 350
0

10

20

30

Dietary BAs levels (mg / kg diet)

Fi
na

l w
ei

gh
t (

 W
t6

0;
 g

)

c b

a

b

0.0 50 130 350
0

50

100

150

Dietary BAs levels (mg / kg diet)

W
ei

gh
t g

ai
n 

%
 (W

G
 %

)

c
b

a

b

0.0 50 130 350
0.0

0.5

1.0

1.5

2.0

Dietary BAs levels (mg / kg diet)

Sp
ec

ifi
c 

gr
ow

th
 ra

te
 (S

G
R

; %
/d

ay
)

c b

a

b

0.0 50 130 350
0

10

20

30

Dietary BAs levels (mg / kg diet)

Fe
ed

 in
ta

ke
 ( 

g 
)

c

b

a

b

0.0 50 130 350
0.0

0.5

1.0

1.5

2.0

2.5

Dietary BAs levels (mg / kg diet)

Fe
ed

 c
on

ve
rs

io
n 

ra
tio

 (F
C

R
)

0.0 50 130 350
0

50

100

150

Dietary BAs levels (mg / kg diet)

Su
rv

iv
al

 ra
te

s 
(S

R
; %

)
Figure 1.  Final weight (A), weight gain % (B) specific growth rate (C), feed intake (D), feed conversion ratio 
(E), and survival rates (F) of thinlip mullet (Liza ramada) fed on diets supplied with different levels of bile 
acids (BAs) for 8 weeks. Data were expressed as Means ± S.E. Different letters of each chart indicate significant 
differences among different groups at P < 0.05.

Table 2.  Condition factor, somatic indices, and proximate chemical composition (% on a fresh weight basis) 
of the whole-body of thinlip mullet fed on diets supplied with different levels of bile acids (BAs) for 8 weeks. 
Means with the same letter in the same row are not significantly different at P < 0.05.

Parameters

BAs levels (mg/kg diet)

P value0.0 (control) 50 130 350

Body indices

Condition factor (CF) 0.74 ± 0.010 0.76 ± 0.029 0.73 ± 0.029 0.75 ± 0.038 0.934

Hepatic-somatic index (HSI) 1.05 ± 0.086 1.21 ± 0.039 1.27 ± 0.074 1.19 ± 0.056 0.179

Viscera-somatic index (VSI) 10.0 ± 0.20 10.5 ± 0.52 9.8 ± 0.33 10.8 ± 0.32 0.220

Proximate chemical composition

Moisture (%) 66.2 ± 201 a 66.4 ± 0.30 a 66.2 ± 0.29 a 64.5 ± 0.37 b 0.001

Crude protein (%) 15.9 ± 0.38 b 16.0 ± 0.13 b 15.9 ± 0.13 b 18.4 ± 0.19 a 0.004

Crude lipids (%) 7.6 ± 0.06 7.5 ± 0.12 7.6 ± 0.25 7.3 ± 0.15 0.085

Ash (%) 4.7 ± 0.09 4.7 ± 0.08 4.8 ± 0.08 4.7 ± 0.20 0.829
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Effects of BAs on hematological indices
It was noticed that the counts of WBCs and RBCs alongside the Hb concentrations and Hct (%) levels were 
significantly increased (P < 0.05) as dietary BAs levels increased, reaching their utmost levels in the group fed 
a diet supplied with 130 mg BAs/kg (Table 3). The highest MCV values were noted in group fed on the control 
and 350 mg BAs/kg diets. The lowest MCH was found in the fish group fed on a diet supplied with 50 mg BAs/kg 
feed with non-significant differences (P > 0.05) among other BAs treatments. Moreover, it was found that feeding 
mullets on a diet supplied with 130 mg BAs/kg revealed the highest MCHC values, while other BAs levels showed 
non-significant differences among them (P > 0.05).

Effects of BAs on lipid profile
Regarding the lipid profile, it was noticed that there were significant decreases (P < 0.05) in T-CHO, TG, and 
LDL-c values in mullet as BAs inclusion levels increased, reaching their lowest levels in the treatment of 350 mg/
kg feed (Table 3). Conversely, significant increases (P < 0.05) in HDL-c levels were noticed and associated with 
the rise in dietary BAs levels up to 350 mg/kg feed (Table 3).

