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Adaptive suspension state 
estimation based on IMMAKF 
on variable vehicle speed, road 
roughness grade and sprung mass 
condition
Xiao Wu 1, Wenku Shi 1, Hong Zhang 2 & Zhiyong Chen 1*

Vehicle speed, road roughness grade and sprung mass are the three main factors to influence 
suspension control and state estimation. Aiming at the problem that fixed state observer cannot 
guarantee the estimation accuracy of suspension with driving scenario changes, a suspension state 
observer based on interactive multiple model adaptive Kalman filter (IMMAKF) is established. Firstly, 
an adaptive control suspension is proposed based on LQR algorithm and multi-objective optimization 
algorithm, which can automatically adjust the controller parameters according to the vehicle speed, 
road roughness grade and sprung acceleration parameters, so as to keep the optimal control effect 
of the suspension. Secondly, the theoretical model of IMMAKF is derived, and two kinds of IMMAKF 
suspension state observers and controllers are established. Finally, a simulation condition with the 
vehicle speed, road roughness grade and sprung mass changing simultaneously is established. The 
simulation results shows that: compared with ordinary IMMKF, AKF and KF observers, the estimation 
accuracy of IMMAKF5 is improved. Except for state observation, IMMAKF can be used to identify the 
road roughness grade and estimate the suspension sprung mass.

Suspension is a significant system for vehicles to alleviate road excitation. Active suspension systems use con-
trolled actuator to improve ride comfort and road holding stability1. During the control process, the suspension 
controller needs to get the precise state data through state observer to calculate the optimal controller parameters. 
The design of controller and state observer is the core of suspension control2,3.

Ordinary active suspension systems mostly regard state equations as fixed values which are designed by 
researchers according to the most used working conditions4. When the vehicle is driving on special working 
conditions, the vibration performance like ride comfort is often poor5,6. Based on this problem, the adaptive 
suspension control strategy is proposed7–9. Adaptive suspensions can change state equations according to work-
ing conditions to optimize the vibration performance. Vehicle longitudinal speed, road roughness grade and 
sprung mass are the three main factors that affect the vibration performance of suspensions10. The calculation of 
these three factors has a significant impact on the control effect of the suspension. The identification of vehicle 
longitudinal speed can be divided into direct estimation11,12 and indirect estimation13,14. At the present, with the 
development of sensors, the use of high-precision onboard speed sensor enables the vehicle to calculate lon-
gitudinal speed directly. The estimation of road roughness grade can be divided into two types: vision sensors 
based measurement15–17 and state observation based measurement18–20. The second method has high accuracy, 
low cost and good real-time performance. For vehicles, since the total weight of passengers and cargo is random, 
the value of sprung mass is difficult to calculate. Therefore, the sprung mass is set as a fixed parameter by most 
current studies10 or a variable parameter within a certain range. For suspensions with variable sprung mass, the 
sprung mass is usually set as a state parameter, and the value of sprung mass is estimated by state observation, 
which is complicated for modeling. Based on this problem, a new suspension controller is proposed to maintain 
the optimal vibration state of the suspension without calculating the exact value of the sprung mass.

The state equations of adaptive suspensions are changed with the change of working conditions (such as 
vehicle speed, road roughness grade and sprung mass). If state observers of adaptive suspensions are fixed, the 
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precision of state estimation will be low21,22. Therefore, fixed state observers are not suitable for the state estima-
tion of adaptive suspensions. The Kalman filter (KF) has high estimation accuracy and low cost, which has been 
commonly used as observers for vehicle control23–25 and suspension control26–30. In recent years, variable state 
KF observers are proposed and applied for state estimation of adaptive suspensions, like adaptive Kalman filter 
(AKF) and interactive multiple model Kalman filter (IMMKF). AKF observer can follow the state of the suspen-
sion controller to improve the estimation accuracy. In Ref.31, suspension sprung acceleration is utilized to identify 
road roughness grade and determine state equations, then the corresponding AKF is used to estimate the system. 
In Ref.32, an adaptive unscented Kalman filter (AUKF) observer is proposed and product-based neural network 
(PNN) is utilized for road classification. In Ref.33, a multi-mode switching control strategy of an intelligent sus-
pension system is proposed under different road conditions and the road input is estimated by AKF. IMMKF 
uses multiple models in parallel for state estimation to reduce observation errors. In Ref.34, the variable state and 
road roughness grade are estimated by an interactive multi-model untracked Kalman filter (IMMUKF) observer. 
The working conditions of the above studies are changing road roughness grade. However, in the actual situa-
tion, for adaptive suspensions, the vehicle speed, road roughness grade and sprung mass all have great impacts 
on system control and state estimation, so just changing the road is not enough to comprehensively improve the 
suspension performance. For more complex working conditions, AKF and IMMKF have some disadvantages. 
For AKF, accurate working conditions like road roughness grade and sprung mass should be calculated to switch 
the observer mode, which is a complicated process. For IMMKF, the number of sub-models increases with the 
increase of working conditions. If the number of sub-models is too large, the number of parallel computing 
models is large, which occupies more computer memory and makes program harder.

