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Analysis of long non‑coding RNAs 
associated with disulfidptosis 
for prognostic signature 
and immunotherapy response 
in uterine corpus endometrial 
carcinoma
Bohan Li 1,5, Xiaoling Li 2,5, Mudan Ma 1,5, Qing Wang 3,5, Jie Shi 1* & Chao Wu 4*

Disulfidptosis, the demise of cells caused by the abnormal breakdown of disulfide bonds and actin 
in the cytoprotein backbone, has attracted attention in studies concerning disulfide‑related cell 
death and its potential implications in cancer treatment. This study utilized bioinformatics to detect 
disulfidptosis associated lncRNA prognostic markers (DALPMs) with Uterine Corpus Endometrial 
Carcinoma (UCEC)‑related to investigate the correlation between these indicators and the tumor 
immune microenvironment. The RNA sequencing data and somatic mutation information of patients 
with UCEC were obtained from the Cancer Genome Atlas (TCGA) database. Patients were randomly 
divided into Train and Test groups. The findings revealed a potential prognostic model comprising 
14 DALPMs. Both univariate and multivariate Cox analyses demonstrated that the model‑derived 
risk score functioned as a standalone prognostic indicator for patients. Significant disparities in 
survival outcomes were observed between the high‑ and low‑risk groups as defined by the model. 
Differences in tumor mutational burden (TMB), tumor immune dysfunction and exclusion (TIDE), 
and tumor microenvironment (TME) stromal cells between patients of the high‑ and low‑risk groups 
were also observed. The forecast model comprising long non‑coding RNAs (lncRNAs) associated with 
disulfidptosis can effectively anticipate patients’ prognoses.

Abbreviations
DALPMs  Disulfidptosis associated lncRNA prognostic markers
UCEC  Uterine Corpus Endometrial Carcinoma
TCGA   The Cancer Genome Atlas
TMB  Tumor mutational burden
TIDE  Tumor immune dysfunction and exclusion
TME  Tumor microenvironment
lncRNAs  Long non-coding RNAs
UCSC Xena  University of California Santa Cruz Xena
PCA  Principal component analysis
OS  Overall survival
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PFS  Progression-free survival
ROC  Receiver Operating Characteristic
DEGs  Differentially expressed genes
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
GSEA  Gene Set Enrichment Analysis
MsigDB  Molecular Signature Database
KM  Kaplan–Meier
BPs  Biological processes
CCs  Cellular components
MFs  Molecular functions
HCC  Hepatocellular carcinoma

Uterine Corpus Endometrial Carcinoma (UCEC) is a prevalent gynecological cancer among females, presenting 
a significant risk to both physical and psychological well-being1. Based on the most recent cancer data in the 
United States, endometrial cancer is the fourth most common type of cancer in terms of new cases and ranks 
sixth in terms of total cancer-related fatalities. Approximately 66,200 individuals are diagnosed with endome-
trial cancer each year, resulting in around 13,030  deaths2. Furthermore, research has indicated that the chances 
of survival for females diagnosed with UCEC have been stagnant over the last four  decades3. In contrast to 
other types of cancer, UCEC is frequently characterized by postmenopausal vaginal bleeding, which is a major 
 symptom4. Furthermore, the occurrence of UCEC is steadily increasing, in part due to the growing occurrence 
of  obesity5. Therefore, there is an urgent need to advance the diagnosis and treatment of endometrial cancer. 
Developing new diagnostic markers that can improve patient outcomes and guide treatment decisions is crucial 
in addressing this issue.

According to Ingenbleek and  Kimura6, sulfur ranks as the seventh most plentiful component in the human 
body, mainly acquired through the consumption of  food7. Sulfur is essential for living organisms and is involved 
in numerous metabolic and catalytic  activities8. The tertiary and quaternary structures of sulfur-containing 
molecules are determined by disulfide bonds, which provide thermal stability and resistance to physicochemical 
 deformation9. When cells are deprived of glucose, they undergo a unique form of cell death called  disulfidptosis10, 
a process that involves the abnormal collapse of disulfide bonds and actin in cytoskeletal proteins, mediated by 
the uptake of cysteine through SLC7A11. Disulfidptosis is an unprecedented form of cellular demise with the 
potential to expedite the demise of cancerous cells by altering the structure of cytoskeletal  proteins11. In addition, 
disulfidptosis potentially has ramifications in the realm of cancer  treatment12. Nevertheless, further investigation 
is necessary to gain deeper insights into this mechanism; delving into long non-coding RNAs (lncRNAs) may 
offer a potential new treatment strategy.