Effects of BAs on liver functions
There was an opposite correlation between the dietary BAs levels and the values of liver function enzymes (ALT 
and AST), as their levels were significantly (P < 0.05) decreased in mullet as BAs levels increased, and their lowest 
levels were found in the group fed on a diet supplied with 350 mg/kg feed (Fig. 2).

Effects of BAs on intestinal digestive enzymes
The intestinal protease, α-amylase, and lipase enzyme activities were significantly (P < 0.05) enhanced as BAs 
levels increased in diets up to 130 mg/kg feed and after which the activities of these enzymes decreased (Fig. 3).

Effects of BAs on hepatic antioxidants variables
In relationship to the group fed BAs-free diet, significant decreases (P < 0.05) in hepatic MDA concentrations 
alongside significant increases in hepatic CAT, SOD, and TAC levels (P < 0.05) were noted in fish groups fed on 
BAs-supplied diets (Fig. 4).

Effects of BAs on serum immune parameters
Feeding mullet on BAs-enriched diets showed a gradual increase of the serum immune parameters (LYZ, RBA, 
and ACH50 levels) as dietary BAs increased and reached their highest levels in the fish group fed on a diet sup-
plied with 130 mg BAs/kg feed and after which the of the above-noted variables declined (Fig. 5). Moreover, the 
lowest values of immune biomarkers were detected in fish fed on the control diet (Fig. 5).

Discussion
We assessed the dietary impacts of exogenous BAs (Runeon®) on the growth and overall performances of thinlip 
mullet fed for eight weeks on SBM-based diets. The findings showed that mullets fed on SBM-based diets with 
no exogenous BAs had a depressed growth rate compared to BAs-supplemented groups. Romarheim, et al.53 
declared that O. mykiss fed on diets higher in soybean white flakes or toasted SBM resulted in a considerably 

Table 3.  Hematological parameters and serum metabolites of thinlip mullet fed on diets supplied with 
different levels of bile acids (BAs) for 8 weeks. Means with the same letter in the same row are not significantly 
different at P < 0.05. Hb: Hemoglobin; Hct: Hematocrit; HDL-c: High-density lipoprotein cholesterol; LDL-
c: Low-density lipoprotein cholesterol; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular 
hemoglobin concentration; MCV: Mean corpuscular volume; RBCs: Red blood cells; T-CHO: Total cholesterol; 
TG: Triglycerides; WBCs: White blood cells.

Parameters

BAs levels (mg/kg diet)

P value0.0 (control) 50 130 350

Hematological parameters

WBCs (×  103/mm3) 19.9 ± 0.91 c 24.2 ± 0.89 b 28.6 ± 0.23 a 23.7 ± 0.69 b 0.008

RBCs (×  106/mm3) 3.80 ± 0.232 c 4.54 ± 0.131 b 5.02 ± 0.219 a 4.28 ± 0.117 b  < 0.001

Hb (g/dL) 11.6 ± 0.35 c 12.6 ± 0.38 b 14.6 ± 0.40 a 12.2 ± 0.35 bc  < 0.001

Hct (%) 48.8 ± 2.47 c 53.5 ± 1.50 ab 56.5 ± 1.50 a 52.2 ± 2.93 bc 0.017

MCV (μm3/cell) 128.4 ± 3.91 a 117.8 ± 2.00 bc 112.5 ± 2.32 c 122.0 ± 10.03 ab 0.034

MCH (pg/cell) 30.5 ± 1.64 a 27.8 ± 1.09 b 29.1 ± 0.59 ab 28.5 ± 0.92 ab 0.027

MCHC (%) 23.8 ± 0.75 b 23.6 ± 0.58 b 25.8 ± 0.95 a 23.4 ± 1.33 b 0.017

Serum metabolites

T-CHO (mg/dL) 284.8 ± 0.42 a 257.4 ± 1.87 b 194.3 ± 0.39 c 177.4 ± 0.49 d  < 0.001

TG (mg/dL) 257.7 ± 1.33 a 212.6 ± 1.26 b 197.5 ± 0.42 c 145.8 ± 0.87 d  < 0.001

LDL-c (mg/dL) 216.3 ± 1.29 a 196.1 ± 1.38 b 149.0 ± 2.17 c 132.0 ± 0.79 d  < 0.001

