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TWAS revealed significant causal 
loci for milk production and its 
composition in Murrah buffaloes
Supriya Chhotaray 1,2, Vikas Vohra 2*, Vishakha Uttam 2, Ameya Santhosh 2, Punjika Saxena 2, 
Rajesh Kumar Gahlyan 2 & Gopal Gowane 2

Milk yield is the most complex trait in dairy animals, and mapping all causal variants even with 
smallest effect sizes has been difficult with the genome-wide association study (GWAS) sample sizes 
available in geographical regions with small livestock holdings such as Indian sub-continent. However, 
Transcriptome-wide association studies (TWAS) could serve as an alternate for fine mapping of 
expression quantitative trait loci (eQTLs). This is a maiden attempt to identify milk production and its 
composition related genes using TWAS in Murrah buffaloes (Bubalus bubalis). TWAS was conducted on 
a test (N = 136) set of Murrah buffaloes genotyped through ddRAD sequencing. Their gene expression 
level was predicted using reference (N = 8) animals having both genotype and mammary epithelial 
cell (MEC) transcriptome information. Gene expression prediction was performed using Elastic-Net 
and Dirichlet Process Regression (DPR) model with fivefold cross-validation and without any cross-
validation. DPR model without cross-validation predicted 80.92% of the total genes in the test group 
of Murrah buffaloes which was highest compared to other methods. TWAS in test individuals based 
on predicted gene expression, identified a significant association of one unique gene for Fat%, and 
two for SNF% at Bonferroni corrected threshold. The false discovery rates (FDR) corrected P-values 
of the top ten SNPs identified through GWAS were comparatively higher than TWAS. Gene ontology 
of TWAS-identified genes was performed to understand the function of these genes, it was revealed 
that milk production and composition genes were mainly involved in Relaxin, AMPK, and JAK-
STAT signaling pathway, along with CCRI, and several key metabolic processes. The present study 
indicates that TWAS offers a lower false discovery rate and higher significant hits than GWAS for milk 
production and its composition traits. Hence, it is concluded that TWAS can be effectively used to 
identify genes and cis-SNPs in a population, which can be used for fabricating a low-density genomic 
chip for predicting milk production in Murrah buffaloes.

The transcriptome-wide association study (TWAS) is an emerging gene-based association with phenotype that 
leverages the fine mapping of expression quantitative trait loci (eQTLs) and identification of causal genes with 
higher power than conventional genome-wide association studies (GWASes). TWAS uses the predicted gene 
expression levels as predictor variables affecting the phenotype variance unlike the GWAS that uses genotypes as 
the causal  variables1. In the era of multi-“Omics”, integration of genome-wide SNP genotypes and transcriptome 
information to achieve fine mapping of causal variants for complex traits has been an essential step. Though 
its importance is evident, yet fewer studies have been conducted for complex economic traits in dairy animals. 
Majority of such studies focusses on identification of eQTLs based on  GWAS2,3  and4 and post-GWA study on dif-
ferentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA)5. However, the 
majority of GWAS-hit loci lie in non-coding  regions6 and even though they might play a role in gene expression 
regulation, its physiological perspective is unclear. In dairy animals, most of the variants contributing to complex 
lactation traits have not yet been identified due to a limit on detection of true positives through GWAS in small 
sample sizes. Since the conception of  TWAS7, several studies have been conducted in humans for  psoriasis8, 
 Depression9, hematological  traits10, and Alzheimer’s  disease11 etc. Apart from that, TWAS has been performed 
in  maize12, and in pigs for meat quality  traits13.

Several studies in humans indicate the superiority of TWAS power over GWAS when expression heritability 
 (he

2) varies between 0.04 and 0.2 and proportion of variance explained by causal cis-SNPs is  low1,14. The advantage 
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of TWAS lies in its statistical power in identifying a causal gene with much lesser sample size than GWAS and its 
robustness to incorporate both individual and summary statistics of  GWASes15. Once the gene expression predic-
tion model is developed, it can fit across studies and tissues that further increase the prediction accuracy. Riverine 
buffalo (Bubalus bubalis) being a major dairy animal with ~ 45% contribution to the national milk production in 
India, still remains aloof from the genomic research on its genetic  architecture4. Integrating transcriptome and 
genome-wide SNP information shall help in delineating the causal genes for lactation traits in one of the major 
dairy breed of buffaloes i.e., Murrah. The present study aims at devising a suitable gene expression prediction 
model based on SNP genotypes and to associate the predicted expression levels with various lactation traits such 
as 305 days milk yield, peak yield, wet average and milk composition traits like fat and SNF% in Murrah buffalo. 
The scope of this study is identification of causal genes and cis-SNPs with higher effect sizes on these causal 
genes for the studied traits such that they can further be used in genomic selection and improvement programs.

Materials and methods
Lactation records of 144 randomly selected female Murrah buffaloes from Livestock Research Centre (LRC), 
National Dairy Resaerch Insitute (NDRI), Karnal, India (29.68°N and 76.99°E) were collected for the present 
study. 1st lactation records of 305 days milk yield (305 DMY), peak yield (PY), wet average (WA), fat percentage 
(fat%), Solid-not-fat percentage (SNF%), birth weight (bwt) in kg, and age at first calving (AFC) in months for 
144 selected buffaloes which had completed their first lactation with a standard lactation length of 305 days or 
more were recorded. Generally, the animals are stall-fed and as let-down ration, 0.25 kg of additional concentrate 
is given at the time of milking. Green fodder and other roughages are provided in ad-libitum. All the buffaloes 
are exclusively stall fed in open paddocks at the LRC, NDRI.

The animal study was reviewed and approved by the ICAR-National Dairy Research Institute (IAEC). All 
experiments were performed in accordance with the guidelines and regulations of IAEC, ICAR-NDRI.