Although a considerable amount of RNA is transcribed from the human genome, only a minor proportion 
is responsible for protein  encoding13. The remaining transcripts are commonly known as non-coding RNAs 
(ncRNAs)14. These ncRNAs were first regarded as non-operational transcriptional ‘noises’15, but were found 
to have biological  functions16. LncRNAs, exceeding 200 nucleotides in  length17, have a significant impact on 
the regulation of chromatin dynamics, cellular proliferation, and organismal  maturation18. Evidence suggests 
that modified lncRNA expression can initiate alterations in the growth and spread of tumor cells, indicating 
that lncRNA might have a role in either promoting or inhibiting cancer  progression19. Meanwhile, research has 
found a close relationship between lncRNA and disulfidptosis. For example, lncRNA FLVCR1-AS1 mediates 
the miR-23a-5p/SLC7A11 axis to promote malignant behavior in cervical cancer cells; The downregulation of 
lncRNA SLC7A11-AS1 reduced the expression of NRF2/SLC7A11 and inhibited the progression of colorectal 
cancer cells. It should be pointed out that SLC7A11 is the core gene of  disulfidptosis20,21. In addition, there is 
evidence to suggest an association between disulfidptosis gene related lncRNAs and cancer, which may guide 
the treatment and prognosis of cancer to some  extent22,23. Hence, disulfidptosis related lncRNA is a potential 
indicator and treatment strategy for patients with cancer.

In this study, we developed a predictive model using lncRNAs associated with disulfidptosis to predict the 
prognosis of patients with UCEC and performed immune correlation analysis. The findings of our study intro-
duce novel possibilities and concepts for UCEC research.

Materials and methods
Collection and collation of data
Data on RNA sequencing and somatic mutations of the individuals were obtained from the Cancer Genome Atlas 
(TCGA) (https:// portal. gdc. cancer. gov) database. Patient clinical data were gathered from the TCGA and the 
University of California Santa Cruz Xena (UCSC Xena) (http:// xena. ucsc. edu/) databases. After acquiring the 
clinical data, we compiled the information by removing samples that lacked survival information to guarantee 
the precision of subsequent analyses. We acquired annotation data for lncRNAs from the GENCODE website 
(https:// www. genco degen es. org/). Additionally, the literature provided us with the ten disulfidptosis-associated 
genes (GYS1, NDUFS1, OXSM, LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2, and SLC7A11)10.

Acquisition of disulfidptosis‑associated lncRNA
The sequencing data for UCEC patients were obtained using the strawberry Perl (5.30.0.1). Subsequently, the 
expression data for both lncRNA and disulfide genes in UCEC patients were acquired. We utilized the R package 
“limma” to conduct correlation tests between the expression data of every lncRNA and the gene expression data 

https://portal.gdc.cancer.gov
http://xena.ucsc.edu/
https://www.gencodegenes.org/
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of the patients related to disulfidptosis. The filter condition was set as corFilter > 0.3 and p < 0.001. To depict the 
co-expression correlation between genes related to disulfidptosis and lncRNAs associated with disulfidptosis, 
we utilized the R packages “dplyr,” “ggalluvial,” and “ggplot2” to generate Sankey plots.

Establishing a prognostic model of disulfidptosis‑associated lncRNA prognostic markers for 
UCEC
Patients were randomly divided into two groups, namely Train and Test, with equal proportions using the R 
package “caret.” Subsequently, we performed univariate Cox analysis to identify lncRNAs linked to disulfidptosis 
that exhibited a correlation with the prognosis of UCEC patients (p < 0.05). We utilized the R package “glmnet” 
to perform LASSO-Cox regression analysis, aiming to mitigate overfitting by setting the cross-validation penalty 
parameter λ to 10. Subsequently, multivariate Cox analysis was used to identify the most suitable disulfidptosis 
associated lncRNA prognostic markers (DALPMs) for modeling. To demonstrate the regulatory connection 
between DALPM and disulfidptosis genes, we generated heat maps utilizing the R packages “limma,” “reshape2,” 
“tidyverse,” and “ggplot2.” Finally, the model was constructed and the risk score for each patient was computed 
using DALPMs. The calculation of the risk score was performed in the following manner.

In this context, Coef(i) represents the regression coefficient of lncRNA(i), while Expr(i) represents the standard-
ized expression level of lncRNA(i). Based on the median risk score of patients in the Train group, the patients 
were categorized into groups of high risk and low risk. We utilized the R software package called “pheatmap” to 
examine the dispersion of survival status and its correlation with individual DALPMs as risk scores gradually 
escalated.