HDL-c (mg/dL) 20.5 ± 0.82 c 27.2 ± 0.97 b 28.4 ± 0.68 b 34.1 ± 0.77 a  < 0.001
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decreased BAs content in the digesta of both the proximal and distal intestine than those fed with an FM-based 
diet. The authors declared that their findings might be linked with the anti-nutritional factors such as soy sapo-
nins or isoflavones, which may interact with bile in several  ways53. It is well-known taurine or cholesterol is 
required for endogenous BAs  biosynthesis54. Moreover, several plant protein sources, such as SBM, are deficient 
in  cholesterol55. Thus, the deficiency (or decreased amounts) of taurine or cholesterol in plant ingredients may 
lead to the inadequate synthesis of bile in fish fed principally on plant-based diets. Consequently, this will lead to 
poor lipid utilization and growth  retardation28. Another explanation of the growth retardation in the group fed 
solely on an SBM-based diet may be linked with SBM-induced enteritis, which may negatively impact nutrient 
digestion and absorption and consequently result in growth  retardation56,57.

We found that mullet growth was significantly enhanced when fed for eight weeks on diets enriched with 
exogenous BAs, and their highest growth rates were found in the group-fed diet supplied with 130 mg BAs/kg 
compared to other groups. Several reports showed that exogenous BAs supplementation to plant protein-based 
diets could be beneficial in enhancing the growth, as in the case of O. mykiss such as 1%  cholyltaurine58 and 1.5% 
bovine bile  salts59. Similar findings were also reported in turbot, which fed a diet with a high level of plant protein 
and supplied with 0.5%  taurocholate60. In addition, it was found that dietary supplementation with exogenous 
BAs containing HCA, HDCA, and CDCA up to 0.15 g/kg diet promoted the growth of GIFT tilapia that fed on a 
high-plant protein  diet28. Several mechanisms of action have been published describing the possible reasons for 
the enhanced growth rates of fish-fed BAs-supplied diets. For example, reports showed that exogenous bovine 
bile salts might help maintain the integrity of the fish intestinal epithelium, as previously described by Yamamoto, 
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Figure 2.  The liver function enzymes including (A) alanine aminotransferase (ALT; U/L) and (B) aspartate 
aminotransferase (AST; U/L) enzyme activities of thinlip mullet (Liza ramada) fed on diets supplied with 
different levels of bile acids (BAs) for 8 weeks. Data were expressed as Means ± S.E. (n = 5). Different letters of 
each chart indicate significant differences among different groups at P < 0.05.
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Figure 3.  The intestinal digestive enzyme activities including (A) proteases, (B) α-amylase, and (C) lipase 
enzyme activities of thinlip mullet (Liza ramada) fed on diets supplied with different levels of bile acids (BAs) 
for 8 weeks. Data were expressed as Means ± S.E. (n = 5). Different letters of each chart indicate significant 
differences among different groups at P < 0.05.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22875  | https://doi.org/10.1038/s41598-023-49788-6

www.nature.com/scientificreports/

et al.59, who found that the intestinal lesions occurred in O. mykiss-fed SBM-based diets were not evident when 
1.5% exogenous BAs was supplied as a dietary supplement. Furthermore, Yamamoto, et al.61 elucidated that sup-
plementing SBM-based diets with 1.5% bovine bile salts or 1.0% sodium cholyltaurine prevented the development 
of SBM-stimulated intestinal lesions in O. mykiss.

Exogenous BAs could also enhance the intestinal digestive ability of fish, as seen in our study, which will lead 
to enhanced digestibility of nutrients. Zhou, et al.25 informed that the growth of grass carp had been promoted 
in groups fed on diets supplied with exogenous BAs due to increased lipase enzyme activities which led to 
enhanced lipid digestion and absorption. Yin, et al.27 also declared that the growth-stimulating roles of CDCA 
might be linked to enhanced intestinal digestive enzyme activities and improved lipid utilization in M. salmoides 
juveniles. Dietary exogenous BAs containing HCA, HDCA, and CDCA could also maintain normal hepatic 
histomorphology and enhance the glucose and lipid metabolism of fish, as in the case of M. salmoides fed with 
a high starch  diet23. Although the theories mentioned above, the accurate modes of action of exogenous BAs in 
the fish growth enhancement warrant additional investigations. Moreover, to establish a relationship between the 
intermediary energetic metabolism of the liver with the activities of digestive enzymes and growth, it would be 
necessary to have measured the level of metabolites of the liver and of the plasma, such as the rate of free amino 
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Figure 4.  Hepatic oxidative stress biomarkers including (A) malondialdehyde (MDA), (B) superoxide 
dismutase (SOD) enzyme, (C) catalase (CAT) enzyme, and (D) total antioxidant capacity (TAC) of thinlip 
mullet (Liza ramada) fed on diets supplied with different levels of bile acids (BAs) for 8 weeks. Data were 
expressed as Means ± S.E. (n = 5). Different letters of each chart indicate significant differences among different 
groups at P < 0.05.
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acids, triglycerides, fatty acids, glucose, glycogen, lactate, pyruvate, ammonia, and protein. These parameters 
would necessitate additional research studies.