Based on the idea of changing vehicle speed, road roughness grade and sprung mass simultaneously, IMMAKF 
observer is proposed for state observation of adaptive suspension. The main contributions of this paper are:

•	 The IMMAKF suspension state estimation theory is proposed. IMMAKF observer can improve the state 
estimation accuracy under changing vehicle speed, road grade and sprung mass.

•	 A new sprung mass estimation theory is proposed. The sprung mass is estimated by model interaction prob-
abilities of IMMAKF without taking it as one of the state parameters to calculate.

•	 A new adaptive suspension controller system is proposed. The controller system can improve the ride comfort 
on variable working conditions.

The rest of this paper is organized as follows. Section "Adaptive control suspension model" introduces a 
new adaptive suspension controller model; Section "Suspension IMMAKF State Estimation Theory" presents 
the theory of IMMAKF state estimation; Section "Suspension state estimation and control based on IMMAKF" 
details simulation and comparison and Section "Conclusions" concludes this paper.

Adaptive control suspension model
In this section, an adaptive control suspension model is established based on LQG and fuzzy control theory 
to make the vehicle in the optimal state when driving on different working conditions (road roughness grade, 
vehicle velocity and sprung mass).

LQR Half‑car suspension control system modeling
In this part, the half-car suspension system is presented, and the LQR suspension control theory is discussed.

The half-car suspension model is established as Fig. 1. The suspension consists of a spring and an actuator at 
the front and rear part respectively. The tire is modeled as a linear spring.

Where,mH denotes the sprung mass;Iy is the pitch inertia;mf  and mr are front and rear unsprung mass, 
respectively;kf ,kr represent front and rear suspension stiffness, respectively;ktf ,ktr indicate front and rear tire 
stiffness, respectively;xH is the sprung mass vertical displacement at the Center of Gravity(CG) point;θ is pitch 
angle of the sprung mass at the CG point;xHf  and xHr are the vertical displacement of front and rear sprung 
mass, respectively;xf  and xr are the vertical displacement of front and rear unsprung mass, respectively;qf  and 

Figure 1.   The half-car suspension model.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1740  | https://doi.org/10.1038/s41598-023-49766-y

www.nature.com/scientificreports/

qr are the road input at front and rear tire, respectively; fcf  and fcr are controlled actuator force at front and rear 
suspension, respectively; V is the longitudinal vehicle speed.

Parameters of the suspension model are shown in Table 1:
Vertical dynamics equations for the half-car suspension model shown in Fig. 1 can be expressed as:

where,

For the suspension model, and can be approximately calculated as

Equation (1) can be rewritten as
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According to29, qf  and qr can be calculated as

where, Gq(n0) is the power spectral density (PSD) of the road profile35. f0 is the lowest cutoff frequency, and 
f0 = 0.01Hz36. n0 is the reference spatial frequency, and n0 = 0.1m−137. ωf  and ωr denotes zero-mean band-
limited white noise.

The road profile is homogeneous and isotropic Gaussian process. The function of road profile37 is shown as 
Eq. (6).

where, nk is the spatial frequency, W is the road reference coefficient, W = 2.

(1)

mf ẍf + ktf (xf − qf )+ Ff = 0

mrẍr + ktr(xr − qr)+ Fr = 0

mHẍH − Ff − Fr = 0

Iy θ̈ + Lf Ff − LrFr = 0

(2)
Ff = fcf + kf (xf − xHf )

Fr = fcr + kr(xr − xHr)

(3)
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Table 1.   Parameters of the half-car suspension model.

Symbol Meaning Unit Value

mH Sprung mass kg 300 ~ 500

Iy Moment of inertia kg m2 1200 ~ 1500

mf Front unsprung mass kg 30

mr Rear unsprung mass kg 30

kf Front suspension spring stiffness Nm−1 15,000

kr Rear suspension spring stiffness Nm−1 15,000

ktf Front tire stiffness Nm−1 150,000

ktr Rear tire stiffness Nm−1 150,000

Lf Distance between mass center to front wheel m 1.187

Lr Distance between mass center to front wheel m 1.533

V Vehicle velocity Nm−1 10 ~ 30
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According to ISO 860838, the road roughness grades are defined from level A to D by Gq(n0)(×10−6m3) . 
The range of A grade is [0,32], B is [32,128], C is [128,512] and D is [512,2048]. The road grade corresponding 
to the geometric mean value of Gq(n0) in the interval is called ISO standard road. The value of ISO A is 16, ISO 
B is 64, ISO C is 256 and ISO D is 1024. The ISO standard road is used to as road model in Section "Suspension 
state estimation and control based on IMMAKF".