Precision assessment of the model created using DALPMs
The model’s verification involved a comprehensive assessment of the risk score determined by the model. Ini-
tially, we employed principal component analysis (PCA) with the assistance of the R package ‘scatterplot3d’ to 
visually represent the distinction between DALPMs and other variables in relation to patients categorized as 
high and low risks, then employed the R libraries ‘survival’ and “survminer” to determined possible variations 
in overall survival (OS) and progression-free survival (PFS) among individuals with varying risk scores. Fur-
thermore, the risk score underwent independent prognostic analysis through univariate and multivariate Cox 
analyses using the R package “survival.” We generated Receiver Operating Characteristic (ROC) curves utilizing 
the R packages “survival,” “survminer,” and “timeROC” to assess the precision of our risk scores in predicting 
patient outcomes. For the same objective, the C-index analysis was conducted utilizing the R packages “dplyr,” 
“survival,” “rms,” and “pec.”

Nomogram composition and accuracy detection
To create a nomogram that offers a thorough and precise prognosis for individuals diagnosed with UCEC, we 
utilized various R packages (“survival,” “regplot,” “rms,” and “survcomp”). This nomogram incorporated all rel-
evant patient clinical factors to accurately predict individual patient survival. We utilized the calibration curve 
to assess the precision of our developed nomogram.

Model prediction of the survival of patients at various clinical stages
To assess the accuracy of the model, we determined possible difference of survival status among different risk 
scores UCEC patients at different clinical stages by plotting survival curves with the help of the R packages 
“survival” and “survminer.”

Analysis of GO, KEGG, and GSEA
Using the R package “limma,” we identified differentially expressed genes (DEGs) by comparing patients in the 
high and low risk groups. The criteria for identifying DEGs were a log2 |fold change|> 1 and a false discovery 
rate < 0.05. To better understand the biological role and pathway of these DEGs, we employed the R packages 
“clusterProfiler” and “org.” The packages used are “Hs. eg. Db,” “enrichplot.” We utilized software packages for 
the execution of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set 
Enrichment Analysis (GSEA). The gene lists ’c5. go. v7. 4. symbols. gmt’ and ’c2. cp. kegg. v7. 4. symbols. gmt’ 
were obtained from the Molecular Signature Database (MsigDB) (https:// www. gsea- msigdb.org/gsea/msigdb/).

Tumor microenvironment and immune invasion analysis
The stromal score, immune score, and ESTIMATE score of each patient were calculated using the ESTIMATE 
algorithm with R packages “limma” and “estimate.” We employed the R packages ‘reshape2’ and ‘ggpubr to 
examine the aforementioned scores among the high and low risk groups. Subsequently, we generated a violin 
plot to investigate potential disparities among the three patients in the high and low risk groups. Moreover, the 
examination of immune cell infiltration in each individual was conducted utilizing the R software package called 
“CIBERSORT,” and the outcomes were presented visually with the aid of the R packages “reshape2” and “ggpubr.” 
Furthermore, we conducted examination to assess immune-related functions and generated box plots to display 
the outcomes, utilizing the R packages “limma,” “GSVA,” and “GSEABase.”

(1)Risk score =

n
∑

i=1

(

Coef (i)× Expr(i)
)

https://www.gsea-msigdb
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Somatic mutation data analysis
Using PERL, the somatic mutation data of patients were gathered, extracting the data for each patient and calcu-
lating the tumor mutational burden (TMB) value. To determine the genes with the highest number of mutations, 
we used the software package “maftools” to collate the somatic mutation data of patients at high and low risk for 
UCEC. Next, we presented the survival differences between high and low TMB patients, as well as the survival 
differences among patients when comprehensively evaluating their TMB and risk scores.

Tumor immune evasion, immunotherapy response, and drug susceptibility analysis
The Tumor Immune Dysfunction and Exclusion (TIDE) scoring file of patients was obtained from the TIDE 
website, which focuses on TIDE and used to determine possible variation in the response to immune checkpoint 
blocking among patients in both groups, using the software package “ggpubr.”We performed a drug susceptibility 
analysis to assess the difference in drug susceptibility between patients in high and low risk groups. The evaluation 
criterion was the IC50 value, representing the semi-inhibitory concentration of the drug being tested. Lower IC50 
measurement indicates better drug sensitivity. For this analysis, we employed the R package “pRRophetic.”24,25

Statistical analysis
Statistical analyses were conducted utilizing R software (version 4.2.1), considering p < 0.05 as the threshold for 
statistical significance. Pearson’s correlation test was used to investigate the connections between genes associated 
with disulfidptosis and lncRNAs related to disulfidptosis. The chi-square test was used to compare categorical 
data across different groups. To compare the distinction between the two groups, the Wilcoxon rank-sum test was 
employed. The log-rank test was employed to assess the disparity in survival using the Kaplan–Meier (KM) curve.