Regarding the palatability of BAs-supplemented diets, it was found that exogenous BAs could enhance the 
feed palatability up to 130 mg BAs/kg diet, which manifested herein, by the increased feed consumption in 
comparison with those fed on the control diet. Hence, dietary supplementation with exogenous BAs could be 
suitable for only up to 130 mg/kg diet for mullets. On another side, it was found that the high dietary levels of 
BAs (350 mg/kg feed) in the present study depressed the growth of mullets, and these findings may be linked to 
the reduced feed intake (FI) in this group. Interestingly, the reduction in FI may occur due to higher BAs levels 
may reduce the diet palatability and hence will reduce the consumption of feeds. Jiang, et al.28 also declared that 
excess dietary BAs (a mixture of HCA, HDCA, and CDCA) resulted in gallstone formation, disturbed lipid 
metabolism, and decreased growth performance of GIFT tilapia. Dissimilar results were reported by Ding, 
et al.26, who indicated that growth was promoted with supplementation in Larimichthys crocea juveniles fed 
high-lipid diets supplied with commercial BAs ranging from 300 mg/kg to 450 mg/kg. As observed above, these 
inconsistencies among the published studies may be coupled with differences in fish species, diet composition, 
and BAs supplementation doses.

The impacts of exogenous BAs on the whole-body composition of thinlip mullet herein showed lower mois-
ture content and higher crude protein content at the treatment of 350 mg BAs/kg feed only, but no changes in 
lipids and ash contents were noticed. The study conducted by Zeng, et al.62 noticed that exogenous BAs sig-
nificantly increased crude protein content but did not impact moisture and ash content in the body of juvenile 
Schizothorax prenanti. According to Sun, et al.63, dietary BAs significantly reduced moisture, increased crude 
protein, and lowered ash in the body, muscles, and liver of turbot. However, Gu, et al.60 illustrated that dietary 
taurocholate did not impact moisture, crude protein, or ash contents in juvenile turbot. In the study of Jiang, 
et al.28, exogenous BAs had non-significant impacts on the moisture content in the whole-fish body but had lower 
muscle crude protein and lipid deposition in the GIFT tilapia body. Dietary 1.5% bovine bile salts noticeably 
reduced protein digestibility in O. mykiss but did not impact the overall body protein  levels59. In other studies, 
dietary taurocholate did not significantly influence the whole-body lipid content of  turbot60. Exogenous BAs 
supplementation also did not affect the whole-body lipid content in bullfrog (Rana catabo)64. These contradic-
tory findings may be due to various factors, such as the fish species, the type of feed ingredients used, or other 
cultural  conditions34.

Herein exogenous BAs up to 130 mg/kg feed enhanced the intestinal protease, α-amylase, and lipase activi-
ties of thinlip mullet. These results suggest that exogenous BAs could enhance carbohydrate, lipids, and protein 
digestion in this fish species. This evidence could support the roles of BAs in growth stimulation that occurred 
in this experiment, as we described before. In the present study, the activities of the intestinal digestive enzymes 
decreased in the group-fed diet supplied with 350 mg BAs/kg diet. Our findings differ from those reported 
by Zeng, et al.65, who found that the highest activities of intestinal lipase were found in Schizothorax prenanti 
juveniles fed with a diet containing 300 mg BAs/kg diet. The intestinal digestive ability of the tongue sole was 
improved by increased lipase activities in the group supplied with 900 mg BAs/kg diet and increased amylase 
activity in the groups supplied with 300 mg/kg and 900 mg/kg66. Recently, it was found that the activities of 
hepatic protease, lipase, and amylase enzymes were increased along with the increase of dietary BAs levels (300 
and 900 mg/kg) in diets of tongue  sole67.