According to ISO 860838, the road grade index d is defined as:

According to Eq. (7), the road grade is simplified by d. The d of ISO A is 4, ISO B is 6, ISO C is 8, ISO D is 10.
According to Eq. (4) and (5), the state space equations of the half-car suspension system is expressed as 

Eq. (8).

Equation (8) is rewritten as

where,

To balance the ride comfort and handling stability of the vehicle under variable working conditions, the 
optimal controllable actuator force fcf  and fcr are calculated by LQR algorithm.

The LQR controller is designed as Eq. (10):

where J0 is the suspension comprehensive performance index.J0 is calculated as Eq. (11).

According to Eq. (3), J0 is calculated as:

where, q1 and q4 are the controller parameters of suspension deflection of front and rear suspension respectively, 
q2 and q5 are the controller parameters of sprung mass acceleration of front and rear suspension respectively, q3 
and q6 are the controller parameters of tire deflection of front and rear tire respectively.

The optimal controllable actuator force fcf  and fcr are calculated by Eq. (13)

where, P is the solution of Riccati equation20:

When the best controllable actuator force is solved by Eq. (13), the optimal state space equations of LQR 
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In the actual control process, according to Eq. (15), the system state equations is discretized as Eq. (16).

where, k is the sampling time, ω(k) is the process noise, and ν(k) is the sampling noise. ω(k) and ν(k) are Gaussian 
sequences with mean value of 0, and the time interval is 0.01 s.

Multi‑objective optimization of suspension controller parameters
In this part, the controller parameters of LQR algorithm ( q1 to q6 ) under variable working conditions are opti-
mized by the second non-dominated sorting genetic algorithm (NSGA-II).

For suspension optimal control, the optimization of the suspension controller parameters is regarded as a 
multi-objective optimization problem (MOOP). The road handling and ride comfort are two conflict properties. 
It’s arduous to get a satisfactory ride comfort without sacrificing the control ability and vice versa. On the other 
hand, for different working conditions, the optimal LQR controller parameters are different. To keep the best sus-
pension vibration effect under variable working conditions, LQR suspension controller parameters ( q1 to q6 ) are 
optimized by the NSGA-II algorithm. In order to facilitate the optimization process, set q1 = q4 , q2 = q5,q3 = q6.

Since q3 and q6 have little influence on the driving characteristics of suspension, set q3 = q6 = 0.0001 . The 
optimization process is a MOOP. The optimization decision variables are defined as q1(q4) and q2(q5) . The objec-
tive functions, optimization goals and constraints are shown as Eq. (17).

For NSGA-II optimization, the population size is 30, the number of generations is 100. The vehicle speed 
is 10 ~ 30 m s−1(10, 15, 20, 25, 30 m s−1 ), road roughness grade is A ~ D class (A, B, C and D) and sprung mass 
is 300 ~ 500 kg (300, 350, 400, 450, 500 kg). With the combination of these conditions, 100 kinds of different 
conditions are obtained and optimized by NSGA-II.

The optimization results of vehicle speed 20 m s−1 , road grade C and sprung mass 400 kg are shown as Fig. 2c. 
The q1 and q2 of the point that is the closest to the origin of coordinates are selected as the best controller param-
eters of this condition. The best controller parameters under various working conditions are shown in Fig. 2a,b.

According to Fig. 2a,b, with the increasing of vehicle speed V or road roughness grade index d, or the decreas-
ing of sprung mass mH , q1 is decreased and q2 is increased. This is because with V and d increasing, and mH 
decreasing, the sprung mass acceleration |ẍH | has an increasing tendency which deteriorates the riding comfort. 
Based on this, decreasing q1 and increasing q2 can improve the suspension deflection (i.e.

∣

∣xHf − xf
∣

∣ and |xHr − xr |
)and reduce the sprung mass acceleration (i.e.|ẍH | ), which can improve the riding comfort.

Adaptive suspension controller modelling
In this part, according to the optimal results of q1 and q2 shown in Fig. 2, the fuzzy adaptive suspension controller 
is proposed and the parameters of the IMMAKF sub-models are calculated.

Based on the optimization results of Fig. 2, the fuzzy adaptive suspension controller model is established. 
Compared with the vehicle speed V and road grade d, the sprung mass mH is difficult to be directly measured. 
Since sprung mass acceleration ẍH is influenced by the sprung mass mH , the fuzzy controller is built with 
vehicle speed V, road roughness grade index d and sprung mass acceleration |ẍH | as inputs, q1 and q2 as output 
respectively.

