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An abrupt shift in gross primary 
productivity over Eastern 
China‑Mongolia and its inter‑model 
diversity in land surface models
Danbi Lee 1, Jin‑Soo Kim 2, So‑Won Park 1* & Jong‑Seong Kug 1*

The terrestrial ecosystem in East Asia mainly consists of semi‑arid regions that are sensitive to 
climate change. Therefore, gross primary productivity (GPP) in East Asia could be highly variable and 
vulnerable to climate change, which can significantly affect the local carbon budget. Here, we examine 
the spatial and temporal characteristics of GPP variability in East Asia and its relationship with climate 
factors over the last three decades. We detect an abrupt decrease in GPP over Eastern China‑Mongolia 
region around the year 2000. This is attributed to an abrupt decrease in precipitation associated 
with the phase shift of the Pacific decadal oscillation (PDO). We also evaluate the reproducibility of 
offline land surface models to simulate these abrupt changes. Of the twelve models, eight were able 
to simulate this abrupt response, while the others failed due to the combination of an exaggerated 
 CO2 fertilization effect and an underrated climate impact. For accurate prediction, it is necessary to 
improve the sensitivity of the GPP to changes in  CO2 concentrations and the climate system.

Land carbon sink is a major driver of the interannual variability of atmospheric  CO2  concentrations1–3. Gross 
primary productivity (GPP), the organic carbon sequestrated by terrestrial plants through  photosynthesis4, has a 
significant impact on the variability of the land carbon sink at regional and global  scales5,6. GPP is largely modu-
lated by global environmental changes, such as  CO2 concentrations and meteorological  factors5. For instance, 
GPP increases in response to rising atmospheric  CO2 concentrations, which is referred to as the  CO2 fertilization 
 effect7,8. In addition, the productivity of terrestrial ecosystems significantly depends on climate conditions such 
as precipitation and  temperature3,9,10. Thus, the amount of land carbon sequestration varies with these factors 
and could exhibit strong interannual  variability11. Moreover, strong meteorological forcing can cause abrupt 
changes in GPP, which are non-linear and non-stationary12. For example, lower absolute soil moisture leads to a 
prominent abrupt decrease in GPP in arid regions of  Europe13. Specifically, these abrupt decreases in terrestrial 
carbon fluxes can lead to a deterioration in local carbon uptake.

Previous studies have reported abrupt changes in vegetation productivity and the underlying mechanisms in 
semi-arid ecosystems. Ma et al.14 have examined how climate extremes impact semi-arid ecosystems in south-
eastern Australia, with abrupt shifts in phenology and vegetation productivity in drought years. Berdugo et al.15 
has shown the ubiquity of abrupt productivity loss in global drylands due to climatic, edaphic, and human fac-
tors from 2000 to 2019. They show that abrupt decreases in Normalized Difference Vegetation Index (NDVI) 
have been detected mainly in semi-arid forest  regions15. As semi-arid ecosystems are highly sensitive to water 
 availability15,16, drought or negative trend in precipitation could lead to abrupt decreases in vegetation produc-
tivity or loss of ecosystem  resilience14,17.

East Asia is known to be a significant contributor to the global carbon  cycle7,18,19. Fossil fuel  CO2 emissions 
in East Asia are about 1.5 PgC  year−1, and about 13–27% of these emissions have been offset by its terrestrial 
ecosystem from 1990 to  20097. Based on the prevailing semi-arid regions and historical extreme climate events 
in Inner East  Asia20, it is possible that there have been abrupt changes in GPP over East  Asia20. However, there 
is a limited number of studies on the abrupt changes in GPP, particularly the decrease in this region. Although 
several studies have detected the change points of GPP in East  Asia4,5,16, they have mostly focused on greening 
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and monotonic increasing trend of GPP. Furthermore, it is unclear whether current land models can reproduce 
or simulate the abrupt change in this region.

The primary objective of this study is to identify the major variability and occurrence of abrupt changes in 
GPP in East Asia over the last three decades. In detail, we examine the dominant spatio-temporal characteris-
tics of GPP variability, detect the significant abrupt changes in GPP, and identify their main drivers. We utilize 
multiple GPP datasets to validate the consistency of the results. Furthermore, we assess the capabilities of land 
models to simulate the variability and abrupt changes in GPP.