In aquaculture, studying hematological indices is considered an imperative tool for examining the health and 
nutritional status of  fish68,69. Herein WBCs, RBCs, Hb levels, and Htc % significantly increased as dietary BAs 
increased and reached their highest values in the group of 130 mg BAs/kg feed. A previous study found that the 
dietary application of exogenous BAs in a dose rate of 350 mg/kg significantly increased the leukocyte count in 
M. salmoides juveniles fed a high starch-based  diet70. However, the precise mechanism of improvement of the 
fish hematological parameters of thinlip mullet in the present study is unclear and warrants further investigation. 
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Figure 5.  The serum immune parameters including (A) lysozyme activity, (B) respiratory burst activity, 
and (C) alternative complement activity (ACH50) of thinlip mullet (Liza ramada) fed on diets supplied with 
different levels of bile acids (BAs) for 8 weeks. Data were expressed as Means ± S.E. (n = 5). Different letters of 
each chart indicate significant differences among different groups at P < 0.05.
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Although no previous studies were published on the effects of exogenous BAs supplementation on fish hematol-
ogy, we propose that the improvement of the hematological parameters may be coupled with the improvement 
of feed utilization and growth performance of BAs-supplied fish groups.

Regarding the influences of exogenous BAs on the lipid profile of thinlip mullet, it was found that T-CHO, 
LDL-c, and TG significantly decreased as BAs inclusion levels increased. In mammals, it is well-known that 
processes of regulation of cholesterol homeostasis in the body are affected by several factors, including the 
absorption of cholesterol from exogenous sources, the biosynthesis of endogenous cholesterol, and the excre-
tion of cholesterol through BAs in fecal  matter71. Cholesterol is transported in serum when combined with 
lipoproteins to form LDL-c and HDL-c72. The present study provided no exogenous cholesterol to fish in the 
formulated diets. Therefore, the measured cholesterol (T-CHO, LDL-c, and HDL-c) in the fish serum came from 
endogenous biosynthesis. The decreased contents of the measured lipid parameters may be associated with the 
roles of exogenous BAs supplementation, which could promote the activities of lipoproteins and upregulate the 
LDL receptors and very low-density lipoprotein (VLDL) receptor, consequently, will lead to a decrease in the 
plasma TG  contents73. However, explaining the roles of exogenous BAs on the lipid metabolism requires further 
studies of the molecular mechanisms.

Regarding the effects of exogenous BAs supplementation on the lipid profile of fish, many inconsistent results 
were found in the previously published literature among finfish species. An earlier study showed that dietary 
bovine bile salts supplementation decreased the plasma cholesterol content in O. mykiss59. Also, serum T-CHO 
decreased in cobia (Rachycentron canadum) fed on a BAs-supplemented  diet74. Dietary exogenous BAs enhanced 
the overall T-CHO, LDL-c, and HDL-c values in GIFT  tilapia28. Dietary BAs supplementation significantly 
decreased serum T-CHO and HDL-c levels with no significant impacts on TG and LDL-c in grass  carp25. Moreo-
ver, it was found that dietary supplementation with 0.02% BAs containing a mixture of HCA, HDCA, and CDCA 
significantly decreased TG, T-CHO, and LDL-c values in tiger puffer-fed normal and high-lipid  diets75. Moreover, 
dietary CDCA effectively decreased TG contents in the plasma of M. salmoides juveniles fed a high-fat  diet27. 
Likewise, dietary supplemental taurocholic acid sodium also decreased T-CHO, LDL-c, and TG in the serum of 
hybrid groupers fed a high-lipid  diet33. Differently, it was reported that dietary BAs significantly increased TG 
and T-CHO in the plasma of M. salmoides juveniles that were fed a high starch-based  diet70. Notably, the incon-
sistencies found among the published studies, as mentioned above, may be associated with different variables, 
such as supplemental doses of exogenous BAs, types of BAs used in diet formulation, and diet ingredients used 
as basal constituents (lipid-, carbohydrate-, or protein-based diets).