The fuzzy subset of input variable is divided into: VS (very small), S (small), LS (little small), M (medium), LB 
(little big), B (big), VB (very big), and the fuzzy subset of output variable is divided into: S1, S2, S3, S4, S5, M, B1, 
B2, B3, B4, B5. Centroid style is set as fuzzy control mode. The fuzzy control relationships are shown in Fig. 3.

According to Fig. 3, with vehicle speed V, road grade index d and absolute value of vehicle acceleration |ẍH | 
increase, q1 is decreased and q2 increased, which makes the body acceleration ẍH always be maintained at a small 
trend to improve the vehicle ride comfort.

The established fuzzy adaptive suspension model is simulated to calculate the parameters of IMMAKF sub-
models. As an example, the simulation condition is ISO C road, the vehicle speed is 20 m s−1 , the simulation 
duration is 250 s, and the sprung mass changes as 300–350-400–450-500 kg every 50 s. q1 and q2 are extracted 
in the simulation process, as shown in Fig. 4:

According to Fig. 4, controller parameters are automatically adjusted by the fuzzy adaptive suspension model 
according to the working conditions. In Fig. 4, the mean value of q1 and q2(as shown in the red lines in Fig. 4) 
are changed with sprung mass mH.When the sprung mass mH increases, the mean value of q1 increases but q2 
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decreases. Therefore, the sprung mass mH is an important factor to affect controller parameters. The mean values 
of q1 and q2 under various working conditions are calculated as parameters of sub-models of the IMMAKF state 
observer, as shown in Table A.1.

Suspension IMMAKF state estimation theory
In this section, the suspension IMMAKF state estimation and control theory is provided in details.

In practice, the suspension control effect is influenced by external disturbances (like changing road rough-
ness) and parameter uncertainties (like changing vehicle speed and sprung mass). Within these conditions, 
the vehicle speed can be directly measured by the on-board sensor, however the road roughness grade, sprung 
mass and suspension state parameters like suspension deflection and sprung mass vertical velocity are hard to 
be measured directly.

Figure 2.   Optimization result of q1 and q2.

Figure 3.   The fuzzy control relationships. (a, b, c) the relationship between d, V,|ẍH | and q1 ; (d, e, f) the 
relationship between d, V,|ẍH | and q2.
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The vibration effect of suspension is affected by the estimation precision of each state parameter. At present, 
Karman Filter (KF) is mostly used as state observer to calculate the real-time state. The ordinary Kalman filter 
has a high requirement on the accuracy of the system modelling. Since the state of adaptive suspension is changed 
with the change of working conditions, the ordinary Kalman filter observer is hard to satisfy the high accuracy 
order of state estimation of adaptive suspensions.

Since the optimal state of the vehicle under various working conditions can be preset (as shown in Table A.1), 
the suspension state observer of interactive multiple model adaptive Kalman filter (IMMAKF) is proposed by 
combining adaptive Kalman filter (AKF) and interacting multiple model Kalman filter (IMMKF) to improve the 
estimation accuracy of adaptive suspension.

State estimation theory of IMMAKF
In this part, the IMMAKF suspension state observer is proposed.

The IMMAKF observer is proposed based on Table A.1. Firstly, the vehicle speed V is determined by the 
onboard sensor, and the road grade index d is calculated according to the state observation results. Then the 
adaptive suspension is controlled by the fuzzy control model and the suspension state is estimated by IMMAKF 
observer. The control and observation process are shown in Fig. 5.

The steps of IMMAKF state estimation are shown as Step 1 to 5.
Step 1: Model interaction.
The IMMAKF state observer is formed with s IMMKF models. Each IMMKF model has r sub-models. All 

sub-models are Markov processes. Each IMMKF model corresponds to a grade of road, and each IMMKF sub-
model corresponds to a sprung mass.

Set xd,ik−1 as the original system state of sub-model i of the IMMKF model with road roughness grade index d 
at the step t = k-1, Pd,ik−1 is the covariance matrix, and µd,i

k−1 is the probability of model i.
After model interaction, the initial conditions of IMMAKF are xd,i,0k−1 and Pd,i,0k−1 , and can be calculated as shown 

in Eq. (18) and (19), respectively.

Figure 4.   Simulation results of q1 and q2.

Figure 5.   Flow chart of observation and control of IMMAKF.
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where

In Eq. (20),µd,ji
k−1 is the mix probability of model j transferred to model i of the IMMKF model with road grade 

index d at the step t = k-1, and pdji is the transition probability matrix from model j to model i.
Step 2: Kalman filter.
xd,i,0k−1 and Pd,i,0k−1 calculated in the Step 1 are used for state prediction and prior covariance estimation.
State prediction equation is shown as Eq. (21).