Results
The abrupt shift in GPP over Eastern China‑Mongolia
To investigate the dominant spatio-temporal characteristics of GPP variability, we examine the first leading mode 
of GPP in East Asia using the Empirical Orthogonal Function (EOF) (see “Data and methods” section, Fig. 1). 
The first eigenvectors and principal components (PCs) of  GPPFLUXCOM and  GPPNIRv explain 21.4% and 16.4% of 
the total variance, respectively. The maximum variation of  GPPFLUXCOM and  GPPNIRv is consistently located in 
Eastern China-Mongolia region (40°–52°N and 110°–124°E). Furthermore, the PCs of both first leading modes 
consistently show a distinctive phase shift around the year 2000. Specifically, there is a positive phase until the 
2000s and afterward a negative phase, suggesting a decrease in vegetation productivity around the year 2000 
in Eastern China-Mongolia region. In this region, the first eigenvectors and PCs of  GPPFLUXCOM and  GPPNIRv 
explain 41.2% and 31.2% of the total variance, respectively (Supplementary Fig. 1). Note that the phase shift in 
GPP with decadal time scale is comparable in magnitude to their interannual variability, and even larger for 
 GPPNIRv in particular.

Eastern China-Mongolia is a semi-arid temperate grassland region with limited  precipitation21,22. Previous 
studies have reported that vegetation productivity is strongly dependent on water availability in semi-arid regions 
across Northern  China16,22, suggesting the possibility that changes in GPP are caused by changes in precipitation 
over Eastern China-Mongolia region. Therefore, we further examined the changes in GPP and precipitation in 
this region and their relationship (Fig. 2). There is a prominent decreasing shift in GPP in the late 1990s; a posi-
tive anomaly before the late 1990s and a negative anomaly afterward. This result is consistent with the PCs of 
the first leading mode shown in Fig. 1c and d. The pronounced decreasing shift in precipitation in the late 1990s 
is also observed. This is consistent with previous studies that found a decreasing shift in summer precipitation 
in Northeastern and North China in the late  1990s23,24. From 1999 to 2007, the average  GPPNIRv  (GPPFLUXCOM) 
decreased by 11% (6%) compared to the period of 1990 to 1998, and precipitation also decreased by 28% during 
the same period. The decreases of  GPPNIRv and  GPPFLUXCOM in 1998 and 2001 are 36.3 and 12.0 TgC  month−1, 
respectively. These changes are about four times larger than the standard deviation of  GPPNIRv (1982–2018) and 
 GPPFLUXCOM (1980–2016).

Figure 1.  (a, b) Eigenvectors of the first leading mode and (c, d) its principal components (PCs) time series 
from the Empirical Orthogonal Function (EOF) analysis of JJA (June–July–August)  GPPFLUXCOM (1980–2016) 
and  GPPNIRv (1982–2018) over East Asia (24°–52°N and 100°–149°E). The values of explained variance for 
 GPPFLUXCOM and  GPPNIRv are 21.4% and 16.4% of the total variance, respectively. The red box in a and b 
indicates Eastern China-Mongolia region (40°–52°N and 110°–124°E).
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The  GPPFLUXCOM and  GPPNIRv anomalies are positively correlated with the precipitation anomaly in Eastern 
China-Mongolia (r = 0.87 and 0.63, P < 0.01). These findings exhibit similarity across another precipitation dataset 
(Supplementary Fig. 2). These results are consistent with a previous study that showed a positive relationship 
between decreasing precipitation and GPP over Northern China from 1999 to  201116. On the contrary, tempera-
ture and solar radiation have relatively low correlation coefficients (r =  − 0.54, P < 0.01 and r =  − 0.38, P < 0.05) 
with  GPPFLUXCOM anomaly and no statistically significant correlation with  GPPNIRv anomaly at the 95% confidence 
level. These results suggest that the decreasing shift in precipitation is probably responsible for that of GPP in 
the late 1990s. Moreover, considering the positive correlation between precipitation and evapotranspiration 
(r = 0.68, P < 0.01) observed in Eastern China-Mongolia, it is conceivable that other processes may contribute 
to the dramatic shift. For example, changes in the strength of the land–atmosphere coupling can lead to rapid 
changes in  GPP25, which will be discussed in more detail in the “Discussion” section.