Generation of genotype information
Blood sample from 144 randomly selected animals were collected aseptically and DNA was isolated via Phe-
nol–Chloroform method following protocol of Sambrook and  Russell16. Quality of DNA was checked using 
agarose gel electrophoresis and quantity was assessed using Qubit 4.0 fluorometer. DNA double digestion with 
SphI and MluCI restriction enzymes was carried out for standard restriction-associated DNA (RAD) protocol 
as described  by17. Standard Illumina read multiplexing protocol was followed with adapters (P1 and P2). After 
adapter ligation and size selection, samples were sequenced on Illumina Hi-seq 2000 platform and 150 bp paired 
end reads were generated with ~ 1X coverage. Index and sequence dictionary files for reference genome retrieved 
from NCBI website were created using the Burrows–Wheeler algorithm (BWA)18 and PicardTools, respectively. 
The quality of paired-end raw FASTQ files generated after sequencing, was checked using  FastQC19. Adapters 
were marked and trimmed using  bbmap20. The BWA-MEM algorithm was used to align the trimmed FASTQ 
sequences with the reference genome. Aligned files were coordinate-sorted, and duplicate reads were removed. 
Read group identifiers were updated using PicardTools. The quality of aligned BAM files was checked using 
 qualimap21. Variants were called using bcftools-mpileup22. This variant calling pipeline was previously stand-
ardized in our  laboratory23 and two sets of variant calling were performed. Set-I variants were called based on 
the latest Murrah buffalo reference genome GCF_019923935.1_NDDB_SH_1_genomic.fna (https:// www. ncbi. 
nlm. nih. gov/ assem bly/ GCF_ 01992 3935.1) and variants were retained for further training of the dataset to pre-
dict eQTL weights and individual level transcriptome wide association study. A second set (Set-II) of variants 
were called based on the Mediterranean buffalo reference genomeGCF_003121395.1_ASM312139v1_genomic.
fna(https:// www. ncbi. nlm. nih. gov/ assem bly/ GCF_ 00312 1395.1) for GWAS.

Quality control (QC) check of variants for downstream analysis
Set-I SNPs were further QC checked using PLINK v1.924 and all the indels were removed from further analysis. 
Only biallelic variant sites on autosomes and X chromosome having a genotype rate > 95% were retained. Vari-
ants passing the threshold of Hardy–Weinberg equilibrium test at p < 0.0001 and minor allele threshold of 0.01 
were retained for TWAS.

Set-II SNPs were also QC checked using PLINK v1.9 with thresholds of genotyping rate > 95%, linkage 
disequilibrium (LD) in terms of  r2 < 0.8, not deviating from HWE at p < 0.0001, and with MAF > 0.05. Only 
autosomal and X chromosomal SNPs were retained for GWAS.

Genome-wide association study (GWAS)
GWAS was conducted with a set of 39,019 QC passed Set-II SNPs, for the 1st lactation 305 days milk yield, peak 
yield, wet average, fat% and SNF% using the true phenotypes for all the 144 individuals that had completed the 
1st lactation with a standard 305 days of lactation. Genome-wide identity-by-state (IBS) for all pairs of individuals 
was checked. Multidimensional scaling (MDS) based on SNP information was done to check for the presence of 
any population stratification and was corrected by incorporating the first two MDS components as covariates in 
the model for GWAS. Birth weight (bwt) and age at first calving in months (AFC) were also included as covari-
ates in the model. A genome-wide scan for significant SNPs considering only additive effects was accomplished 
through a simple regression model using PLINK v1.9 as described by Marees et al.25, where residuals were 
assumed to be normally and independently distributed. A linear regression model was fitted for determining the 
association between SNPs and continuous  traits26. The threshold for genome-wide significance was determined 
by correcting the P-values of the SNP association test with Bonferroni’s correction and was 1.28 ×  10–6. P-values 
of the top ten SNPs of each GWAS traits was corrected for Benjamini–Hochberg’s false discovery rate (FDR) at 

https://www.ncbi.nlm.nih.gov/assembly/GCF_019923935.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_019923935.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_003121395.1
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5%  levels27 using the “R” package fuzzySim v3.028 and is given in the supplementary document. The results were 
plotted as Manhattan plots and Q-Q plots using the “qqman” package of R.

Linear regression model used for GWAS:

where, y = 1st lactation 305 days milk yield, x = additive effect of SNPs,  C1 = first component of MDS,  C2 = second 
component of MDS, AFC = Age at first calving in months, bwt = birth weight of the animal (in kgs), β0 = intercept 
term, β1 = regression coefficient representing the strength of association between SNP x and trait y, β2 = regression 
coefficient of  C1, β3 = regression coefficient of  C2, β4 = regression coefficient of AFC, β5 = regression coefficient of 
bwt, and e = residuals or noise not explained by SNPs. Eldawy et al.29 reported significant effect of body weight at 
birth and AFC on the reproduction and production performances in dairy buffaloes. Hence, these two variables 
were considered as important covariates for the GWAS and TWAS models.

Generation of gene expression information
For integrating transcriptomic information to find the underlying gene significantly contributing to the expres-
sion of complex lactational traits, 8 animals in the 2nd parity in a mid-lactation stage in the winter season were 
selected as reference animals for the TWAS having both genotype and phenotype data. The animals from the 
institute herd that had calved during the autumn and reached the peak lactation stage during the winter were 
selected as reference animals. To maintain the homogeneity, milk samples were collected from the animals in 
the mid lactation where animals attend their peak during the beginning weeks of this stage, which comes during 
the winter in the present study. The 1st lactation average in the herd was 2122.5 ± 286 kg. The reference animals 
were divided into two groups; above average + 1σ were considered high yielders (N = 5; > 2400 kg/lactation) while 
animals below average-1σ were treated as low yielders (N = 3; < 1800 kg/lactation) in the present study. Approxi-
mately, 150–200 ml of milk was collected aseptically in Diethyl pyrocarbonate (DEPC) treated tubes. RNA 
isolation was performed under sterile conditions in lab. RNA isolation was done following a hybrid  protocol30 
from the fat layer of the milk. Extracted RNA quantity was checked on Qubit 4.0 fluorometer and library was 
prepared for good quality samples with high RIN (> 6.5) values. Sequencing was performed using Illumina 
Novoseq 6000 platform. RNAseq data analysis was performed following the standard Galaxy  workflow31. Adapt-
ers were trimmed using cutadapt v3.7 allowing a maximum error rate of 0.1. Trimmed RNAseq fastq files were 
aligned to the reference genome GCF_019923935.1_NDDB_SH_1_genomic.fna using BWA-MEM algorithm. 
Aligned BAM files were sorted by chromosomal coordinates and other post-alignment cleaning processes such 
as deduplication, and sample information update were completed using picardtools. Qualimap–RNAseqQC 
and BAMQC v2.2.2-dev were used for checking the quality of aligned BAM files. Feature counts were generated 
using featureCounts v2.0.1. assuming reads are forward stranded. Fragments were counted for the paired-end 
data only if both the reads were aligned after removing chimeric fragments. rLog normalized gene expression 
levels from DESeq2 v2.11.40.7 were obtained after correcting for the “production level” i.e., high and low yields 
and “batch of sample collection”.