Results
Acquisition of disulfidptosis gene co‑expression lncRNA
A total of 16,877 lncRNAs were extracted from the TCGA-UCEC RNA-seq sequencing data. Co-expression of 
these 10 disulfidptosis genes with lncRNAs showed 1,136 lncRNAs associated with disulfidptosis death, with a 
significant correlation (|Pearson R|> 0.3 and p < 0.001). Our results are visualized using a Sankey plot, as shown 
in Fig. 1.

Establishment of the DALPM model
A total of 543 patients were divided into two groups: Train (n = 272) and Test (n = 271). The validation results 
for clinical grouping indicated that our grouping was justified, and there were no disparities between the two 
groups in terms of diverse clinical factors (Table 1).

The Train group was subsequently utilized for constructing the model, while the Test group and all patients 
were employed for testing. Initially, we conducted univariate Cox analysis on 1,136 lncRNAs associated with 
disulfidptosis identified through co-expression analysis. A total of 53 prognostically relevant genes were identified 
(Fig. 2A). Using LASSO regression analysis, we identified 29 lncRNAs that exhibited the most significant prog-
nostic predictive values (Fig. 2B,C). Multivariate Cox analysis screened 14 DALPMs (AC090617.5, AC007528.1, 
AC010201.3, NBAT1, XPC-AS1, PRDX6-AS1, AC009779.2, AL445231.1, U91328.1, AC244517.7, BOLA3-AS1, 

Figure 1.  Acquisition of disulfidptosis gene co-expression lncRNA. (A) The Sankey plot showing 10 
disulfidptosis core genes and their co-expressed lncRNAs.
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MKLN1-AS, AC093382.1, and EIF3J-DT) and constructed a prognostic model. In addition, we created heat maps 
to illustrate the regulatory connection between DALPMs and disulfidptosis genes (Fig. 2D). We computed the 
risk score using the multivariate Cox regression formula: Risk score = (AC090617.5 × –1.0913) + (AC007528. 
1 × 1.1325) + (AC010201.3 × –3.4564) + (NBAT1 × 1.4757) + (XPC-AS1 × -1. 2011) + (PRDX6-AS1 × 1. 0761) + 
(AC009779.2 × –0.8874) + (AL445231. 1 × 0.8907) + (U91328. 1 × 0.7976) + (AC244517. 7 × 0.7865) + (BOLA3-
AS1 × 0.65885) + (MKLN1-AS × –1.1178) + (AC093382.1 × –1.1315) + (EIF3J-DT × –1.2246). Based on the median 
risk score of patients in the Train group, the patients were categorized into groups of high and low risks. As the 
risk score increased, the number of patients in the survival state gradually decreased, as shown in Fig. 3A–F. The 
expression of DALPMs in patients is depicted in Fig. 3G–I, which illustrates the relationship between risk score 
and DALPM expression. For example, the AC090617.5 gene demonstrates an inverse relationship with the risk 
score, whereas the BOLA3 − AS1 gene displays a direct correlation.

Validation of model accuracy
We examined the accuracy of the prognostic model created by DALPMs. PCA analysis (Fig. 4A–D) indicated that 
DALPMs demonstrated superior ability in identifying risk status when compared with all genes, disulfidptosis 
genes, and all disulfidptosis lncRNAs. According to the KM survival curve, patients in the high-risk group had 
lower OS and PFS rates compared with those in the low-risk group, suggesting a poorer prognosis for the former 
(Fig. 5A–D). Furthermore, the outcomes of univariate and multivariate Cox analysis indicated that the risk scores 
remained unaffected by UCEC (Fig. 5E, F). Based on the AUC of the ROC curve, the prognostic prediction of 
patients with risk scores yielded AUC values of 0.777, 0.767, and 0.745 for 1, 3, and 5 years, respectively (Fig. 5G). 
In comparison with other clinical factors in UCEC, the risk score demonstrated the highest AUC, suggesting 
that it had a notable advantage in prognostic prediction for patients with UCEC (Fig. 5H). These findings were 
supported by the C-index curve (Fig. 5I).

Construction of the nomogram
A comprehensive score was calculated for every patient, considering factors such as age, grade, stage, and risk 
score. Next, we created a corresponding nomogram to precisely forecast the 1-, 3-, and 5-year outlook for every 
individual (Fig. 6A). The accuracy of the prediction was further confirmed by the calibration curve, as shown 
in Fig. 6B.

The correlation between risk scores and the clinical stage of UCEC
To further investigate the practicality of DALPMs, we examined their use in forecasting risks in various clinical 
phases. The results from the KM curve showed a notable variation in survival rates among patients with varying 
risk scores in clinical stages I-II and III-IV (Fig. 6C,D).