We further examine whether these decreasing shifts of GPP and precipitation are statistically significant based 
on the Lepage test (see “Data and methods” section). The phase shifts of  GPPFLUXCOM,  GPPNIRv, and precipitation 
around 1999 are all statistically significant (Fig. 3).  GPPFLUXCOM and  GPPNIRv show the most significant abrupt 
shifts in 1999–2000 and 2000–2001, respectively (P < 0.05). Precipitation also shows the most significant abrupt 
shift in 1999–2000 (P < 0.05). This result exhibits similarity across another precipitation dataset. (Supplementary 
Fig. 3). This is consistent with the results of previous  studies23,24, which showed the abrupt change point of sum-
mer precipitation around 1999 over Northeastern China. These highest HK values are largely determined by 
the standardized Wilcoxon rank sum statistic, indicating that these statistically significant abrupt shifts mostly 
come from the large changes in the mean state. The results of the Lepage test, conducted with different lengths of 
the moving window, indicate the consistent abrupt shift year for GPP and precipitation (Supplementary Fig. 4).

Vegetation productivity is significantly regulated by temperature and  CO2 concentrations, as well as 
 precipitation10. For example, the abrupt changes in NDVI in Southwest China were mainly driven by changes 
in temperature during 1982–201512. Therefore, to confirm the quantitative contributions of climate factors and 
 CO2 to the regime shift in GPP around 1999, we evaluate the relative contributions of changes in temperature, 
precipitation, and  CO2 concentrations to the GPP shift using the multiple linear regression method (see “Data 
and methods” section). With this method, we reconstructed GPP using climate factors and  CO2, estimating the 
contributions of the climate and  CO2 factors to the GPP shift between period 1 (P1: 1990 to 1998) and period 2 
(P2: 1999 to 2007). It is evident that there is a decrease in the reconstructed  GPPFLUXCOM (− 1.42) and  GPPNIRv 
(− 0.93) between P1 and P2, indicating a significant decrease in GPP during P2 (Fig. 4). It is clear that the decrease 
in GPP is mostly due to the change in precipitation  (GPPFLUXCOM: − 1.31,  GPPNIRv: − 1.19). Temperature also con-
tributes to the decrease, but its impact is minor  (GPPFLUXCOM: − 0.29,  GPPNIRv: − 0.064). Increasing  CO2 leads to 

Figure 2.  (a) Time series of JJA mean  GPPFLUXCOM anomaly (1980–2016, black solid line), CRUNCEP 
precipitation anomaly (1980–2016, blue dashed line), and the Pacific decadal oscillation (PDO) index (1980–
2018, gray bar). (b) Same as (a), but for  GPPNIRv anomaly (1982–2018, black solid line). GPP and precipitation 
anomalies are averaged over Eastern China-Mongolia region (40°–52°N and 110°–124°E) as shown in the red 
box in Fig. 1.
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an increase in GPP in P2 due to the fertilization  effect7,26. These results indicate that the change in precipitation 
is mainly responsible for the statistically significant regime shift in GPP around 1999. In summary, there is a 
significant abrupt change in GPP in Eastern China-Mongolia over the past three decades, which can be attributed 
to the abrupt decrease in precipitation.

The inter‑model diversity of the abrupt shift in GPP over Eastern China‑Mongolia
To support the robustness of the regime shift in GPP, we further analyze the output of offline land surface 
models participating in TRENDY. Using the simulations provided by TRENDY, we isolate the time-varying 
 GPPclimate-forcing and the  GPPCO2-forcing (see “Data and methods” section). As shown in Fig. 5a, an abrupt shift in 
GPP around the year 2000 is well captured in the multi-model ensemble (MME) mean of the TRENDY models. 
This change is statistically significant based on the Lepage test (P < 0.05) (Fig. 5b). However, there is significant 
diversity and spread among the individual TRENDY models, especially in their HK values (Fig. 5b). Of the twelve 
models, only eight models show a significant abrupt shift in GPP in 2000–2001 (Strong shift group: CLASS-
CTEM, CLM5.0, JULES-ES, JSBACH, ORCHIDEE-CNP, ORCHIDEE, SDGVM, and VISIT), while the other 
models do not simulate abrupt shifts (Weak shift group: LPJ-GUESS, CABLE-POP, DLEM, and ISBA-CTRIP).