Transcriptome-wide association study
To perform a two stage TWAS, first gene expression imputation model was designed for estimating the cis-eQTL 
effect sizes from a training sample (N = 8) for which both genotype and transcriptome data are available. The 
model suggested by Nagpal et al.14 was employed which is as follows:

where,  Eg: denotes the log normalized gene expression levels (after corrections for confounding factors such 
as production levels and sampling batch) for gene g. Xtrain: denotes the genotype matrix for all cis-genotypes 
(encoded as the number of minor alleles present 1 MB of the gene; [− 1 MB—Gene_start—Gene_end— + 1 MB]). 
w: denotes the corresponding cis-eQTL effect-size vector, and ε: denotes the error term.

The gene expression levels GReX (genetically regulated gene expression) of the test samples (N = 136) were 
imputed with the assumption of following model:

Given the predicted eQTL effect size estimates ŵ from the training data in Eq. (1), GReX was imputed by the 
Eq. (2) where Xtest is the genotype matrix containing cis-SNP data for the test dataset.

For training and prediction of the GR̂eX , both non-parametric Bayesian DPR method and parametric Elas-
tic-Net model were used each with 5X cross validation (CV) and without any CV. Training, prediction, and 
association with phenotypes was accomplished using TIGAR: An Improved Bayesian Tool for Transcriptomic 
Data Imputation Enhances Gene Mapping of Complex Traits. ~ 15 simulations were run to test the appropriate 
parameters for the training model. Training was done with fivefold cross validation and without cross valida-
tion (leaving two out of 8 samples rotationally per iteration and training with all 8 samples) for both DPR and 
Elastic-Net model. An overall TWAS workflow is presented in Fig. 1.

Only the additive genetic effects of the cis-SNPs on genes were estimated as non-additive such as dominance 
and interaction effects tend to be overestimated in the small training samples, and estimation of only additive 
effects provide better prediction accuracy. SNPs were excluded if missing rate exceeded 0.2. Those SNPs having 
a MAF < 0.01 and deviating from the Hardy–Weinberg Equilibrium at p < 0.0001 were also excluded from the 
training. For training and individual level associations 1,64,830 QC passed Set-I SNPs were used. Association 
was performed based on the following model.

y = β0 + x ∗ β1 + C1 ∗ β2 + C2 ∗ β3 + AFC ∗ β4 + bwt ∗ β5 + e

(1)Eg = Xtrainw + ε, ε ∼ N
(

0, σ2εI
)

(2)GR̂eX = Xtestŵ
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where, f(.) is a pre-specified link function, which is set as identity function for the quantitative phenotype, 
[Y|X,C]: Phenotype given genotype matrix Xtest and covariate matrix C,  H0: β = 0 in Eq. (3).

Same covariates as that of GWAS i.e., AFC, Birth weight, and 1st two components of MDS of set-II variants 
were taken to maintain homogeneity. TWAS was performed for 305 DMY, PY, WA, fat% and SNF% in the test 
individuals (N = 136). A detailed methodology is provided in the supplementary  file for methods.

Comparison of GWAS and TWAS results
Chromosome wise TWAS results for each trait and each model were combined to generate TWAS Manhattan 
plots. Manhattan plots generated from GWAS for each trait were compared with the TWAS Manhattan plots. 
Based on the significant genes and peak signals from the TWAS results via the DPR method, important genes 
were identified for the studied lactational traits. A TWAS hit gene’s midpoint position ± 1.5 Mb stretch was 
checked for presence of other potential TWAS hits those couldn’t be detected directly from the TWAS. Genes 
that are lying within that stretch of 3 Mb was considered for pathway enrichment. The pathways enriched with 
p < 5 ×  10–2 were considered to be significantly enriched for the respective traits and the genes involved in those 
pathways were selected as probable candidate genes through the online gene ontology analysis platform gProfiler. 
Genes near the ± 20 kb of the GWAS hit SNPs and TWAS hit genes were compared for any shared genes among 
all methods. SNPs having highest positive and negative weights on prediction of those genes were recommended 
as important markers for further studies.

Ethics statement
The animal study was reviewed and approved by the ICAR-National Dairy Research Institute (IAEC). All experi-
ments were performed in accordance with relevant guidelines and regulations.

(3)f(E[Y|X, C]) = ηC+ βGR̂eX

Figure 1.  A brief workflow of the present study depicting steps from data acquisition to final genome-wide and 
transcriptome-wide associations.
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Results
Genotyping by sequencing and total mRNA sequencing
An average of 2.31 million each of forward and reverse reads of 151 base pairs (bp) were obtained per sample 
after the ddRAD sequencing. The average GC content of the reads was 51.20% with 35–40 Phred score (Q). Raw 
reads were aligned to the latest reference genome GCF_019923935.1_NDDB_SH_1_genomic.fna with 97.59% 
mapping rate and 52.34 average mapping quality. Clean BAM files obtained after sorting, trimming, and duplicate 
removal were used for variant calling and 57,92,182 polymorphic sites containing 55,60,412 SNPs and 2,31,770 
indels were obtained. A total of 1,64,830 SNPs (Set-I) those passed QC were finally retained for GReX prediction 
for TWAS. For GWAS, variants (Set-II) were called using Mediterranean reference buffalo genome as the vari-
ants called using latest reference genome showed high genomic inflation when used for GWAS. The reads were 
mapped to the Mediterranean reference genome with 95.45% mapping rate and 32.73 average mapping quality. 
A total of 5,804,693 variants were obtained among which 5,544,733 were SNPs and 2,59,960 were indels. After 
applying quality control threshold for GWAS (Table S1), a total of 39,019 SNPs were retained for the GWAS.