Results from the analysis of GO, KEGG, and GSEA
A total of 512 DEGs were extracted from patients in the high- and low-risk groups. The findings from the analysis 
of GO enrichment indicated that the primary biological processes (BPs) enriched by DEGs included microtu-
bule-dependent motion, organization of cilia, and ciliary motion. The primary cellular components (CCs) were 
motile cilia, cytoplasmic area, and cytoplasmic extensions bounded by the plasma membrane. Additionally, the 
main molecular functions (MFs) identified were binding to tubulin, as peptidase inhibitors, and functioning as 
a cytoskeletal motor (Fig. 7A). According to the KEGG enrichment analysis, the primary pathways enriched for 
DEGs were identified as pathways of neurodegeneration − multiple diseases, Huntington’s disease, and synaptic 
vesicle cycle (Fig. 7B). In Fig. 7C, the collagen-containing extracellular matrix, external encapsulating structure, 
and immunoglobulin complex were the three highest-ranked CCs within the high-risk group. Figure 7D displays 
the findings of GSEA analysis; the high-risk group exhibited cardiac muscle contraction, DNA replication, and 
neuroactive_ligand receptor interaction as the top three pathways.

Table 1.  Clinical grouping validation for the train and test groups.

Covariates Type Total Test Train p Value

Age  ≤ 65 306 (56.35%) 161 (59.41%) 145 (53.31%) 0.177

Age  > 65 235 (43.28%) 109 (40.22%) 126 (46.32%)

Age Unknown 2 (0.37%) 1 (0.37%) 1 (0.37%)

Gender FEMALE 543 (100%) 271 (100%) 272 (100%) 0.9658

Grade G1 99 (18.23%) 58 (21.4%) 41 (15.07%) 0.1635

Grade G2 121 (22.28%) 59 (21.77%) 62 (22.79%)

Grade G3 312 (57.46%) 149 (54.98%) 163 (59.93%)

Grade Unknown 11 (2.03%) 5 (1.85%) 6 (2.21%)

Stage Stage I 339 (62.43%) 177 (65.31%) 162 (59.56%) 0.5077

Stage Stage II 52 (9.58%) 22 (8.12%) 30 (11.03%)

Stage Stage III 123 (22.65%) 58 (21.4%) 65 (23.9%)

Stage Stage IV 29 (5.34%) 14 (5.17%) 15 (5.51%)
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Tumor microenvironment and immune invasion analysis
To examine variations in tumor microenvironment (TME) between the high- and low-risk groups, we computed 
the TME score for every individual. Figure 7E illustrates variations in stromal cells between the high- and low-risk 
groups, while Fig. 7F illustrates the infiltration of immune cells in all individuals. Furthermore, we examined the 
disparities in immune cell infiltration among patients classified as high risk and low risk. Figure 7G displayed 
variations in B cells memory, T cells CD8, T cells CD4 memory activated, macrophages M0, macrophages M1, 

Figure 2.  Establishment of the DALPM model. (A) A total of 53 disulfidptosis-associated lncRNAs 
independently associated with the prognosis of patients with UCEC were identified via univariate Cox 
screening. (B, C) LASSO regression analysis was used to screen for lncRNAs suitable for model construction. 
(D) Regulatory relationship between DALPMs and disulfidptosis core genes.
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dendritic cells resting, and dendritic cells activated, as indicated by the findings. Ultimately, we contrasted the 
variances in immune pathways among patients in the high- and low-risk groups. Significant differences in 
immune pathways, such as aDCs, APC co-inhibition, macrophages, parainflammation, and Type I IFN Response 
(Fig. 7H), were observed between the two groups.

TMB analysis
Using somatic mutation data, the connection between TMB and the risk score was established. According to 
the waterfall chart, the low-risk group exhibited a higher gene mutation rate compared with the high risk group. 
Moreover, the PTEN, PIK3CA, ARID1A, TTN, TP53, PIK3R1, KMT2D, CTNNB1, MUC16, and CTCF genes 
were identified as the top 10 genes with the greatest likelihood of mutation in both high- and low-risk groups. 
Notably, PTEN, PIK3CA, and ARID1A exhibited the highest mutation probabilities, as shown in Fig. 7I,J. Accord-
ing to the findings from the violin plot, a notable disparity in TMB was observed between patients categorized 
in the high- and low-risk groups (Fig. 7K). In addition, we found that there were differences in survival between 
patients with high and low TMB (Fig. 7L), and the use of TMB and risk score in predicting patient prognosis 
had a more detailed and specific predictive effect (Fig. 7M), which may be a supplement to using TMB alone to 
predict patient prognosis.