Figure 3.  Time series of the Lepage statistic (HK) values of JJA mean  GPPFLUXCOM (black solid line),  GPPNIRv 
(black dashed line), and CRUNCEP precipitation (blue solid line) for a window length of 9 years. If the 
HK value is higher than 5.99, the difference between the means of the two samples is significant at the 95% 
confidence level. GPP and precipitation anomalies are averaged over Eastern China-Mongolia region (40°–52°N 
and 110°–124°E) as shown in the red box in Fig. 1.

Figure 4.  Differences in JJA mean of normalized  GPPFLUXCOM and  GPPNIRv between P1 (1990 to 1998) and P2 
(1999 to 2007), reconstructed from multiple linear regression based on normalized climate factors (precipitation 
and temperature) and  CO2. Each bar is the quantitative contribution of precipitation (blue), temperature (red), 
and  CO2 (green) to the total difference in GPP (gray). A negative (positive) value indicates a lower (higher) 
mean state of GPP during P2 compared to P1. All variables are averaged over Eastern China-Mongolia region 
(40°–52°N and 110°–124°E) as shown in the red box in Fig. 1.
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We further investigate the differences in GPP between the strong and weak shift groups (Fig. 5a). The red and 
blue horizontal bars show the mean values of GPP for the two groups during period 1 (P1′: 1991 to 1999) and 
period 2 (P2′: 2000 to 2008). Although the two groups show quite similar interannual variability, their decadal 
variability is different. The weak shift group shows a smaller mean state change (− 5.64 TgC  month−1) in GPP 
between the two periods than the strong shift group (− 17.4 TgC  month−1).

To examine the driver of the abrupt shift in GPP and the cause of the differences between the groups, we 
quantify the contributions of the climate and  CO2 forcings to the mean state change in GPP from the TRENDY 
models. We calculated the differences in normalized GPP separated by each forcing by subtracting the mean of 
P1′ from P2′ (Fig. 6). In all models, GPP decreases from P1′ to P2′ and is mostly driven by the  GPPclimate-forcing 
(Fig. 6a). The decrease in  GPPclimate-forcing is mostly driven by changes in precipitation rather than temperature 
and solar radiation (Supplementary Fig. 5). Therefore, in terms of  GPPclimate-forcing, the TRENDY models also 
present the aforementioned precipitation-induced regime shift in GPP, which is consistent with satellite and 
reanalysis data.

The effect of  CO2 forcing is opposite to that of climate forcing, but the impact is relatively small: the MME 
mean of  GPPCO2-forcing differences (0.26) is smaller in magnitude compared to that of  GPPclimate-forcing (− 1.40). 
In particular, the four models in the weak shift group (LPJ-GUESS, CABLE-POP, DLEM, and ISBA-CTRIP) 
have a higher sensitivity of GPP to  CO2 and a lower sensitivity to climate compared to the other group (Fig. 6a). 
These characteristics are more obvious in the group means (Fig. 6b): the MME means of the  GPPCO2-forcing and 
 GPPclimate-forcing differences for the weak shift group (the strong shift group) are 0.42 (0.18) and − 0.98 (− 1.60), 
respectively. Therefore, the differences in the sensitivity of GPP to  CO2 and climate forcing between the models 
lead to significant differences in the changes in GPP between the two groups.

Discussion
We have investigated the first EOF mode of GPP variability and found significant abrupt changes in GPP in East 
Asia over the past three decades. The PCs of the first leading modes of  GPPFLUXCOM and  GPPNIRv consistently show 
a distinctive phase shift around the year 2000 in Eastern China-Mongolia. The abrupt change in GPP around the 
year 2000 is consistently detected by satellite, reanalysis datasets, and land surface models. The high correlation 
between GPP and precipitation, and the abrupt decrease in precipitation indicate that the abrupt decrease in 
GPP resulted from the changes in precipitation. Quantitative analysis using the land surface models shows that 
the shift in GPP is mostly driven by changes in precipitation, supporting the GPP-precipitation mechanism.