An average of 30.68 GB of raw data per sample in paired end mRNA sequencing was obtained. The average 
genome coverage was 2.59X with 87.06% mapping rate to the reference genome (GCF_019923935.1_NDDB_
SH_1). After quality control, number of reads counted as fragments for the paired end data and an average of 
38.73% of reads were mapped to exonic region (Table 1). Total 33,347 features were counted as genes and their 
expression values were obtained.

Genome-wide association study (GWAS)
GWAS was performed for 1st lactation 305 days milk yield, peak yield, wet average, fat% and SNF% taking AFC, 
birth weight, and 1st two MDS components as covariates. The association results for each trait are depicted 
through Manhattan plot along with the association results of TWAS for that particular trait. The Q-Q plot 
signifying the distribution of p-values with respect to the test hypothesis is presented in Fig. S1. The top ten 
SNPs with respect to highest –logP values and the genes in their vicinity of ± 20 kb are presented in the Table 2.

Transcriptome-wide association study (TWAS)
Model training and gene‑expression prediction
Set-I SNPs (1,64,830) were used to predict 26,956 genes which were further used to perform TWAS. Training 
accuracy was higher in case of ENET model through both with- and without cross-validation with an average 
of 0.67 while through DPR model training accuracy was 0.49 without cross-validation and 0.48 with cross-
validation. λ value of was found to be 0.32 on an average across the chromosomes in the ENET model for both 
the methods indicating that regression coefficients were moderately shrinked with α when assumed to be 0.5 
and with α determined by cross-validation. Chromosome wise training accuracy across all models and methods 
is presented in Table 3. The cis-QTL weights for the SNPs predicted through the DPR model with and without 
cross-validation were same; hence, the prediction of gene expression levels and their association with the respec-
tive traits was done only for the DPR model without cross-validation method. While separate association results 
were obtained for ENET with and without cross-validation methods.

Transcriptome‑wide association results
The TWAS results are presented as a Manhattan plot for the different models along with GWAS results in Figs. 2, 
3, 4, 5, 6 for 305 days milk yield, peak yield, wet average, fat%, and SNF%, respectively. The top 10 genes having 
the lowest P-value along with their FDR corrected P-values were identified and are given in the supplementary 
document (Tables S2–S6).

TWAS results for 305 days milk yield, peak yield, and wet average were checked to assess the role of important 
genes associated with milk production. From the corresponding Manhattan plots of TWAS for 305 days milk 
yield, peak signals of probable associations were observed on BBU10 at ~ 4 Mbp, BBU15 at ~ 37 Mbp and ~ 81 
Mbp, and BBU6 at ~ 1 Mbp. Notably, the well-known candidate gene DGAT1 for milk yield is positioned at 
81362831–81371652 bp on BBU15. Similar peak patterns were observed on the BBU15 at ~ 81 Mbp from the 
TWAS results for wet average. Apart from the TWAS results of the DPR model, TWAS for 305 DMY through 

Table 1.  RNAseq feature count and assignment details obtained after counting the fragments via 
featureCounts v2.0.1.

Sample Aligned to genes Exonic Intronic Intergenic Intronic/intergenic overlapping exon

T1 20901928 25.93 27.02 47.05 1.48

T2 7630593 14.97 37.16 47.87 0.74

T3 57004368 59.32 16.52 24.16 1.17

T4 1880851 6.43 64.39 29.19 0.4

T5 99543722 69.69 13.67 16.64 0.78

T6 66600631 63.7 15.76 20.54 1.66

T7 2286347 10.23 33.03 56.74 1.69

T8 20675305 59.6 33.22 7.19 19.24

Average 34565468 38.73 30.09 31.17 3.39
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Elastic Net model with 5X cross-validation revealed NDUFA11 on BBU9 at ~ 92 Mbp to be the top gene with 
lowest p-value. NDUFA11 was also found as the top gene with lowest p-value for the peak yield TWAS through 

Table 2.  Genes annotated ± 20 kb of the top ten SNPs having lowest p-values in GWAS for each trait.

Traits Chromosome Position Genes

Milk yield

2 18564231 LGSN, CYFIP1

3 152863609 TBX19, FAM78B

3 88029567 TBX19, FAM78B

10 19195382 KCNN2, CELF6

11 30281597 ZC3H8, MTLN, NPHP1

16 47885286 TMEM183A

16 74362826 PLXNA2

17 29702216 ABHD18

20 13906580 PANK3, SGTB, TRAPPC13, TRIM23

24 36865371 METTL4, NDC80

Wet average

3 88029567 TBX19, FAM78B

4 44518782 TMBIM7, PMPCB, DNAJC2

6 112228435 APELA, LARP7

6 112228371 APELA, LARP7

10 48419016 MCC, KCNN2

10 16657423 MCC, KCNN2

11 30281597 ZC3H8, MTLN, NPHP1

18 37277083 UQCRFS1, SF3B3

21 39649505 NDN

24 28499463 PARD6G

Peak yield

2 18564231 LGSN, CYFIP1

3 152863609 TBX19, FAM78B

4 44518782 TMBIM7, PMPCB, DNAJC2

10 16657423 MCC, KCNN2

10 17324461 UACA 

11 30281597 ZC3H8, MTLN, NPHP1

11 24583445 ZC3H8, MTLN, NPHP1

20 13906580 PANK3, SGTB, TRAPPC13, TRIM23

23 32648766 PRIM2

24 28499463 PARD6G

Fat%

3 162275901 TBX19, FAM78B

3 91898446 FAM78B, SSBP3

4 48399143 VSTM2A, TMBIM7

4 40204848 VSTM2A,TMBIM7

5 84739212 KRAS, ETFRF1

8 58357861 MFSD14B

16 66495537 TMEM183A

17 15895247 KLHL2

20 34215807 SPZ1,PANK3

22 15166346 MRPS24

SNF%

3 47608245 TBX19, FAM78B

3 66715572 FAM78B, MIR2285BB DNAJB4, FUBP1

9 96723520 PTP4A1

10 24182429 MCC, KCNN2

11 35249431 ZC3H8, MTLN, NPHP1

13 12532412 PLCB1, ECHDC3

14 54067539 C14H8orf33, ZNF34, ARHGAP39

16 10198062 TMEM183A

20 45882062 SPZ1, PANK3

23 41123236 PRIM2
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Elastic Net model with cross-validation. From the peak yield TWAS through DPR model, peak signals were 
observed at BBU2 at ~ 17 Mbp, BBU20 at ~ 11 Mbp, BBU24 at ~ 38Mbp, and BBU9 at ~ 69Mbp. Though no sig-
nificant associations were observed for milk production traits through TWAS, FDR corrected P-values in DPR 
model denoted significant association of TRNAW‑CCA_36, LOC102411990, LOC102415512, LOC102416173, 
and LOC123335276 with the peak yield. LHFPL5 and RFTN2 were significantly associated with the SNF% in 
the ENET models.