TIDE analysis
From the TIDE website, we obtained the UCEC patient’s TIDE scoring file. Upon analysis, we observed variations 
in TIDE scores between the high- and low-risk groups (Fig. 7N). The group at greater risk displayed elevated 
TIDE scores, indicating that tumor cells in this category had a higher chance of evading immune monitoring, 
which could result in a less favorable reaction to immunotherapy.

Drug susceptibility analysis
A total of 19 drugs with unique IC50 values were identified by comparing the IC50 values of various medica-
tions used to treat UCEC in high- and low-risk patients. Cisplatin, Foretinib, NG-25, TG101348, and WH-4-023 
exhibited lower IC50 values and displayed a negative correlation with risk scores when administered to patients 
in the high-risk category (Fig. 8A−J). When treating patients in the low-risk group, several compounds including 
5-Fluorouracil, AKT inhibitor VIII, AUY92, BAY 61–3606, CCT018159, CEP-701, EHT 1864, GSK1904529A, 
Mitomycin C, OSI-930, PHA-665752, Phenformin, Tipifarnib, and ZM-447439 exhibited lower IC50 values and 
showed a positive correlation with risk scores (Supplementary Figs. S1 and S2). These drugs warrant attention 
to ensure standardized treatment practices.

Figure 3.  Distribution of survival status and DALPMs in patients with elevated risk scores. (A–C) Patient risk 
score distribution. (D–F) Distribution of patient survival status with risk score. (G–I) Distribution of DALPMs 
with risk scores.
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Discussion
The prevalence of endometrial cancer is on the rise, and although surgery usually leads to positive outcomes 
for early-stage  cases26, accurately assessing the likelihood of recurrence remains  challenging27. Potential solu-
tions are provided by prognostic markers, and recent lncRNA research demonstrates promise in addressing 
this challenge. For example, Sun et al. identified lncRNA prognostic indicators associated with copper-induced 
mortality in head and neck squamous cell carcinoma and developed a prognostic model for predicting patient 
 outcomes28. The core gene of disulfidptosis is closely related to the regulation of lncRNA. In addition, cisplatin 
and paclitaxel hold potential for cancer treatment, including endometrial cancer. Studies have shown that the 
anti-tumor effects of these drugs may be exerted by reacting with intracellular  disulfides29,30. The implication is 
the possibility of identifying lncRNA prognostic indicators associated with disulfide-induced mortality, which 
can be used to inform treatment choices for individuals diagnosed with endometrial cancer.

Using 14 DALPMs, we constructed a prognostic model to forecast the patients’ prognosis in this research. 
By conducting co-expression analysis, a set of 1,136 lncRNAs linked to 10 disulfide death genes were extracted 
to acquire DALPM suitable for prognostic modeling. We obtained the 14 DALPMs for building our prognostic 
risk model through LASSO, univariate Cox, and multivariate Cox analyses. After examining these 14 DALPMs, 
we identified U91328.1, AC244517.7, AC009779.2, AC090617.5, AC093382.1, and BOLA3-AS1 as potential 
prognostic indicators for specific types of  cancer31–36. Luo et al.37 reported a strong correlation between EIF3J-
DT and the development of drug resistance in gastric cancer cells, while Chen et al.38 suggested MKLN1-AS as 
a therapeutic target for hepatocellular carcinoma (HCC). Pan et al.39 suggested that MKLN1-AS is highly prob-
able to target miR-22-3p and induce carcinogenic effects, while Xue et al.40 and Wei et al.41 reported that NBAT1 
has the potential to hinder the advancement of tumors like renal cell carcinoma and hepatocellular carcinoma. 

Figure 4.  PCA analysis of all patients. (D) DALPMs had better discrimination in terms of patient risk 
compared with (A) all genes, (B) disulfidptosis genes, and (C) all disulfidptosis lncRNAs.
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Figure 5.  Validation of the accuracy of the model from multiple perspectives. (A–C) KM curves of OS in the 
Train, Test, and All groups. (D) KM curves of PFS in the All group. (E, F) Univariate and multivariate Cox 
analysis suggesting that risk score is an independent prognostic factor for UCEC. (G) DALPMs predicts 1-, 
3-, and 5-year survival rates in patients with UCEC. (H) The ROC curve showing that risk scores have better 
predictive power compared with other clinical factors. (I) The C-index showing that risk scores have better 
predictive power compared with other clinical factors.
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Our research revealed the presence of five new lncRNAs (AC007528.1, AC010201.3, XPC-AS1, PRDX6-AS1, 
and AL445231.1) that possess prognostic importance, emphasizing the originality and importance of our study. 
Additional research is necessary to explore the function and mechanisms of these lncRNAs in endometrial cancer.

