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Evolving information complexity 
of coarsening materials 
microstructures
J. M. Rickman 1,2*, K. Barmak 3, B. Y. Chen 4 & Matthew Patrick 3

The temporal evolution of microstructural features in metals and ceramics has been the subject 
of intense investigation over many years because deviations from normal grain growth behavior 
are ubiquitous and strongly dictate observed mechanical and magnetic properties. To distinguish 
among different grain growth scenarios, we examine the time evolution of the information content 
of both synthetic and experimental coarsening microstructures as quantified by both a computable 
information density (CID) and a spectral entropy along with selected metrics and measures of shared 
information and interaction strength. In these approaches, microstructural evolution is described 
in terms of two time series representations, namely: (1) strings and their compressed counterparts 
that reflect the information contained in the configuration of a system over time, and (2) the 
spectra of graph Laplacians that embody the information contained in a coarsening grain network. 
These approaches permit one to characterize dynamically evolving microstructures and to identify 
correlation times associated with different coarsening scenarios. Moreover, as the information content 
of a system is a proxy for the entropy, a thermodynamic description of grain growth is also described.

Internal interfaces, such as grain boundaries, are prevalent in metals and ceramics and they often influence 
material properties that dictate structural, functional, and battery  applications1–4. When such materials are 
held at sufficiently high temperatures, the grain structure evolves via coarsening with a concomitant decrease 
in the excess grain-boundary free  energy5. Since this kinetic process governs the temporal evolution of key 
microstructural features, it has been the subject of intense investigation over many  years6,7. In particular, one 
is often interested in identifying factors that result in extreme events characterized, for example, by very large, 
possibly non-equiaxed grains. Despite considerable effort, however, it is fair to say that the interplay among 
mechanisms that result in such events remains poorly understood and that there is little consensus as to which 
specific microstructural features define this behavior.

From these grain-growth studies, one finds that it is useful to benchmark coarsening behavior relative to 
normal grain growth (NGG). In the NGG regime the associated grain-size distribution obeys a simple scaling 
relation that follows from statistical self-similarity5,8. In other regimes this self-similar behavior breaks down, 
especially at late times. For example, one sometimes observes abnormal grain growth (AGG) in which a minor-
ity of grains having boundary energies and/or mobilities that differ substantially from the majority of grains 
becomes relatively large and overtakes the surrounding “normal”  matrix9. This rapid growth characteristic of 
AGG may occur, in some situations, due to the presence of impurity excesses, such as Ca or Si in Al2O3

10, or as 
a result of grain-boundary complexion transitions in which a first-order, phase-like transformation occurs that 
produces a new interfacial  state11–16 with changes in boundary structure and/or chemistry. We note that AGG is 
ubiquitous and often deleterious as it leads to heterogeneous microstructures and an associated degradation in 
mechanical properties (e.g., strength hardness)17. In some cases, however, AGG is advantageous as, for example, 
elongated grains can enable crack-tip bridging with a resulting improvement in fracture  toughness18,19. In short, 
an understanding of deviations from NGG and, in particular, the onset of AGG is crucial for predicting evolving 
materials microstructures and associated properties.

In this work, we examine the kinetics of evolving synthetic and experimental microstructures as quantified 
by their embodied information. More specifically, our focus here is on the time evolution of the information 
content of coarsening microstructures as quantified by selected metrics and measures of shared information and 
interaction strength. Two interrelated approaches will be employed, one based on the Kolmogorov complexity 
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calculated with compressed data and the other based on the spectrum of a graph Laplacian that characterizes 
the microstructural network. These approaches permit one to identify, in a dynamic context, deviations from 
NGG and to obtain correlation times associated with different coarsening scenarios. We assert that a dynamic 
assessment of such deviations is superior to one based on anecdotal, static microstructural observations and 
provides a foundation for a thermodynamic description of  coarsening20.