For milk production, CREB3L3, GNA15, GNG7, MAP2K2, MAP2K7, SHC2, and ADCY9 were found to be 
involved in the Relaxin signaling pathway. TNFRSF11B, AMH, CCL25, CD70, EBI3, IL13, IL4, IL5, TNFSF14, 
TNFSF9, GDF9, LTA, LTB, TNF, and TNFRSF12A were significantly enriched in the cytokine-cytokine receptor 
interaction. IL13, IL4, IL5, MAP2K2, MAP2K7, VAV1, and TNF were significantly enriched in the Fc epsilon 
RI signaling (FcεRI) pathway. GNA11, MAP2K2, HCN2, KISS1R, and GABBR1 were enriched in the GnRH 
secretion pathway. CREB3L3, GNA11, MAP2K2, SHC2, and ADCY9 were enriched in the Growth hormone 
synthesis, secretion and action pathway. A novel uncharacterized gene LOC112578579 at BBU13 was found to 
be significantly associated with Fat% in the DPR without CV TWAS model. Along with that, peak signals were 
found on BBU13 at ~ 68 Mbp, and BBU6 at ~ 16 Mbp. For Fat%, AMPK signaling pathway was significantly high-
lighted by both KEGG and Wiki pathways. The genes found to be involved in the AMPK signaling were CCNA1, 
CAB39L, CREB3L4, CRTC2 and FOXO1. FOXO1 was also significantly enriched in the constitutive androstane 
receptor pathway and adipogenesis. EBPL gene was found to be significantly enriched for the biological process 
sterol metabolism.

Though DPR was considered as the most suitable model for our population, genes such as LHFPL5 and 
RFTN2 were found to be significantly associated with SNF% in the ENET 5X CV and ENET without CV models, 
respectively. Meanwhile, in the TWAS results of the DPR model, peak signals were observed on BBU2 at ~ 141.9 
Mbp, BBU9 at ~ 100 Mbp, and on BBU17 at ~ 10 Mbp. AOX1, IL27RA, TYK2, and PTPN11 genes were signifi-
cantly enriched in the JAK-STAT signaling pathway. Genes such as SDS and SDSL were enriched for the valine, 
leucine and isoleucine biosynthesis and cysteine and methionine metabolism pathway.

The novel genes identified for milk production, Fat%, and SNF% recommended for further studies are given 
in the Tables 4, 5, 6. The genes identified through the TWAS were then further checked for the SNPs having 

Table 3.  Chromosome-wise DPR and ENET model performances in gene-expression training and gene 
prediction.

Models

Training  R2 λ

Total number 
of genes used 
for training

No. of genes imputed for expression value

DPR ENET ENET DPR ENET

Chromosome 
no Without_CV With_CV Without_CV With_CV Without_CV With_CV Without_CV With_CV Without_CV With_CV