Prior covariance equation is shown as Eq. (22).

where,Ad
i  and Bdi  are the state equation of model i, and Qd

i  is the process noise variance matrix.
Then the Kalman gain equation Kd,i

k  is calculated as:

where, H is the system observation matrix, and R is the measurement noise covariance matrix.
The Kalman filter state is calculated as:

where,Zd
k  is the estimation value at the step t = k.

The Kalman filter covariance is calculated as:

Step 3: Update model probability.
The observer model is updated by maximum likelihood estimation. By calculating the similarity between the 
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t = k. The most matched maximum likelihood function of model i is calculated as follows:
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The results of overall state estimation and overall covariance estimation are calculated by Kalman filter states, 
Kalman filter covariance and updated probability.

Overall state estimation is calculated as Eq. (31).

Overall covariance estimation is calculated as Eq. (32).

The model d of Eqs. (18) to (32) is determined by the state estimation of the road profile (i.e.qf  and qr).
From Step 4, the state parameters are calculated by IMMAKF observer. The road roughness grade is calcu-

lated by Step 5.
Step 5: Determine the current road roughness grade.
The road grade index d is calculated by the power spectral density (PSD) of qf  and qr through state observa-

tion, as the reference of mode switching for suspension controller and observer. In this paper, road roughness 
grade is calculated by qf  . The road displacement unevenness q(l) is calculated by qf  and driving length l. Since 
sampling time and vehicle speed V are fixed, q(l) can be transformed into q(n).

The average power of q(n) is:

where N is the total number of points in a sampling process.
From the discrete Fourier transform:

According to Parseval theory31:

Then Eq. (33) can be expressed as:

Therefore, the power spectral density of q(n) is:

where, fs is the sampling frequency.
By comparing the calculated Pm with standard road roughness grade32, the grade of the road can be calculated.
The above steps can be iterated to complete the suspension state observation based on IMMAKF. The spe-

cific details of IMMAKF state observation can be described as: IMMKF sub-models with different sprung mass 
acceleration under various vehicle speed and road grade are combined as IMMAKF observer. When the working 
condition is changed, the suspension controller switches the state according to the speed, road grade and sprung 
mass acceleration, and then the IMMAKF observer selects the sub-model (IMMKF) according to the state of 
the controller system. For IMMAKF, the state of observer is always consistent with the state of the suspension 
controller.

Q and R of IMMAKF state observer
The noise generated in state transition is measured by the process noise variance matrix Q. Q is calculated as 
Eq. (38).

where, QRV is the noise of input road speed, which can be calculated by approximate statistics in Eq. (39).

where, q̇i is the input road speed at sampling point i.
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The relationship between QRV  and road roughness grade index d described in three degrees polynomial 
function is:

The SSE of the fitting function is 7.634× 10−4 , and the R-square is 0.9992. The fitting accuracy is high.
The noise in the observation process is calculated by the measurement noise covariance matrix R. Set meas-

urement vector as:

The observation matrix is:

The size of HIMMAKF is 4× 9.
R is dependent on the sensor accuracy and road conditions. According to33, set R = 0.012.

Suspension state estimation and control based on IMMAKF
In this section, two IMMAKF observers are established. A variable working condition is established based on 
changing vehicle speed, road roughness grade and sprung mass. Compared with other Kalman filter observers, 
the precision of IMMAKF observer is verified by simulation and experiment.

Simulation condition
In practice, the actual working conditions such as vehicle speed, road roughness grade and sprung mass can be 
changed simultaneously. Based on variable working conditions, referring to Table A.1, the simulation model is 
established as shown in Fig. 6:

IMMAKF observer models
Two kinds of IMMAKF observers are proposed by Table A.1.

Five-model IMMAKF observer (IMMAKF5): All the data in Table A.1 are selected as the sub-model of 
IMMAKF observer. Sub-models of IMMAKF5 cover all working conditions and the observation accuracy is high.

Three-model IMMAKF observer (IMMAKF3): the control parameters with sprung masses of 300, 400 and 
500 (kg) in Table A.1 are extracted respectively as sub-models of IMMAKF3 observer. Sub-models of IMMAKF3 
cover three main working conditions to maintain observation accuracy.