The field of information theory originated with a paper by  Shannon21 on communication theory and has had 
an impact in such disparate disciplines as thermodynamics and computer  science22. It asserts that the entropy 
describes the ultimate data compression and that the Kolmogorov complexity is a proxy and “conceptual pre-
cursor” for the  entropy22. A simple example illustrates the intuitive connection between data compression and 
entropy. Consider a string of letters. If the letters are highly repetitive, the string can be described with a relatively 
short string that is repeated many times and the associated compressibility is relatively high. (If the characters 
of that string represent elements of a microstructure, then one could presume that the microstructure itself is 
highly repetitive, as would be the case if the average grain size is large.) Conversely, if it is not possible to find 
repetitions or other compression strategies that shorten the string substantially, then the string has a high degree 
of randomness and its associated entropy is high.

The Kolmogorov complexity, as represented by the so-called “computable information density”23, has recently 
been used to characterize the behavior of prototypical systems outside equilibrium. However, to our knowledge, 
the full machinery of information theory has not been applied to the study of grain growth and associated 
anomalies, non-equilibrium phenomena of considerable technological relevance. We will exploit Kolmogorov 
complexity, spectral network analysis and extreme-value statistics here to quantify the kinetics of grain growth 
and, in so doing, highlight the power and utility of these tools in this context and, in addition, make a connection 
with thermodynamic analyses of time-varying network  complexity24.

Results
Kolmogorov complexity and spectral entropy for microstructures
Consider a discretized microstructure given on a ℓd d-dimensional simple (hyper)cubic lattice of voxels. Each 
voxel is numbered from 1 to Q corresponding to one of the Q associated grains. (In this work we will consider 
microstructures in d = 2 and 3 dimensions.) We examine both synthetic and metallic thin-film experimental 
microstructures here and, in the former case, employ a complexion nucleation mechanism to induce changes 
in coarsening behavior. For the evolving synthetic microstructures, two prototypical grain growth scenarios 
following from different complexion nucleation assumptions are modeled here using a discrete, coarse-grained 
microstructural (Potts) model, namely: (Scenario A) no complexion transitions, leading to isotropic, NGG that is 
statistically self-similar8 and (Scenario B) complexions that are spatially randomly nucleated on grain boundaries 
in addition to complexions that are propagated from a previously transitioned grain  boundary25. In this latter 
case, complexion nucleation alters grain-boundary mobilities, resulting in deviations from NGG and, in some 
instances, AGG. We note that the density of seed points and, more generally, the nucleation conditions clearly 
dictate the onset for AGG. Further details regarding the simulations may be found in the Methods section and 
an analysis of the experimental microstructures may be found in the Discussion section below.

It is convenient to describe the information content in a given microstructure in terms of two quantities, 
namely: 1.) its Kolmogorov  complexity26,27, the counterpart of the entropy in information theory, and 2.) its 
spectral (von Neumann)  complexity28, the latter a function of the spectrum of a graph Laplacian that reflects 
the topology of the grain network. These complexities embody the connectivity of the microstructure, and 
therefore spatial correlations among grains, making them superior in this context to many other descriptors, 
such as the Shannon  entropy29 based on a grain-size distribution. Our aim here is to employ these two quantities 
to describe the time evolution of information that attends coarsening under different grain growth scenarios 
and, in so doing, to distinguish between these scenarios. In the first case, the complexity is approximated in 
terms of an entropy proxy, known as the computable information density (CID), by writing a string, denoted 
by x, representing the microstructure to a file and then comparing the length of this file, |x| , to the length of its 
compressed counterpart, C(x).

Then, the density SCID(x):=C(x)/|x| , the ratio of the lossless compressed to the uncompressed string  lengths23. 
To construct the requisite one-dimensional string corresponding to a given microstructure that preserves to 
some degree intrinsic, nearest-neighbor microstructural information, it is convenient to employ a Hilbert scan 
of the  lattice30. This scan produces a one-to-one mapping between d-dimensional data (i.e., the voxel values 
summarizing the microstructure) and a one-dimensional representation along a Hilbert  curve31. More specifi-
cally, the Hilbert curve sinuously traverses the elements of a matrix of integers that represent a microstructural 
snapshot at some point in time. (Such curves may be conveniently constructed using a built-in function found, 
for example, in  Mathematica32). The resulting one-dimensional string of integers is then stored in a file whose 
length corresponds to |x| . This file is then compressed utilizing a lossless compressor such as xz resulting in a 
new, typically smaller file with corresponding length C(x) . (This compressor and its variants may be invoked 
as a standard Unix command. Additional details may be found in the “Methods” section.) For calculations of 
compression distances and interaction information, it is necessary to sometimes concatenate first uncompressed 
files as will be described below.