Figure 5.  (a) Time series of JJA mean GPP anomalies: multi-model ensemble (MME) mean of  GPPTRENDY 
(black dashed line), the mean of the strong shift group (red solid line), and the weak shift group (blue solid line). 
The red (blue) horizontal bars show the mean values of GPP during P1′ (1991 to 1999) and P2′ (2000 to 2008) of 
the strong shift group (the weak shift group). (Strong shift group: CLASS-CTEM, CLM5.0, JULES-ES, JSBACH, 
ORCHIDEE-CNP, ORCHIDEE, SDGVM, and VISIT; Weak shift group: LPJ-GUESS, CABLE-POP, DLEM, and 
ISBA-CTRIP). (b) Time series of Lepage statistics (HK) values of MME mean of JJA  GPPTRENDY (black dashed 
line) and individual TRENDY models (colored solid lines) for a window length of 9 years. If the HK value is 
higher than 5.99, the difference between the means of the two samples is significant at the 95% confidence level. 
GPP anomalies are averaged over Eastern China-Mongolia region (40°–52°N and 110°–124°E) as shown in the 
red box in Fig. 1.
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It has been reported that the Pacific decadal oscillation (PDO) phase change can affect the regional precipita-
tion in East Asia through atmospheric  teleconnections24,28–32. After the late 1990s, the Pacific entered a negative 
phase of the PDO (Fig. 2), and the upper-level atmospheric circulation changed accordingly. The East Asian 
westerly jet stream (EAWJS) is weakened and poleward shifted. The poleward-shifted EAWJS changes the jet-
related secondary meridional-vertical  circulation29, making an anomalous descending motion to the northern 
parts of East Asia. Subsequently, the anticyclonic circulation dominates the target region in a negative PDO phase, 
resulting in less precipitation in the late 1990s. Therefore, the precipitation shifts around the year 2000 are related 
to the phase shift of the PDO. Our results suggest that the abrupt changes in GPP in Eastern China-Mongolia 
region depend on the phase change of the PDO.

Of the twelve offline land surface models, eight were able to simulate this abrupt response, while the others 
failed to capture it. The differences between the TRENDY models can be attributed to the diverse sensitivities 
of  CO2 and climate forcing. This implies that differences in the sensitivity of GPP to  CO2 and climate forcing 
between the models resulted in the inter-model diversity in simulating the abrupt changes. One factor contribut-
ing to the differences in sensitivity is that terrestrial photosynthetic  CO2 assimilation, which is the basis for model 
estimation of GPP, is represented and parameterized differently across terrestrial biosphere  models33. This leads 
to different responses of GPP to key environmental variables, including climate and  CO2  forcing33. Therefore, this 
leads to structural differences (e.g., sensitivities) and large uncertainties in the  models34. Therefore, improving 
the response and parameterization of photosynthesis in each model would be helpful to reduce the uncertain-
ties in the TRENDY models and investigate the more accurate variability of GPP in Eastern China-Mongolia.

It is possible that land–atmosphere coupling, a positive feedback between vegetation and precipitation 
 recycling25, is involved in the abrupt change in GPP over Eastern China-Mongolia. In this feedback loop, reduced 
precipitation in water-limited areas leads to a decline in vegetation, which can decrease evapotranspiration. A 
decrease in precipitation due to the reduced evapotranspiration is expected to lead to a decrease in vegetation. 
The Eastern China-Mongolia region is known to have a high precipitation recycling  ratio35; in other words, 
precipitation is highly contributed by evapotranspiration from the same region. Thus, precipitation and evapo-
transpiration have a positive correlation (r = 0.68, P < 0.01) from 1990 to 2007. Accordingly, evapotranspiration 
also shows a significant abrupt shift in 1999–2000 in the Eastern China-Mongolia region (P < 0.05). Given these, 
it is conceivable that the positive feedback could contribute to the dramatic shift in GPP and its persistence. Due 
to the significant effects of the feedback, further studies are needed to understand the role of land–atmosphere 
coupling in abrupt changes in vegetation productivity.