For comparison, data are selected from Table A.1 as other observers: ordinary Kalman filter (KF), AKF and 
IMMKF. Among them, the results of 20 m s−1 vehicle speed, ISO C road and 400 kg sprung mass in Table A.1 are 
selected as the KF. The results of 20 m s−1 vehicle speed, 400 kg sprung mass and all grades of roads are selected 
as AKF (i.e. for AKF, the vehicle speed and sprung mass are fixed, but road grade can be changed). The results 
of 20 m s−1 vehicle speed, ISO C road and all of the sprung mass are selected as IMMKF (i.e. for IMMKF, the 

(40)QRV = 0.00138d3 − 0.01516d2 + 0.07753d − 0.08562

xIMMAKF =
[

ẋH θ̇ ẋf ẋr
]′

(41)HIMMAKF =







1 0 0 0 ... 0
0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0







Figure 6.   Suspension simulation condition. 0-50 s, V = 20 m s−1,mH = 400kg , ISO A road; 50-100 s, V = 30 
m s−1,mH = 300kg , ISO B road; 100-150 s, V = 20 m s−1,mH = 400kg , ISO D road;150-200 s, V = 10 m s−1

,mH = 500kg , ISO C road.
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vehicle speed and the road grade are fixed, but the sprung mass is used as the interacting multiple model for 
state estimation).

Road roughness grade recognition time window
Based on Eq. (33) to Eq. (37), the accuracy of road grade identification is influenced by the number of sampling 
points. The spatial frequency of road roughness is between [0.011, 2.83]m−1 . The minimum identification fre-
quency dn is calculated as Eq. (42).

Then,l ≥ 91m.
The minimum identification sampling step number is set as nmin , then

where,�t is sampling interval time of adjacent sampling points, and V is vehicle speed. In this paper, �t = 0.01s 
and Vmin = 10m/s,then nmin ≥ 910.

The road grade roughness shown in Fig. 6 is estimated by IMMAKF5. Set n as the step number of road rough-
ness grade recognition window. Different road grade estimation accuracy of different n is shown as Table 2.

In Table 2, the higher the number of sampling steps n, the higher the accuracy of road grade recognition, but 
the longer the distance for the vehicle to derive. Based on the accuracy and the driving time, the step number of 
road roughness grade recognition window is selected as 1250.

Comparison of simulation results
The IMMAKF5, IMMAKF3, KF, AKF and IMMKF observers are applied to the state estimation of adaptive sus-
pension. The initial road roughness grade of IMMAKF and AKF is determined as A grade (i.e. the initial d = 4). 
The comparison results are shown in Fig. 7:

According to Fig. 7, for all working conditions, the estimation results of IMMAKF5 is the closest to real 
results, followed by IMMAKF3. Since state equations of adaptive suspensions are changed with the change of 
vehicle speed, road roughness grade and sprung mass, the state estimation accuracy of fixed state observer is 
low. Therefore, in Fig. 7, the estimation accuracy of KF is the worst. Compared with KF, both AKF and IMMKF 
can partly follow the current suspension state (i.e. road grade and sprung mass), which makes the estimation 
accuracy of AKF and IMMKF lower than IMMAKF but higher than KF.

The simulation error of each observer is calculated as shown in Eq. (44).

where, Es is the simulation error, xireal is the real value of xi , xiobs is the observation value of xi , n is the total 
number of the sampling points in the simulation, and i is the number of coefficients of state vector x.

The simulation errors of each coefficient of state vector x are shown in Table 3.
Where, IMMAKF5 is results of five-model IMMAKF observer, IMMAKF3 is results of three-model IMMAKF 

observer. Total is the whole simulation condition. Grade A is the simulation condition of grade A road in Fig. 6.
In Table 3, compared with other observers, the estimation error of IMMAKF3 and IMMAKF5 observers are 

the smallest. Within the two IMMAKF observers, IMMAKF5 has the highest accuracy. Among the four measure-
ment vector coefficients ( 

[

ẋH θ̇ ẋf ẋr
]′ ), for the whole simulation process, compared with IMMKF, AKF and KF, 

the estimation error of ẋH in IMMAKF5 is reduced by 55.17%, 56.84% and 60.19% respectively; θ̇ is reduced by 
48.69%, 48.85% and 45.31% respectively; ẋf  is reduced by 77.18%, 77.43% and 79.36% respectively;ẋr is reduced 
by 76.78%, 77.05% and 79.43% respectively. The trend of simulation results on each grade of road is similar to the 
total simulation process. For other state coefficients, the accuracy of the two IMMAKF observers is also better 
than other observers, which verifies the superiority of the IMMAKF observer in complex working conditions.

During the simulation, the road grade is calculated by IMMAKF observer. The road grade recognition results 
for IMMAKF5 and IMMAKF3 are shown in Fig. 8:

In Fig. 8, the road roughness grade recognition results always lag behind the real road in time domain, and 
the lag time is just the length of a time window. Since the road grade recognition depends on sampling of q(l) , 
the system can’t immediately calculate the road grade.