In the second case, the Q grains comprise the vertices of an undirected graph, each vertex thereby corre-
sponding to the collection of voxels having the same spin value (i.e., belonging to the same grain). The graph 
edges connect a given grain to its nearest neighbors. The complexity is then a function of the spectrum of the 
associated, normalized graph Laplacian, L, and can be expressed as
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where the {�i} (i = 1, 2, · · · ,m) are the m eigenvalues of L. For the (connected) graphs considered here, L is 
singular with a nullity of one. We note that graphical representations of materials microstructures have been 
employed by Johnson et al. to characterize grain-boundary  networks33 and for microstructural  design34.

We employ first the CID to analyze the temporal evolution of two evolving synthetic microstructures, as 
embodied in strings x(t) and y(t) that represent growth Scenarios A and B, respectively (see “Methods” section), 
that start from the same initial microstructure, denoted by z(t) , and coarsen as a function of time, t. Figure 1 
illustrates the information density SCID(t) relative to its initial value SCID(0) as a function of t1/2 for these two 
growth scenarios. As is evident from the figure, the CID for Scenario A varies as t1/2 at late times, consistent 
with the statistically self-similar grain growth hypothesis, whereas the time dependence of the CID for Scenario 
B agrees with that of Scenario A at early times (as expected) and is more complex at late times. The deviation in 
SCID(t) values for these curves occurring at t ≈ 150× 106 Monte Carlo steps (MCS) therefore indicates a con-
comitant deviation from statistical self-similarity, possibly due to AGG as it is conventionally defined. We will 
investigate this possibility in more detail below. Also shown in Fig. 1 are two microstructural snapshots, one at the 
beginning of the simulation and one after t = 400× 106 MCS for Scenario B. This second snapshot reveals AGG.

For the purpose of comparison, the spectral complexity given in Eq. (1) was also calculated for the same 
time series of evolving microstructures (and in this case graph Laplacians) considered above. Figure 2 shows the 
resulting relative complexity, Sspec(t)/Sspec(0) as a function of t1/2 for the two aforementioned growth scenarios. 
The inset shows a graphical representation of the microstructural network at t = 700× 106 MCS for Scenario 
B. We note that, again, the spectral complexity for Scenario A scales as t1/2 and that the complexity curves for 
the two scenarios begin to deviate at t ≈ 150× 106 MCS. This time to deviation is consistent with that observed 
for the CID analysis above.

Link with extreme events in the grain‑size distribution
To determine more accurately the time scale for the onset of AGG and thereby which microstructural, and by 
extension substring and spectral, characteristics control the behavior of the entropy curves shown in Figs. 1 and 
2 , we examine next the time dependence of two of the lower-order moments about the mean of the pdfs of the 
normalized, effective spherical grain diameters, d(t)/d̄(t) , where d̄(t) is the time-dependent mean of the grain 
diameter, d(t) . For the case of statistically self-similar growth, the normalized i-th moments, φi(t) , of a given pdf 
should be time-invariant. Figure 3a displays the normalized variance ( i = 2 ) and kurtosis ( i = 4 ) for Scenarios 
A and B as a function of time, the former quantifying the (square of the) dispersion of the pdfs and the latter 
characterizing their tailedness (i.e., frequency of outliers). It should be noted that both curves for Scenario A are 
essentially time-invariant, as expected, while the curves for Scenario B start to deviate from their counterparts 
at early times. Since φ4(t = 10) ≈ 2.8 for both scenarios, the monotonic increase in φ4(t) with time for Scenario 
B indicates that the corresponding distribution is becoming fat-tailed, or leptokurtic (i.e., having significant 
outliers) over  time35. As the onset of the deviation in φ4(t) occurs at approximately 50× 106 − 60× 106 MCS 