To assess the necessity and accuracy of our model, we categorized patients into high and low risk groups by 
calculating the risk score using DALPMs. The KM curves for OS and PFS demonstrated a clear distinction in 
survival rates between patients, which implies that it is important to consider the treatment and prognosis of 
patients classified as high risk. We also conducted univariate and multivariate Cox analyses, revealing that the 
risk score independently predicts the prognosis of UCEC and generated ROC curves to compare the risk scores 
with other clinical factors currently in use. According to the ROC curves, the risk score exhibited the highest AUC 
value, indicating that utilizing the risk score as a predictor may provide a relatively more precise assessment of 
the prognosis for patients with UCEC. By combining risk scores with other clinical factors, the nomogram and 
calibration curve were created to estimate the 1-, 3-, and 5-year survival rates for patients. Furthermore, the risk 
scores can be used to differentiate the survival outcomes of patients with varying clinical stages. The precision 
examinations for our model produced extremely pleasing outcomes, suggesting its capability to precisely forecast 
the prognosis of patients diagnosed with UCEC.

The concept of TME, the existence of benign cells and constituents within tumor  cells42, has been acknowl-
edged for its association with inflammation and  cancer43. With deepening research on TME, its importance has 
gradually been accepted. Cancer progression and treatment are closely linked to the tumor  microenvironment44,45. 
For this purpose, we employed the ESTIMATE algorithm to compute the TME of the individuals, subsequently 

Figure 6.  Construction of the nomogram and exploration of the correlation between risk scores and the clinical 
stage of UCEC. (A) The nomogram showing that clinical factors, including risk scores, can be scored to predict 
the survival of patients at 1, 3, and 5 years. (B) The calibration curve showing sufficient consistency between 
the actual results and the predicted results. (C, D) differences in survival between high and low risk groups of 
patients at different stages.
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examining potential disparities between the three patients categorized into the high and low risk groups. The 
findings indicated variations in stromal cell assessment between the groups. Solid tumor progression is signifi-
cantly influenced by stromal cells, especially cancer-associated fibroblasts, which also contribute to treatment 
response, angiogenesis, immune evasion, and drug  resistance46,47. Our research indicates that there are differences 
in stromal scores between high and low-risk groups, and the stromal cell content seems to be higher in patients 
in the high-risk group. Therefore, this needs further attention from us.

Figure 7.  The results of GO, KEGG, GSEA, TME, immune invasion TMB, and TIDE analyses. (A) GO 
enrichment analysis revealed the top 10 biological functions in BPs, CCs, and MFs. (B) KEGG analysis revealed 
significantly enriched pathways. (C, D) GSEA analysis revealed the biological functions and pathways of 
the high risk group located in the top three. (E) Differences in stromal cells in patients in high and low risk 
groups. (F) Abundance of immune cell infiltration in all patients. (G, H) Differences in immune cells (B cells 
memory, T cells CD8, T cells CD4 memory activated, macrophages M0, macrophages M1, dendritic cells 
resting, and dendritic cells activated) and immune-related pathways (aDCs, APC co-inhibition, macrophages, 
parainflammation, and Type I IFN Response) in patients in high and low risk groups. (I, J) Somatic mutation in 
the high and low risk groups. (K) Differences in TMB between the high and low risk groups. (L) A significant 
difference in survival between the high and low risk groups of patients with TMB was observed. (M) Patients 
with low TMB and high risk have the worst survival. (N) Differences in TIDE between patients in the high and 
low risk groups were observed. *p < 0.05, **p < 0.01, ***p < 0.001.
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Despite the absence of a general disparity in immune cell scores, a closer examination revealed discrepancies 
in particular immune cell populations, including memory B cells and activated CD4 memory T cells, among the 
high and low risk groups. The immune cells that are expressed differently in the TME could serve as potential 
targets for therapeutic interventions in UCEC. Immune cells with the ability to adapt, like B cells and T cells, 
have a significant impact on the  TME48–50. Thorough investigation into these cells may aid in forecasting patient 
results and evaluating potential biological indicators. Helmink et al.51 found a significant increase in the pres-
ence of memory B cells within melanoma tumors in patients who positively responded to immune interven-
tions. These findings have potential implications for the development of biomarkers and the identification of 
therapeutic targets. Similarly, Li et al.52 discovered a correlation between CENPF and markers of CD4 + memory 
T cells in melanoma. Increased expression of CENPF results in early exhaustion and immune suppression of 
CD4 + T cells, suggesting its potential as a predictive indicator for melanoma spread and a target for treatment. 
Therefore, exploring the immune cells expressed differently in TME of patients in high- and low-risk groups can 
reveal possible treatment targets for UCEC.