1 0.4931 0.4898 0.6482 0.6375 0.3471 0.3584 1781 1446 1325 1168 1120

2 0.4823 0.4756 0.6514 0.6451 0.3424 0.3476 2504 2007 1798 1650 1598

3 0.4814 0.478 0.7142 0.7068 0.2797 0.2867 2854 2306 2044 2057 1986

4 0.493 0.4905 0.6735 0.6684 0.3125 0.3181 2160 1725 1568 1488 1444

5 0.454 0.4514 0.7033 0.694 0.2839 0.2929 1856 1527 1385 1332 1284

6 0.5022 0.5028 0.6778 0.675 0.312 0.3172 1910 1574 1428 1316 1282

7 0.5093 0.5025 0.6563 0.6518 0.3341 0.3368 897 749 693 601 582

8 0.4697 0.4627 0.6316 0.625 0.3586 0.3656 1242 1008 927 797 775

9 0.4679 0.4695 0.7196 0.709 0.2737 0.2843 1792 1434 1285 1303 1248

10 0.4712 0.469 0.6356 0.6239 0.3558 0.3682 808 645 587 524 500

11 0.5042 0.504 0.6584 0.6499 0.3292 0.3365 1556 1158 1024 1041 1001

12 0.498 0.4926 0.6901 0.6842 0.2931 0.2996 1410 1140 996 976 938

13 0.4779 0.4778 0.6587 0.6423 0.3304 0.3475 633 478 427 415 391

14 0.4787 0.4932 0.7128 0.7037 0.2802 0.2873 1191 959 856 861 824

15 0.4924 0.4936 0.6688 0.6575 0.3227 0.334 785 652 579 531 503

16 0.4728 0.4678 0.6155 0.608 0.3768 0.3843 1390 1131 1023 870 835

17 0.502 0.5035 0.6696 0.6649 0.3163 0.3201 903 770 673 620 604

18 0.5128 0.5101 0.7685 0.7626 0.2284 0.2339 1722 1401 1241 1341 1296

19 0.4824 0.4789 0.6199 0.6151 0.3587 0.3651 526 421 392 333 321

20 0.4771 0.4701 0.6435 0.6428 0.3356 0.3373 913 736 661 613 595

21 0.4863 0.4783 0.7197 0.7153 0.2691 0.2735 796 651 584 584 568

22 0.5001 0.4985 0.6838 0.683 0.3129 0.3151 547 440 404 375 366

23 0.4848 0.4903 0.6773 0.6702 0.2985 0.305 650 542 493 451 434

24 0.4948 0.493 0.7448 0.7463 0.2444 0.2423 998 866 782 753 728

X 0.4793 0.4807 0.5828 0.5762 0.3916 0.3984 1486 1190 1112 904 871

Average 0.49 0.48 0.67 0.67 0.32 0.32 – – – – –
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Figure 2.  Manhattan plot showing the results of associations with the 305 DMY (A) GWAS (B) TWAS by 
ENET without CV (C) TWAS by ENET with 5X CV, and (D) TWAS by DPR without CV models. The red 
line indicates genome-wide p‑value threshold (expressed as –log10P) corresponding to Bonferroni corrected 
p‑values, above which the SNPs are considered to be significantly associated with the trait in GWAS, while the 
blue line indicates genome-wide significant threshold of Bonferroni corrected p‑values for TWAS models. †The 
red ovals surrounding various genomic region suggest the significant SNP/genes and peak association signals.
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Figure 3.  Manhattan plot showing the results of associations with the PY (A) GWAS (B) TWAS by ENET 
without CV (C) TWAS by ENET with 5X CV, and (D) TWAS by DPR without CV models. The red line indicates 
genome-wide p‑value threshold (expressed as –log10P) corresponding to Bonferroni corrected p‑values, 
above which the SNPs are considered to be significantly associated with the trait in GWAS, while the blue line 
indicates genome-wide significant threshold of Bonferroni corrected p‑values for TWAS models. †The red ovals 
surrounding various genomic region suggest the significant SNP/genes and peak association signals.
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Figure 4.  Manhattan plot showing the results of associations with the WA (A) GWAS (B) TWAS by ENET 
without CV (C) TWAS by ENET with 5X CV, and (D) TWAS by DPR without CV models. The red line indicates 
genome-wide p‑value threshold (expressed as –log10P) corresponding to Bonferroni corrected p‑values, 
above which the SNPs are considered to be significantly associated with the trait in GWAS, while the blue line 
indicates genome-wide significant threshold of Bonferroni corrected p‑values for TWAS models. †The red ovals 
surrounding various genomic region suggest the significant SNP/genes and peak association signals.
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Figure 5.  Manhattan plot showing the results of associations with the Fat% (A) GWAS (B) TWAS by ENET 
without CV (C) TWAS by ENET with 5X CV, and (D) TWAS by DPR without CV models. The red line indicates 
genome-wide p‑value threshold (expressed as –log10P) corresponding to Bonferroni corrected p‑values, 
above which the SNPs are considered to be significantly associated with the trait in GWAS, while the blue line 
indicates genome-wide significant threshold of Bonferroni corrected p‑values for TWAS models. †The red ovals 
surrounding various genomic region suggest the significant SNP/genes and peak association signals.
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Figure 6.  Manhattan plot showing the results of associations with the SNF% (A) GWAS (B) TWAS by ENET 
without CV (C) TWAS by ENET with 5X CV, and (D) TWAS by DPR without CV models. The red line indicates 
genome-wide p‑value threshold (expressed as –log10P) corresponding to Bonferroni corrected p‑values, 
above which the SNPs are considered to be significantly associated with the trait in GWAS, while the blue line 
indicates genome-wide significant threshold of Bonferroni corrected p‑values for TWAS models. †The red ovals 
surrounding various genomic region suggest the significant SNP/genes and peak association signals.
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highest negative and positive weights for the prediction of that particular gene. The two top SNPs having the most 
negative and positive effect sizes for each TWAS highlighted genes were filtered from the gene prediction result 
files to obtain the important SNPs to be used as important markers in future selection programs (Tables S7–S9).

The genes identified through GWAS and TWAS hits were checked for common genes between them but no 
such common genes could be found (Fig. 7). Only ENET CV and without CV method showed 1, 4, and 2 genes 
for fat%, peak yield, and SNF%, respectively.

Table 4.  Chromosomal position and description of candidate genes identified for milk production. a Denotes 
Chromosome no.

Chra Start End Gene Description

24 38853457 38939708 ADCY9 Adenylate cyclase 9

9 91338776 91349987 CREB3L3 cAMP responsive element binding protein 3 like 3

15 81362831 81371652 DGAT1 Diacylglycerol O-acyltransferase 1

15 25908087 25956298 EIF3E Eukaryotic translation initiation factor 3 subunit E

9 69978056 69979015 LOC102411990 Olfactory receptor 5F1-like

15 81381535 81387066 LOC112579064 WAS/WASL-interacting protein family member 2-like

17 44465782 44577887 LOC112579963 Uncharacterized

2 17707146 17707254 LOC112583021 U6 spliceosomal RNA

10 4649442 4651633 LOC112587322 Uncharacterized

9 91286096 91309185 MAP2K2 Mitogen-activated protein kinase kinase 2

9 94502825 94512982 MAP2K7 Mitogen-activated protein kinase kinase 7

6 1079791 1160577 MPZL1 Myelin protein zero like 1

24 38138282 38147034 NAGPA N-acetylglucosamin × 10-1-phosphodiester alpha-N-acetylglucosaminidase

9 92721700 92726796 NDUFA11 NADH:ubiquinone oxidoreductase subunit A11

20 11406835 11508065 PPP4R4 Protein phosphatase 4 regulatory subunit 4

3 140320581 140320652 TRNAW‑CCA_36 Transfer RNA tryptophan (anticodon CCA)

Table 5.  Chromosomal position and description of candidate genes identified for milk fat percentage. 
a Denotes Chromosome no.

Chra Start End Gene Description

13 70503653 70589374 CAB39L Calcium binding protein 39 like

13 64545661 64557188 CCNA1 Cyclin A1

13 68036475 68062355 CKAP2 Cytoskeleton associated protein 2

6 16516950 16522814 CREB3L4 cAMP responsive element binding protein 3 like 4

6 16530385 16540109 CRTC2 CREB regulated transcription coactivator 2

13 70284989 70380518 EBPL EBP like

13 67652157 67742085 FOXO1 Forkhead box O1

13 35434571 35434674 LOC112578579 U6 spliceosomal RNA

6 16551688 16560448 LOC123333976 Uncharacterized

Table 6.  Chromosomal position and description of candidate genes identified for milk SNF percentage. 
a Denotes Chromosome no.