(42)dn =
1

l
≤ 0.011

(43)nmin �t Vmin ≥ 91m

(44)Es =
1

n

n
∑

1

|xireal − xiobs|

|xireal |
× 100%

Table 2.   Road grade estimation accuracy.

Sampling step n ISO A/% ISO B/% ISO D/% ISO C/%

910 85.00 85.00 80.00 85.00

1000 85.00 85.00 87.50 90.00

1100 90.00 90.00 90.00 100.00

1200 100.00 100.00 95.00 100.00

1250 100.00 100.00 100.00 100.00
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Figure 7.   Model simulation and comparison results: (a) results of ẋH (b) results of θ̇ (c) results of xH (d) results 
of θ.

Table 3.   Comparison of simulation error.

Working Condition Model

Simulation error/%

ẋH θ̇ ẋf ẋr xH θ xf xr qf qr

Total

IMMAKF5 4.73 4.90 1.86 1.79 12.78 2.05 14.75 10.54 4.88 5.95

IMMAKF3 5.06 4.91 1.90 1.83 15.46 2.21 15.01 10.82 5.05 6.17

IMMKF 10.55 9.55 8.15 7.71 15.91 2.54 15.82 13.06 15.78 13.10

AKF 10.96 9.58 8.24 7.80 17.28 3.26 18.55 16.30 19.23 16.44

KF 11.88 8.96 9.01 8.70 20.21 3.31 20.39 19.20 20.31 19.52

Grade A

IMMAKF5 5.10 6.24 3.6 3.51 16.70 4.04 13.27 15.98 4.95 7.04

IMMAKF3 6.08 6.23 3.91 3.63 17.54 4.06 14.39 20.54 5.87 7.92

IMMKF 15.55 10.27 10.79 10.49 17.44 5.31 15.17 28.79 17.20 10.89

AKF 15.97 10.06 10.80 10.45 18.72 5.67 19.52 28.75 17.84 16.78

KF 17.26 10.04 10.84 10.55 25.09 9.12 20.58 29.57 24.74 20.25

Grade B

IMMAKF5 3.13 3.56 1.55 1.70 17.56 1.24 21.71 12.54 7.16 7.02

IMMAKF3 3.16 3.91 1.66 1.89 21.60 1.72 22.65 14.44 7.53 8.19

IMMKF 9.46 8.37 10.07 8.70 22.02 3.86 26.34 16.00 16.48 15.89

AKF 10.66 8.74 10.48 8.73 23.08 3.41 27.74 19.61 16.97 19.90

KF 12.50 9.63 11.36 9.64 23.43 4.15 28.69 20.01 21.42 20.45

Grade C

IMMAKF5 5.71 6.12 1.30 1.34 11.83 2.37 10.54 9.84 4.10 5.62

IMMAKF3 5.90 6.35 1.31 1.35 15.01 2.43 11.84 11.61 4.14 6.56

IMMKF 9.71 8.19 7.40 7.17 17.75 2.71 18.90 16.64 15.70 16.30

AKF 9.16 8.15 7.36 7.02 17.98 2.75 18.96 18.39 18.68 18.36

KF 10.17 8.97 7.91 7.92 18.88 4.51 19.49 18.82 26.53 19.20

Grade D

IMMAKF5 4.92 3.54 0.70 0.47 7.21 3.72 6.72 5.14 2.29 2.55

IMMAKF3 5.14 3.55 0.71 0.50 8.74 4.46 10.58 5.16 3.52 2.81

IMMKF 7.53 9.95 4.45 4.26 10.75 5.68 13.12 7.67 13.24 7.70

AKF 6.27 9.58 4.45 4.11 12.29 7.14 19.46 9.66 20.16 20.91

KF 10.89 7.94 6.17 5.88 14.41 8.20 19.81 17.74 23.77 16.87
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During the simulation, the model interaction probability of IMMAKF3 and IMMAKF5 are shown as Fig. 9:
According to Fig. 9, during the model interaction process, IMMAKF always has a sub-model with the maxi-

mum probability, which is related to the current model state, i.e. the sub-model with the maximum interaction 
probability in IMMAKF algorithm is the current system state model, which can be used to estimate the current 
sprung mass. For Fig. 9, the n steps time window is used to estimate the sprung mass of the suspension model, 
and the accuracy of sprung mass estimation is shown in Table 4:

In Table 4, the larger the sampling step of the time window, the higher the model recognition accuracy, but 
the longer the model sampling time, and the longer the vehicle driving distance. When the sampling step is 500, 
the model has the highest accuracy and sampling time is also suitable, so 500 steps is considered as the optimal 
step size for sprung mass estimation.

According to Fig. 9 and Table 4, IMMAKF observers can not only ensure high estimation accuracy under vari-
able working conditions, but also determine the sprung mass through analyzing model interaction probability.