(1)Sspec = −

m
∑

i=1

�i log2 �i ,

Figure 1.  The computable information density SCID(t) relative to its initial value SCID(0) as a function of t1/2 
for these two growth scenarios. The blue circles represent the information associated with Scenario A (normal, 
statistically self-similar grain  growth8) while the gold squares represent the information associated with Scenario 
B (deviations from normal grain growth). Note that the CID for Scenario A scales as t1/2 at late times, consistent 
with the statistically self-similar grain growth hypothesis, whereas the time dependence of the CID for Scenario 
B is more complex at late times. The inset shows snapshots of the microstructure for Scenario B at times t = 0 
and t = 400× 10

6 MCS. (It should be noted that the initial microstructural data was created from a modified 
Voronoi construction and is therefore not representative of steady-state behavior).
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Figure 2.  The relative spectral complexity, Sspec(t)/Sspec(0) as a function of t1/2 . The blue circles represent 
the information associated with Scenario A (normal, statistically self-similar grain  growth8) while the gold 
squares represent the information associated with Scenario B (deviations from normal grain growth). Again, 
note that the spectral complexity for Scenario A scales as t1/2 at late times, consistent with the statistically self-
similar grain growth hypothesis. The inset shows a graphical representation of the microstructural network at 
t = 700× 10

6 MCS for Scenario B. In this representation the vertices correspond to the distinct grains and the 
edges link the grains to their nearest neighbors.

Figure 3.  (a) The moments, φi(t)/φi(t = 10) , relative to their values at 10× 10
6 MCS of the grain-diameter 

pdf versus time, t, for Scenarios A (blue curves) and B (gold curves), respectively. The variance ( i = 2 ) and the 
kurtosis ( i = 4 ) are represented by the solid and the dashed curves, respectively. It should be noted that both 
blue curves are essentially time-invariant while the gold curves start to deviate from the corresponding blue 
curves at early times. (b) The exceedance, ǫ(t) , as a function of time, t, for microstructures evolving according to 
Scenario B.
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and somewhat before the corresponding onset in the deviation in φ2(t) , it is sensible to identify this range of 
times with the onset of AGG.

To quantify further abnormality in the microstructural grain-size distribution, one regards abnormal grains 
as rare events that may be described by the properties of the tail of the distribution. Then, using the formalism 
of extreme-event statistics employed to analyze risk in financial markets, one can define analogous tools here, 
including conditional tail moments and the  exceedance9,36,37. The exceedance, ǫ , is particularly useful. For a 
probability density function of grain volume, V, given by p(V),

where Vc is a critical grain volume that marks the start of the tail of the distribution and is conventionally chosen 
as ten times the average grain volume at t = 038. We determined p(V) from grain volume histograms compiled 
from the Potts model simulations. Figure 3b shows the behavior of ǫ as a function of t for the microstructure 
evolving under Scenario B. It should be noted that at t = 100× 106 MCS ǫ ≈ 0.002 with several grains having 
V > 20Vc.

Metrics and shared information for evolving microstructures
Several quantities based on the compressor C and the spectrum of L facilitate microstructural interrogation and 
comparison. We focus first on quantities that exploit the properties of the compressor (see the “Methods” section 
below). For example, the normalized compression distance (NCD) between two strings x and y, each representing 
a particular microstructure, measures the difference between the two files and is given by

where max(min) denotes the maximum (minimum) of a list. We note that NCD is a distance  metric39 such that 
0 ≤ NCD

(

x, y
)

≤ 1+ e , where smaller values indicate greater similarity between microstructures, and that e is 
a small number resulting from imperfections in the  compressor40.