We examined the immune pathways that exhibited variations among patients in the two groups and observed 
variations in aDCs, APC-co-inhibition, macrophages, parainflammation, and Type-I-IFN-Reponse. Type-I-IFN 
encompasses a broad class of inflammatory cytokines released when the immune system is  weakened53. Snell 
et al.54 reported that Type-I-IFN had both positive and negative effects. Type-I-IFN is closely related to radio-
therapy and chemotherapy for  cancer55,56. Nevertheless, the continuous Type-I-IFN-Reponse could potentially 
serve as a fundamental catalyst for immune dysfunction and the development of treatment  resistance57–59. Our 
findings provide novel evidence suggesting the important role of Type-I-IFN Response in endometrial cancer 
based on our results.

Tumor mutational burden reflects the genetic mutation in patients. The examination of tumor mutation 
adherence indicated that the low-risk group exhibited a greater TMB compared with the high risk group, sig-
nifying a disparity in TMB between the two groups. PTEN, which plays a significant role in the advancement 
and therapy of cancer, exhibited the highest mutation rate among both groups. The inhibition of PTEN can 
enhance the release of exosomes and the spread of cholangiocarcinoma by impeding TFEB-mediated formation 
of  lysosomes60. Shi et al.61 found that cancer-associated fibroblast-derived exosomal microRNA-20a inhibits the 
PTEN/PI3K-AKT pathway, thereby promoting cancer progression and chemotherapy resistance in non-small 
cell lung cancer. Endometrial cancer is significantly influenced by PTEN, and extensive molecular studies have 
consistently identified PTEN inactivation as the primary cause of endometrioid carcinoma, which is particularly 
true for individuals with PTEN-related disorders. After examining the prognosis of patients with TMB and risk 
scores as shared markers, we discovered that individuals with low TMB and elevated risk scores demonstrated 
the most unfavorable survival results.

The analysis of TIDE, which investigates the possibility of tumor evasion during immunotherapy, uncovered 
variations in TIDE scores among the groups at high and low risk. The group at increased risk demonstrated 
elevated TIDE scores, suggesting a higher probability of immune evasion during immunotherapy. This aligns 
with our earlier TME analysis. In addition, we performed drug susceptibility analysis to compare the effectiveness 
of medications among patients categorized as high and low risk groups. The findings from the drug sensitivity 
analysis revealed variances in the IC50 values of a total of 19 drugs among patients in both groups. Better treat-
ment effects were observed in patients in the high-risk group when using drugs with lower IC50 values, such 
as Cisplatin, Foretinib, NG-25, TG101348, and WH-4-023, among the screened medications; therefore, these 
drugs deserve further attention. Our results indicate that our model can predict the prognosis and response to 
immunotherapy in patients with UCEC, potentially assisting in clinical decision-making.

Figure 8.  Drug susceptibility analysis. (A–E) Five drugs demonstrated lower IC50 values for patients in the 
high-risk group. (F–J) Correlation between the IC50 values and risk scores of the five drugs.
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In conclusion, disulfidptosis is a recently discovered form of cellular demise that is linked to cancer. lncRNAs 
affect cellular biological processes, consequently influencing the treatment of cancer. At present, there is still a 
lack of research on the disulfidptosis related lncRNAs in UCEC. By utilizing experimental and validation cohorts, 
our bioinformatics research allows for the investigation of prognostic biomarkers associated with disulfidptosis 
in UCEC while ensuring the model’s reliability. We believe that our research provides a new perspective for the 
study of UCEC, and we believe that as the research continues to deepen, the prognostic markers we have iden-
tified will provide some guidance for clinical practice. We also believe that with the improvement of relevant 
experiments, this model has sufficient potential to be transformed into clinical tools to serve more patients. For 
example, we can quantify the expression of LncRNA within the model in the patient’s body to comprehensively 
assess the patient’s risk, estimate the patient’s prognosis, and provide targeted guidance for treatment. However, 
our research may have the following limitations to some extent. We searched for UCEC-related datasets in 
the GEO database and found no dataset that met our analysis criteria. Therefore, we randomly organized the 
datasets from the TCGA repository to validate the precision of our findings. Furthermore, additional preclini-
cal investigations are required to enhance the model’s reliability prior to its implementation in clinical settings.

Conclusion
In this study, we discovered 14 different DALPMs and utilized them to create a predictive model. The prognostic 
predictions for patients with UCEC can be accurate using this model, which has significant connections with 
tumor immunity and can partially guide UCEC treatment decisions. Our results provide a novel approach for 
future related studies.

Data availability
The datasets presented in this study can be found in online repositories. The names of the repository/repositories 
and accession number(s) can be found in the article/Supplementary Material.
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