ALT and AST enzymes are the key bioindicators for assessing liver functions and reflecting the hepatic status 
of the  fish37. The increased activities of these enzymes are regarded as indicators of degenerative changes and 
hepatic  injury76. The present study showed that liver function enzymes (ALT and AST) in mullets significantly 
decreased as dietary BAs increased, and their lowest levels were found in groups fed a diet containing 350 mg 
BAs/kg. Moreover, the highest levels were noticed in the control group fed an SBM-based diet. Therefore, it 
is worthily noted that these findings could demonstrate the potential role of dietary BA to alleviate the nega-
tive effects of a plant protein-based diet on liver functions. The plasma ALT enzyme activities decreased, and 
plasma AST increased significantly in M. salmoides fed a high starch diet supplied with exogenous BAs as a 
dietary  supplement23. However, ALT and AST enzyme activities in the plasma of M. salmoides were significantly 
decreased when exogenous BAs (350 mg/kg diet) were supplied to a high-starch  diet70. There is a decreasing trend 
in the levels of plasma ALT and AST activities in Cyprinus carpio fed a high plant protein diet supplemented with 
exogenous BAs containing a mixture of HCA, HDCA, and CDCA (60 or 600 mg/kg diet)77. Latterly, it was noted 
that hepatic ALT and AST significantly decreased when exogenous BAs were supplemented in diets of tongue 
 sole67. Nonetheless, dietary BAs did not significantly affect serum ALT and AST enzyme activities of grass  carp25. 
These disagreements may be associated with fish species differences, dietary BAs doses, types, or diet ingredients.

MDA is the end product of lipid peroxidation and is considered a secondary product of oxidative  stress78. 
SOD and CAT are classical antioxidant enzymes that protect host cells and tissues from oxidative stress  injury18. 
The present study showed significant decreases in hepatic MDA concentrations and increases in hepatic SOD, 
CAT, and TAC values in mullet-fed SBM-based diets and supplied with various levels of exogenous BAs. The 
findings suggested beneficial antioxidant effects of exogenous BAs in the treated fish. The enhanced antioxida-
tion capabilities of the treated mullets may be associated with improved growth performance and enhanced liver 
functions. Our findings were in concordance with several previously published literature. For example, it was 
found that the hepatic MDA concentrations were decreased along with higher SOD, CAT, and TAC activities 
in the liver of L. crocea juveniles fed high lipid-based diets supplemented with exogenous  BAs26. Also, similar 
findings were reported in yellow croaker juveniles fed a high starch-based diet supplemented with exogenous 
BAs (350 mg/kg diet) for eight  weeks70. The study by Li, et al.66 declared that dietary BAs significantly enhanced 
the intestinal antioxidant activities of tongue sole by increasing the intestinal SOD and CAT enzyme activities 
and decreasing the intestinal MDA contents levels. Hepatic MDA contents were significantly decreased, and 
hepatic SOD activities were significantly increased in M. salmoides juveniles fed a diet containing increasing 
levels of exogenous  BAs27.

LYZ, RBA, and ACH50 play chief roles in fish  immunity17,79,80.The present study found that feeding thinlip 
mullet on BAs-enriched diets significantly boosted the serum immune biomarkers as LYZ, RBA, and ACH50 
levels, and their highest levels were detected in the fish group fed on diets supplied with 130 mg BAs/kg feed. 
The lowest levels of immune biomarkers were detected in fish fed on an SBM-based diet with no BAs supple-
mentation. In coherence with the current findings, noticeable alterations in the immune responses of many fish 
species after they feed on diets with high plant protein presence amounts such as Solea solea11. Additionally, 
Sitjà-Bobadilla, et al.81 found that the immunological defense mechanisms of Sparus aurata were reduced when 
fed on diets composed mainly of plant protein components. On the other hand, exogenous BAs also enhanced 
the immune parameters as LYZ activities and immunoglobulin M contents in tongue  sole66 and M. salmoides 
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 juveniles70. Until now, little information about the exact immunomodulatory mechanisms of dietary exogenous 
BAs in fish was known, and thus, additional research is still necessitated.

Conclusions
The current research outcomes suggested that dietary supplementation with exogenous BAs (Runeon®) in a dose 
of 130 mg /kg to an SBM-based diet could be suitable to improve the growth and physiological responses of thin-
lip mullets. Exogenous BAs also alleviated oxidative stress, boosted serum immunity, improved liver functions 
and digestive enzyme activities, as well as decreased lipid metabolites of thinlip mullet. These findings suggest 
that dietary BA could improve the functionality of aquafeed prepared for mullet farming. They also propose a 
novel practical interference for mitigating the negative impacts of using plant protein sources as SBM in fish 
diets with a possible cost-effective approach to be included in the aqua-feed industry.

Data availability
Data is available from the corresponding author upon reasonable request.
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