Semiarid carbon flux is known to be influenced not only by precipitation, but also by temperature, as warm-
ing-induced water deficit also leads to a decrease in  photosynthesis1. In this study, compared to precipitation, 
temperature exhibits a relatively low correlation coefficient (r =  − 0.54, P < 0.01) with  GPPFLUXCOM anomaly in 
1980–2016 and no statistically significant correlation with  GPPNIRv anomaly at the 95% confidence level. How-
ever, over a shorter time period (1998–2016),  GPPFLUXCOM and  GPPNIRv anomalies have a stronger negative cor-
relation with temperature anomaly (r =  − 0.68, P < 0.01 and − 0.56, P < 0.05). However, this relationship was not 
considered in this study. Indeed, GPP showed a delayed response to the recovery of precipitation in 2003–2004 
(Fig. 2). Based on the negative correlation between GPP and temperature, it can be suggested that the positive 
temperature anomaly in the early 2000s may have contributed to the delay in GPP recovery in 2003–2004 (figure 
not shown). Therefore, it is necessary to consider temperature to understand the overall variability of GPP in 
East Asia comprehensively.

The GPP time span (Fluxcom, 1950–2016; NIRv, 1982–2018; Trendy, 1700–2018) does not account for recent 
changes in GPP. A recent abrupt shift towards a hotter and drier climate in inner East  Asia20 could indicate the 
possibility of frequent abrupt changes in GPP. Thus, it is necessary to conduct an extended study to investigate the 
impacts of a hotter and drier climate on GPP in inner East Asia. In addition, future abrupt changes in vegetation 

Figure 6.  (a) Differences in JJA mean of normalized GPP between P1′ and P2′ for the individual TRENDY 
models. Each bar is the quantitative contribution of climate (red) and  CO2 forcing (blue) to the total difference 
in normalized GPP (gray). The models are arranged in order of the magnitude of the HK values. (b) Difference 
in JJA mean of normalized GPP between P1′ and P2′ from the strong and weak shift groups. A negative 
(positive) value indicates a lower (higher) mean state of GPP during P2′ compared to P1′. GPP anomalies are 
averaged over Eastern China-Mongolia region (40°–52°N and 110°–124°E) as shown in the red box in Fig. 1.
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productivity in East Asia need to be investigated. Drought risks in East Asia (30°–55°N and 110°–140°E) would 
increase due to rapidly rising evaporative  demand27. Moreover, the projections based on the representative con-
centration pathways (RCPs) RCP8.5 and RCP4.5 indicate that East Asia (30°–70°N and 80°–180°E) is one of the 
regions that will experience the most significant expansion of drylands by the end of the twenty-first  century36,37. 
The high correlation between water availability and GPP suggests that abrupt changes in vegetation productivity 
may become more widespread and frequent in East Asia in the future. Furthermore, the drylands of East Asia 
will play an important role in regulating the interannual variability of global dryland  GPP37. This suggests that 
the intense occurrence of abrupt changes could exacerbate the interannual variation of the global land sink in 
the future. In this regard, it is essential to conduct further research on future abrupt changes in vegetation pro-
ductivity and terrestrial carbon flux. Further research should focus on the northeastern part of East Asia, where 
dryland expansion is  expected27, and the western part of East Asia, where future drought risks are expected to 
be  higher37. This further research could contribute to developing carbon–neutral strategies by enhancing the 
understanding of the interannual variability of the land sink.

Data and methods
GPP datasets
Terrestrial photosynthesis is a highly uncertain process due to the lack of direct observations of GPP on a global 
scale. To obtain robust results on GPP responses to climate variability, we used both data-driven and process-
based GPP datasets with over 30 years of records for the East Asian region.

FLUXCOM
FLUXCOM (version RS + METEO) provides ensembles of upscaled GPP products on a global scale (www. fluxc 
om. org) for the period from 1950 to  201638,39. FLUXCOM GPP was developed using machine learning tech-
niques to merge FLUXNET site-level observations, satellite remote sensing, and meteorological data to scale 
these fluxes to the global  scale34,40,41. This study used the FLUXCOM GPP, which is calculated by averaging GPP 
ensembles generated from three machine learning algorithms (Random Forest, Artificial Neural Network, and 
Multivariate Adaptive Regression Splines) and two flux partitioning methods (daytime and nighttime) for the 
period from 1980 to  201642.