Figure 8.   Road grade recognition results of IMMAKF.

Figure 9.   Model probability of IMMAKF. (a) Model probability of IMMAKF3 (b) Model probability of 
IMMAKF5. For model 1 to model 5, the sprung mass mH is 300, 350, 400, 450, 500 kg, respectively.

Table 4.   Sprung mass estimation accuracy of IMMAKF observers.

Sampling step n Model Condition1 Condition2 Condition3 Condition4

1
IMMAKF3 68.10% 84.40% 89.60% 46.20%

IMMAKF5 48.00% 66.80% 57.40% 40.10%

50
IMMAKF3 92.90% 100.00% 100.00% 55.50%

IMMAKF5 69.80% 98.00% 91.80% 65.60%

100
IMMAKF3 97.90% 100.00% 100.00% 85.30%

IMMAKF5 73.50% 100.00% 97.80% 77.50%

500
IMMAKF3 100.00% 100.00% 100.00% 100.00%

IMMAKF5 100.00% 100.00% 100.00% 100.00%
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Experiment verification
The correctness of IMMAKF state observer is verified by the suspension experiment platform. The platform is 
shown in Fig. 10.

Since the platform is the quarter vehicle model, the suspension is used to simulate the front wheel. For the 
platform, the sprung mass is 2.45 kg, unsprung mass is 1 kg, the suspension stiffness is 900 N/m and the tire stiff-
ness is 2500N/m. For the experiment, the road excitation is ISO A grade. The total experiment time is 10 s and 
the time interval is 0.02 s. The vehicle speed is 20 m/s. The experiment results of ordinary KF (i.e. 20 m/s vehicle 
speed, ISO C road and 2.45 kg sprung mass) and simulation results of IMMAKF5 are selected for comparison. 
To show the vibration effect (i.e. ride comfort and road handling stability), the passive suspension with damping 
of 7.5 Ns/m is used for verification (the passive suspension doesn’t have observers, the results of passive suspen-
sion are obtained by sensors and calculated as comparison). The experiment results of ẋHf  are shown in Fig. 11.

The simulation results comparison is shown in Table 5.
In Fig. 11, the experiment results of IMMAKF5 is close to real values and simulation values, which verifies 

the accuracy of the IMMAKF5. In Table 5, the experiment errors of IMMAKF5 is smaller than KF, which verifies 
the superiority of IMMAKF.

In Table 5, compared with the results of KF and passive suspension, the sprung mass acceleration of 
IMMAKF5 is improved by 14.64% and 62.73% respectively; the suspension deflection is improved by 11.43% 

Figure 10.   Suspension experiment platform.

Figure 11.   Suspension experiment results of ẋHf .

Table 5.   Simulation results comparison.

Parameter type Parameters

Model

IMMAKF5 (Simulation) IMMAKF5 (Experiment) KF Passive

Observation error/%
ẋHf 4.61 5.27 10.42 –

ẋf 1.96 2.23 8.81 –

Vibration values
ẍHf 0.2862 0.2735 0.3204 0.7339

xHf − xf 0.0033 0.0031 0.0035 0.0121
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and 74.38% respectively, which verifies that the IMMAKF observer can improve the ride comfort and balance 
the handling stability of the vehicle.

Conclusions
In this paper, the IMMAKF suspension state observer is proposed for the state observation of the adaptive 
suspension model under variable working conditions (vehicle speed, road roughness grade and sprung mass). 
Firstly, the adaptive suspension controller is established. The LQR controller parameters under variable working 
conditions are optimized by NSGA-II algorithm. Referring to the optimal results, the fuzzy adaptive suspension 
controller is presented. The adaptive suspension can automatically change the optimal controller parameters by 
working conditions. Furthermore, the IMMAKF suspension state estimation theory is discussed in detail. Based 
on IMMKF and AKF, an IMMAKF suspension state observer is established, and the theoretical equations of the 
algorithm are derived. Lastly, the simulation and experiment results show that, compared with state observers 
of KF, AKF and IMMKF, the accuracy of the IMMAKF state observer is the highest and the ride comfort of 
IMMAKF is improved. Except for high estimation accuracy, the road roughness grade and sprung mass can be 
calculated by IMMAKF observer. Therefore, IMMAKF is effective for high suspension estimation accuracy and 
the adaptive control on complex conditions.

Note that the proposed method is a suspension state observer, which is established based on the typical 
working conditions, so the application of this proposed method is limited. The state estimation schema of full 
car suspension model under more complex working conditions such as the longitudinal vehicle speed with 
acceleration and the vehicle driving on slope roads, will be investigated in our future study. In addition, the road 
roughness grade identification by visual sensors will also be considered in the future study.

Data availability
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