Similarly, one can also define the mutual  information41,42 shared by two microstructures x and y in terms of 
the compressor C as

We will also wish to assess the information contained in x and y in cases where there may be a causal chain 
linking these microstructures to a third (starting) microstructure, characterized by a string z. It is of interest to 
determine whether the link between x and y is direct or is influenced by the mutual link with z. For this purpose, 
it is useful to introduce the partial mutual  information42

which represents the information shared between x and y that is not contained in z, and the associated interac-
tion  information43,44

The interaction information may be either positive or negative and reflects, in this context, the information 
shared between microstructures x and y after eliminating the contributed information that is conditioned on both 
originating from a given initial microstructure z. In this context, a positive interaction indicates that the correla-
tion between microstructures evolving under the two different scenarios (i.e., A and B) depends in part on the fact 
that they both started from the same initial microstructure. Given the decrease in microstructural information 
that attends grain growth that is highlighted in Fig. 1, it is useful to obtain an effective information correlation 
time, τ , associated with coarsening. For this purpose, we next consider the time evolution of the NCD for normal 
grain growth (i.e., Scenario A) relative to the starting microstructure, as illustrated in Fig. 4. By obtaining the 
best exponential fit to the data as given by NCD(t) = exp (−t/τNCD) , one finds that τNCD = 79.2× 106 MCS. 
In this context τNCD represents the characteristic time over which information from the initial state propagates 
during grain growth. We note that the analog of the NCD for the microstructural graphs discussed above is the 
spectral distance between  graphs45. This quantity is readily calculated from the differences in graph eigenvalues, 
but won’t be considered here.

It is now possible to assess the degree to which mutual information is shared between microstructures 
evolving under the different scenarios described here. As both evolutionary paths begin with the same starting 
microstructure, it is informative to obtain the partial mutual information, or the corresponding interaction 
information, that eliminates the shared information resulting from the common starting point. Figure 5 shows 
the interaction information, I

(

x, y, z
)

 , as a function of time for the growth scenarios considered here. A char-
acteristic correlation time τI for the two scenarios can be obtained from an exponential fit to the data, with the 
result that τI = 48.5× 106 MCS. One interpretation of τI is that it is a characteristic time associated with the 
deviation from normal grain growth. This interpretation is in agreement with the estimated onset time range 
for AGG based on the time-dependent behavior of the kurtosis, as described above.

(2)ǫ:=

∫ ∞

Vc

dV p(V),

(3)NCD
(

x, y
)
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C
(

xy
)

−min{C(x), C
(

y
)

}

max{C(x), C
(

y
)

}
,

(4)I
(

x, y
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(

y
)

− C
(
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)

.
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(
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Discussion
We examined the time-dependent information content of synthetic coarsening microstructures using both a 
computable information density (CID) based on file compression and a spectral entropy along with selected 
metrics and measures of shared information and interaction strength. These approaches permit one to identify 
in a dynamic context deviations from normal grain growth and to obtain correlation times associated with dif-
ferent coarsening scenarios, including those that exhibit abnormal grain growth. In particular, we identified a 
characteristic time associated with the deviation from normal grain growth that is associated with complexion-
mediated growth and highlighted a temporal regime associated with abnormality. The methods employed here 
are, of course, not restricted to any particular growth mechanism and may be used to interrogate dynamically 
systems having inhomogeneous grain-boundary energies and/or mobilities. We emphasize that this work pro-
vides a prototypical example of the application of complexity (entropy) production to characterize a ubiquitous 
non-equilibrium phenomenon, namely grain growth. Moreover, the approach employed here preserves to a 
large degree important microstructural characteristics, including voxel neighbor information, and is therefore 
a faithful representation of overall information content. One possible extension of this work is the use of the 
calculated entropy production in an irreversible thermodynamics framework to identify, for example, forces and 
fluxes that govern the evolution of a system.

Given the generality of the methodology described here, we expect that this approach may be used to dis-
tinguish among various scenarios associated with abnormal grain growth. For example, beyond complexion-
mediated growth, other mechanisms, such as grain-boundary energy inhomogeneity and boundary pinning, 
may lead to abnormal growth regimes with different temporal dependencies and therefore different evolving 
information complexities. Both the CID and the spectral entropy embody these differences. We also expect that 
the graph Laplacian spectrum used to compute the spectral entropy may contain additional useful information 

Figure 4.  The normalized compression distance (NCD) for normal grain growth (i.e., Scenario A) relative to 
the starting microstructure versus time, t (blue circles). The dashed line represents the best exponential fit to the 
data (apart from the initial state and as shown in the figure).