Chra Start End Gene Description

2 141239521 141309458 AOX1 Aldehyde oxidase 1

2 141982022 142006184 CASP8 Caspase 8

17 10125393 10180481 GCN1 GCN1activator of EIF2AK4

9 99418351 99442312 IL27RA Interleukin 27 receptor subunit alpha

9 100515335 100516339 LOC123335169 Olfactory receptor 7A10-like

17 10848425 10919255 PTPN11 Protein tyrosine phosphatase non-receptor type 11

2 41189571 41219947 RAB44 RAB44, member RAS oncogene family

17 11609354 11617523 SDS Serine dehydratase

17 11628968 11642021 SDSL Serine dehydratase like

9 96284490 96312587 TYK2 Tyrosine kinase 2
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Discussion
This study is a first of its kind to be conducted in dairy animals to obtain transcriptome-wide association of 
predicted gene expression levels with economically important production traits of Murrah buffalo. Since the 
conception of TWAS as a post-GWAS prioritization tool in humans to identify and delineate the biological func-
tion of causal genes responsible for various diseases and quantitative phenotype viz. height, the field of animal 
science is lagging way behind in exploring the same in livestock species to augment genomic selection programs. 
Though GWAS have been very effective and one of the most widely used method to map several causal loci for 
complex traits; yet the biological gaps are still evident. The majority of GWAS-hit loci lie in non-coding regions 
and, even though they might play a role in gene expression regulation, its physiological perspective is unclear. In 
dairy animals, most of the variants contributing to complex lactation traits have not yet been identified, as their 
effect sizes are too small to be detected at current GWAS sample sizes. Hence, the need to perform TWAS like 
post-GWAS studies in animal species couldn’t be undermined any longer and the present study is an application 
of the concept in one of the major dairy animal species of India i.e., Murrah buffalo.

Genotyping by sequencing (GBS) using double digestion RAD tag technology have already been proven to 
be efficacious in terms of cost, speed of genotyping, robustness and is generalized to any  species32,33. GBS aids in 
obtaining a large number of genome-wide SNP information for exploring within-species diversity, construct-
ing haplotype maps and performing genome-wide association studies (GWAS)34, at a lesser expense than other 
contemporary methods. The ddRAD genotype information generated in the present study provided 1X genome 
coverage, and upon alignment to the reference genome 97.59% mapping rate was observed proving its suitability 
to be used in the GWAS and TWAS studies in the Murrah buffalo.

The transcriptome information for the present study was obtained by sequencing total mRNAs from mam-
mary epithelial cells of lactating animals. Milk is a heterogeneous source of somatic cells composed of lym-
phocytes, neutrophils, macrophages and exfoliated epithelial  cells35. The expression of genes involved in cell 
turnover, milk synthesis, or hormonal regulation in the mammary tissue is a key determining factor for milk 
production in ruminants. The applicability of the milk-isolated MECs to analyze mammary gene expression has 
been substantiated through many studies, as the gene transcript variations were also in accordance with milk 
yield and composition variations. Mammary epithelial cells (MEC) are unique in the way they are involved in 
the synthesis and secretion of milk, despite popularity of milk somatic cells in analysis of the gene expression 
for milk synthesis in  ruminants36. Milk isolated mammary epithelial cells produce similar transcript variation 
profile that is consistent with variations in milk yield and  compositions37. The genome-wide gene expression levels 
obtained from the MECs are well representation of the genome-wide lactation specific genes in the present study.

As in one of our previous studies, we highlighted the reasons for taking a GWAS sample size in hundreds as 
optimum to find significant results considering the buffalo farming scenario in Indian sub-continent23. Majority 
of organized buffalo farms in India have a herd size of 250–500 and only 100–200 breedable population, along 
with an absence of any functional buffalo sequencing consortium in India, renders sequencing of few hundreds 
of animals with sufficient genetic diversity to be feasible. In a such a case, when we considered genotyping 144 
unrelated Murrah buffaloes, proportionately, for performing TWAS, total mRNA sequencing of 8 individuals 

Figure 7.  Venn diagram showing number of shared genes between the top ten list of GWAS and TWAS. (A) 
305 days milk yield, (B) Peak yield, (C) Wet average (D) Fat %, and (E) SNF % (DPR without CV, ENET with 
CV, and ENET without CV) (the darkest blue colour indicates no shared genes among the methods).
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were considered optimum, and the results obtained through TWAS evidently showed the robustness of the 
method and applicability in Murrah population despite the low sample size.

The gene expression prediction models i.e., Elastic-Net and DPR with 8 samples were trained. Nagpal et al.14 
had discussed the higher power of TWAS using DPR over TWAS using Elastic-Net model. They have shown 
through a series of simulation along with real data study with ROS/MAP data that indicated the superior per-
formance of DPR model over Elastic-Net model implemented in the PrediXcan, in terms of TWAS power and 
imputation  R2. The advantage of DPR model lies in its flexibility of non-parametric Bayesian modelling that 
predicts higher number of genes with a better imputation  R2 at causal gene proportions ≥ 0.01 and at  he

2 ≤ 0.2. 
As, the lactation traits are of polygenic nature and are controlled by many genes, proportions of causal cis-SNPs 
are expected to be much higher and there is no prior information regarding the effect size distribution of cis-
eQTLs, the DPR method of gene expression prediction can be considered as a choice of model for such a case. 
This assumption was also consistent with the results obtained in the present study that showed higher number 
of predicted genes through both DPR 5X cross-validation and without cross-validation methods than Elastic-
Net model. DPR without CV model predicted 12.16% more number of genes than ENET without CV model, 
while DPR 5X CV model predicted 6.59% higher genes than ENET 5X CV. DPR without CV model predicted 
80.92% of the genes used for training. The average training  R2 was ~ 0.48 in DPR model while it had significantly 
higher value of ~ 0.67 through ENET model. Higher training  R2 than 0.5 may seem as a model overfitting due 
to small sample sizes, which was also observed by Parrish et al.38 in their TWAS study with 49 tissue types. As 
DPR model is reported to be generalized, flexible, robust, and accounts for better prediction performance across 
broad genetic  architectures38,39, and also in the present study it predicted higher number of genes with a reliable 
training  R2, we selected DPR as choice of gene expression prediction model for our Murrah population. How-
ever, the weights predicted for the DPR model through 5X CV and without CV were found to be same for both 
which may be due to the small sample size. Hence, only the DPR without CV model was included for further 
study along with both ENET models.