Near‑infrared reflectance (NIRv)
Previous studies have shown that both NIRv and SIF effectively capture global-scale changes in terrestrial 
 GPP43–45. This study used NIRv due to its broader data coverage and higher resolution compared to satellite-based 
 SIF46 to investigate long-term trends in GPP. The NIRv data are derived from the long-term satellite datasets of 
the Advanced Very High Resolution Radiometer (AVHRR) reflectance from the Land Long Term Data Record 
v4 (LTDR) product for the period from 1982 to 2018. This study utilizes the dataset for all available time periods. 
NIRv is calculated as a function of monthly NDVI and near-infrared reflection of the total pixel (NIRT)43,44. A 
subtraction of 0.08 from the NDVI is applied to eliminate the influence of bare  soils46 [Eq. (1)].

TRENDY v8
The model intercomparison project TRENDY v8 provides GPP output from Dynamic Global Vegetation Models 
(DGVMs) for the period from 1700 to  201847. These models are forced with the same meteorological conditions, 
atmospheric  CO2 concentrations, and land use  datasets34,46,48. TRENDY v8 provides a suite of simulations that 
allow the response of land to climate,  CO2, and land use forcing to be separated. The “S0” simulation is a baseline 
simulation with time-invariant pre-industrial  CO2 concentrations, climate, and land use. The “S1” simulation 
is forced by time-varying atmospheric  CO2 concentrations, but with fixed climate and land use information. 
The “S2” simulation is forced by time-varying atmospheric  CO2 concentrations and climate with constant land 
use change.

This study used the GPP output from 12 DGVMs from 1980 to 2018, which was regridded to a spatial resolu-
tion of 1° × 1° for consistent analysis in the multi-model domain (Table 1). Based on the experimental designs, 
we utilize the experimental simulations to evaluate the relative contributions of  CO2 fertilization and climate 
forcing to the change in GPP. For each TRENDY model, the  CO2 fertilization effect-driven change in GPP 
 (GPPCO2-forcing) is calculated from the difference between S1 and S0, while the climate change-driven change in 
GPP  (GPPclimate-forcing) is calculated from the difference between S2 and S1. In addition, the response of GPP to 
total forcing  (GPPTRENDY) is calculated as the difference between S2 and S0, which is the sum of  CO2 fertilization 
and climate change-driven GPP. Note that this study excludes the effect of land use change on GPP, as land use 
change does not appear to be a significant driver of GPP change over the study period (Supplementary Fig. 6).

We focused on averaged GPP in the boreal summer months of June–July–August (JJA) to examine spatio-
temporal variations across the East Asia region (24°–52°N and 100°–149°E). The JJA means of  GPPFLUXCOM and 
 GPPNIRv have the highest values and variability, accounting for 78.3% and 78.7% of annual vegetation productivity, 
respectively (Supplementary Fig. 7).

Meteorological data
We used precipitation, temperature, and solar radiation data from CRUNCEPv7 for the period 1980 to  201649, 
along with evapotranspiration data from ERA5 for the period 1980 to  201851. We also utilized precipitation data 
from GPCC for the period 1982 to 2018 to verify the consistency of the  results52. Atmospheric  CO2 concentration 

(1)NIRv = (NDVI − 0.08)× NIRT

http://www.fluxcom.org
http://www.fluxcom.org
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data from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network were also used for the 
period 1980 to  201650. Table 2 summarizes the meteorological data used in this study.

EOF‑based detection of dominant spatial and temporal variability
The EOF analysis is considered to be an effective approach to investigate the temporal and spatial coherence 
for each orthogonal component of complex time-varying spatial  patterns53. It performs a linear transformation, 
defined in terms of the eigenvectors of their covariance matrix, which provides dimension  reduction54. This 
analysis allows us to examine the structural features of a long-time series variable and extract its representation 
of variability. Therefore, it effectively captures representations of climate variability and identifies the impacts 
of large-scale climate change and abnormal climate on  ecosystems55. Thus, the EOF analysis has been used to 
characterize the dominant modes of variability in GPP and vegetation indexes in previous  studies53,56,57.