Figure 5.  The interaction information, I  , as a function of time, t, for the growth scenarios considered here. The 
dashed line represents the best exponential fit to the data (apart from the initial state and as shown in the figure).
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reflecting spatio-temporal correlations among growing abnormal grains. The use of microstructural complexity 
to explore the impact of abnormal grain growth mechanisms is the subject of ongoing work.

Experimental data for thin‑film growth
To illustrate the utility of this approach, we consider next the time evolution of a coarsening experimental 
microstructure, namely a thin Pd film held at T = 4000 C for 120 minutes. As the film comprises nearly columnar 
grains, we examine a series of 2d microstructures and focus on the time evolution of the CID. Figure 6 displays 
the computable information density SCID(t) relative to its initial value SCID(0) as a function of t1/2 for this film. 
As was the case for the synthetic microstructures considered above, SCID(t) decreases monotonically with t, 
though the limited amount of data precludes making any conclusions regarding the existence of a normal regime. 
However, even with this limited data, one can deduce that the characteristic time over which information from 
the initial state propagates during grain growth, τNCD < 30 minutes since NCD(30 min) ≈ 0.98 . Thus, while 
Fig. 6 indicates that a moderate amount of coarsening occurred over the course of the experiment, concomitant 
changes in grain shape, etc., lead to relatively small correlation times.

Complexity, entropy and thermodynamic analogies
Given the relationship between complexity and entropy, it is useful to explore related thermodynamic analogies 
associated with  coarsening20,24. By analogy with the thermodynamic analysis of time-evolving networks by Ye 
et al.24, one can define the internal energy, U, of a microstructure as proportional to the total grain-boundary 
area or, in the language of graphs, proportional to the number of edges, N  . This definition is fully consistent 
with the internal energy, U = JN  obtained in a Potts model with constant energy parameter J (see “Methods” 
section). With this definition, one can then also define an (inverse) temperature, 1/T = ∂S/∂U , associated with 
the  microstructure46. We focus again on the CID. Figure 7 shows the computable information density ratio 
SCID/SCID(0) versus the internal energy U = JN  ( J = 1 ) for Scenarios A and B. As is evident from the figure, 
SCID depends linearly on U, resulting in a constant positive microstructure temperature T. This is perhaps not 
surprising since the presence of a grain-boundary segment corresponds to a break in a substring, and so while 
the time-dependence of SCID(t) depends on the growth scenario, SCID(U) depends only on U for either scenario.

Finally, we note that there are alternative descriptions of complexity in which a microstructure is described 
in terms of correlations of an underlying point process. For example, in a recent  paper47, we quantify the entropy 
of a microstructure in terms of a two-point correlation function (the radial distribution function) of grain triple 
junctions. From the radial distribution function one can extract a so-called direct correlation function that may 
be employed in a classical density-functional model of microstructure evolution.

Methods
File compression and algebraic complexity
As has been well established, one can apply a compression algorithm to a string x, such as that represented 
by C(x) , as an approximation to the Kolmogorov complexity, K(x) . We employ for C the Unix-based xz loss-
less compressor that exploits the Lempel-Ziv-Markov chain algorithm (LZMA). This utility is based on LZ77 
(the first simple compression algorithm due to Ziv and  Lempel48) and employs a sliding dictionary algorithm 
and a filter to render the data suitable for compression with the  dictionary49. In particular, it was found that 
xz -8 had a dictionary size that was satisfactory for the applications here. C is a so-called normal compressor 
as it possesses the following important properties (up to an additive term) that permit one to define mean-
ingful metrics, etc.: C(xx) = C(x) (idempotency), C

(

xy
)

≥ 0 (monotonicity), C
(

xy
)

= C
(

yx
)

 (symmetry), 

Figure 6.  The computable information density SCID relative to its initial value SCID(0) as a function of t1/2 for a 
coarsening polycrystalline Pd thin film held at a temperature of T = 400

0 C. The inset shows the corresponding 
microstructures at t = 0 and 60 minutes. The field of view has dimensions of 1196 nm × 1196 nm.
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C
(

xy
)

+ C(z) ≤ C(xz)+ C
(

yz
)

 (distributivity)50. It should be noted that the string product xy implies string 
concatenation.