A final association study was conducted for different  1st lactation traits with gene expressions predicted using 
various models and the results were compared with GWAS results. For comparison purpose the phenotype 
association model was same for both the GWAS and TWAS. The TWAS results from DPR without CV, ENET 5X 
CV, and ENET without CV showed higher numbers of true positives than GWAS for all the traits. The P-values 
of associations were adjusted for multiple testing by Bonferroni’s correction and FDR-BH (False Discovery Rate 
 by27. Significant associations were observed after adjusting for multiple testing for fat% and SNF% using TWAS 
while no such associations could be observed in GWAS. The FDR of the top 10 genes for different traits in vari-
ous TWAS models shows the number of suggestive associations that could be truly positive but couldn’t pass the 
Bonferroni’s threshold possibly due to the small sample size.

The present study revealed Relaxin-signaling pathway as a regulator for milk yield. Previously, ADCY5 of the 
Adenylate Cyclase family was reported to be a candidate gene for regulating milk yield in  buffaloes40, which also 
signifies the role of Adenylate Cyclase family genes in regulation of milk yield. Upon the network analysis, it was 
observed that ADCY5 is also a key regulator of the Relaxin-signaling pathway. Although, Relaxin is a well-known 
hormone secreted during pregnancy in some species to soften the cervix and prepare the reproductive tract for 
parturition, it was also reported to have major mammogenic role in  sows41. CREB3L3 is also reported to act as 
a central regulator of energy homeostasis through AMP signaling pathway in dairy  cows42. Ye et al.40 reported 
INHBA and INHBB to be involved in cytokine-cytokine interaction pathway and this pathway has been reported 
to be a significant regulator of milk yield. Ahlawat et al.43 reported that genes down-regulated in milk somatic 
cells of buffaloes were significantly enriched in cytokine receptor interaction pathway. Several other genes of 
cytokine receptor families were identified to be involved in heat tolerance in water  buffaloes44.

In Nili-Ravi buffaloes, Prolactin (PRL) a major gene involved in mamogenesis, regulation of milk protein, 
and milk secretion is reported to be regulated by the cytokine-cytokine interaction  pathway45. Ye et al.40 reported 
INHBA and INHBB as candidate genes in regulation of milk yield that were also significantly enriched in the 
cytokine-cytokine receptor interaction pathway in the present study. Several genes from the TWAS results along 
with previously reported PIK3R140 were significantly enriched in the Fc epsilon RI signaling (FcεRI) pathway. 
FcεRI is required for cell membrane expression and intracellular signal transduction. Milk production TWAS 
genes also found to be involved in GnRH secretion and growth hormone synthesis, secretion and action pathway. 
Several reports indicate that growth hormone and growth hormone receptor genes play a vital role in growth 
of mammary gland in lactating females and regulation of milk yield. The GHR gene is implicated in lipid and 
carbohydrate metabolism and maintaining  lactation46. GHR polymorphism has been reported to be associated 
with milk yield in  buffaloes47.

AMPK signaling pathway is previously reported to be involved in regulation of milk  production48, milk fat 
and protein  synthesis49. The AMP-activated protein kinase (AMPK) was also reported to control lipid and lac-
tose synthesis in bovine mammary epithelial  cells50. AMPK signaling pathway was also reported to be involved 
in modulation of milk yield in buffaloes with ELAVL1, RAB11B, ADIPOR2, ADRA1A, INSR, LEP, PIK3CA, 
SCD, and TSC1 genes as  nodes51. FOXO1 is a member of fork-head family of transcription factors that plays a 
vital role in gluconeogenesis in the  liver52. Jacometo et al.53 also suggested the role of FOXO1 in milk fat syn-
thesis. FOXO1 was reported to be differentially expressed for milk fat traits in Chinese Holstein  cattle54. Sterol 
metabolism reported to be a critical regulator of milk fat synthesis in dairy cows and several sterol regulatory 
element-binding proteins have been characterized as the candidate genes for the milk fat synthesis in mammary 
epithelial cells of dairy  cows55.

Many studies have highlighted the role of JAK-STAT signaling pathway in mammary gland development and 
milk production. Khan et al.56 have reviewed several works highlighting the role of this pathway in milk casein 
gene regulation and interaction of lactogenic hormone receptors with JAK-STAT pathway to regulate milk pro-
teins. Prolactin receptor is also reported to regulate few JAK-STAT-associated proteins that balances the growth 
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hormone in relation to milk protein  yield57. Ji et al.58 have also highlighted the role of STATs in regulating the 5′ 
flanking regions of Whey acidic protein (WAP) that is expressed in the mammary gland.

Methionine is the limiting amino acid for the ruminants and is essential for the milk protein synthesis 
whereas, valine, leucine and isoleucine are also essential amino acids that are reported to be potentially limiting 
for milk protein  synthesis59. As the genes identified in the study play important role in pathways regulating milk 
yield either directly or indirectly, they can be considered as candidate genes for milk yield and its composition 
traits.

Conclusion:
In a dairy breeding program, the prior knowledge about the distribution of eQTL effect size is often not consid-
ered. Non-parametric Bayesian based method could be an excellent choice to predict the eQTL effects. DPR is 
a one such model of gene expression prediction, this model can accommodate across tissue information, which 
improves the prediction accuracy. Our study concludes that the TWAS in the Murrah buffaloes for lactation 
traits proved to be more robust and efficacious than conventional GWAS even when the sample size are not large. 
Reasons could be a higher statistical power associated with TWAS. We were able to map important causal genes 
and many true positive associations for almost all the traits even with a small sample size using TWAS approach.

Data availability
The datasets generated during and/or analysed during the current study are deposited in the European Variation 
Archive repository, accession number PRJEB47270 (https:// wwwdev. ebi. ac. uk/ eva/? eva- study= PRJEB 47270).
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