Lepage test for abrupt change detection
There are several methods for detecting change points in adjacent data on a decadal scale. Among these methods, 
the Lepage  test58 has few underlying assumptions, which makes it adopted for detecting various types of climate 
changes, including linear trends, cyclical variations, step-like changes, and discontinuous  changes23. This method 
has been used extensively in numerous studies to detect abrupt  changes23,24,59,60. The Lepage statistic (HK) is cal-
culated as the sum of the squares of the standardized Wilcoxon (W) and Ansari-Bradley (A) statistics [Eq. (2)]61, 
which represent the comparison of the mean and variance between two samples,  respectively58.

where E(W), E(A), V(W), and V(A) stand for the expected value and variance of W and A, respectively. If the HK 
is greater than 5.99, the difference between the two samples is significant at the 95% confidence level. A detailed 
description of the methods can be found in an earlier  study23. In this study, the Lepage test with a 9-year moving 
window is used to identify the inter-decadal abrupt change point. We defined the year with the largest HK value 
above 5.99 as the year in which an abrupt change occurred, based on previous  studies24,62.

Quantifying the contribution of climate and  CO2 to the change in GPP
The multiple linear regression method was used to analyze the linear relationship between multiple  variables63. 
This method was used to investigate the relative contributions of climatic (temperature and precipitation) and 
 CO2 factors to vegetation productivity [Eq. (3)].

(2)HK =
[W − E(W)]2

V(W)
+

[A− E(A)]2

V(A)

(3)GPP = αPrec + βTemp+ γCO2 + δ

Table 1.  Summary of the TRENDY v8 models used in this study.

Model Spatial resolution References

CABLE-POP 1
◦ × 1

◦ Haverd et al.65

CLASS-CTEM 2.8125
◦ × 2.8125

◦ Melton and  Arora66

CLM5.0 1.875
◦ × 0.625

◦ Lawrence et al.67

DLEM 0.5
◦ × 0.5

◦ Tian et al.68

ISBA-CTRIP 1
◦ × 1.2

◦ Decharme et al.69

JSBACH 1.875
◦ × 1.875

◦ Mauritsen et al.64

JULES-ES 1.875
◦ × 1.25

◦ Sellar et al.70

LPJ-GUESS 0.5
◦ × 0.5

◦ Smith et al.71

ORCHIDEE 0.5
◦ × 0.5

◦ Krinner et al.72

ORCHIDEE-CNP 2
◦ × 2

◦ Goll et al.73

SDGVM 0.5
◦ × 0.5

◦ Walker et al.74

VISIT 0.5
◦ × 0.5

◦ Kato et al.75

Table. 2.  Summary of the meteorological data used in this study.

Dataset Variables Data period Study period

CRUNCEPv749
Precipitation
Temperature
Solar radiation

1980–2016 1980–2016

ERA551 Evapotranspiration 1979–2021 1980–2018

GPCC52 Precipitation 1982–2021 1982–2018

NOAA GML carbon cycle cooperative global air sampling  network50 Atmospheric  CO2 concentration 1968–2020 1980–2016
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where Prec, Temp, and  CO2 stand for precipitation, temperature, and  CO2 concentration, respectively. α , β , and 
γ represent the partial regression coefficients for each variable. δ represents the residuals. We used normalized 
GPP, precipitation, temperature, and  CO2 concentrations.

Data availability
All data used in this study are publicly available and can be downloaded from the corresponding websites 
(FLUXCOM: https:// fluxc om. org/; NIRv: https:// data. tpdc. ac. cn/; Access to TRENDY v.8 data can be obtained 
by contacting Stephen Sitch: (S.A.Sitch@exeter.ac.uk); CRUNCEPv7 datasets (precipitation, temperature, and 
solar radiation): https:// rda. ucar. edu/ datas ets/ ds314.3/ citat ion/; ERA5 datasets (evapotranspiration): https:// cds. 
clima te. coper nicus. eu/; GPCC (precipitation): https:// psl. noaa. gov/;  CO2 concentration: https:// gml. noaa. gov/).

Code availability
The computer codes that support the analysis within this paper are available from the corresponding author on 
request.
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