Monte Carlo simulations of grain growth
Monte Carlo simulations of three-dimensional coarse-grained microstructures on a voxelated lattice were per-
formed using a modified Q-state Potts model in which interfacial phase (complexion)  transitions12 may occur as 
both correlated and uncorrelated stochastic events that modify grain-boundary mobilities and thereby evolving 
microstructures over some period of  time25,38. Each voxel represents a coarse-grained piece of the system com-
prising a very large number of particles, and neighboring voxels that share an spin value S(1 ≤ S ≤ Q) constitute 
a single grain. The Hamiltonian for this system is given by

where where i and j refer to voxels, J > 0 is a (constant) energy parameter, the angle brackets denote distinct 
nearest-neighbor voxel pairs and δ is the Kronecker delta. Thus, neighboring unlike spins are associated with an 
energy cost, and so the time evolution of the model based on a modified Metropolis  rule25,51 at fixed, artificial 
inverse temperature β leads to an increase in average grain diameter. As is customary, time is measured in Monte 
Carlo steps (MCS).

As summarized above, for the grain growth simulations, two prototypical grain growth scenarios following 
from different complexion nucleation assumptions are modeled here, namely: (a) no complexion transitions, 
leading to isotropic, normal grain growth (NGG) that is statistically self-similar8 and (b) complexions are spa-
tially randomly nucleated via a cooperative mechanism. More specifically, in these simulations, complexions 
are randomly nucleated on grain boundaries and are propagated to nearby grain boundaries if neighboring 
grain boundaries have already transitioned (case b). This is the double-adjacency mechanism is described by 
Frazier et al. and Marvel et al.25,38. The nucleation rate was 2 complexion transitions for every 50, 000 MCS, 
corresponding to a temperature of 1450 ◦ C and an activation energy of 384 kJ per mole. This temperature was 
chosen to match a reference temperature in an experimentally-obtained Eu-doped MgAl2O4 complexion time-
temperature-transformation (TTT)  diagram16.

We note that the hypothesis of statistical self-similarity implies that the probability density function (pdf) of 
the grain diameter of evolving configurations may be recast into a time-independent, scale-invariant form. In 
case (b), complexion nucleation alters grain-boundary mobilities and results in deviations from NGG. Abnormal 
grain growth (AGG) sometimes occurs during coarsening after an initial incubation period and we are particu-
larly interested in this outcome here.

Sputtered Pd thin film
With regard to the experimental microstructures highlighted in the Discussion section, the Pd films were depos-
ited via DC magnetron sputtering at a power of 50W and at a pressure of 1.1 mTorr of argon, yielding a nominal 
sputtering rate of 0.051 nm/s and films with a nominal thickness of 30 nm. The substrate was a MEMS heating 
chip with an electron transparent silicon nitride window that was held at room temperature during deposition. 
The film was pre-annealed to achieve a columnar microstructure. The coarsening experiment was performed in 
situ in the transmission electron microscope at T = 400◦ C for a total of 120 minutes. The sample was periodi-
cally quenched to room temperature and the microstructure was recorded via precession enhanced electron 
diffraction based orientation mapping. Using the TSL OIM (©) software package, “Grain Dilation” and “Single 
Orientation per Grain” cleanup operations were applied. For each time step, grains were identified from the 
cleaned orientation maps with a tolerance angle of 5◦.

(7)H = −J
∑

�i,j�

(

δSi ,Sj − 1
)

,

Figure 7.  The computable information density SCID relative to its initial value SCID(0) versus the internal energy 
U = JN  ( J = 1 ) for Scenarios A(blue circles) and B (gold squares).
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Data availability
The authors will make available, upon request, the data used in this work. It is understood that the data provided 
will not be for commercial use. Those interested in acquiring the data should contact J. M. Rickman (jmr6@
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Code availability
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