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On the potential of transfer 
entropy in turbulent dynamical 
systems
Daniele Massaro 1*, Saleh Rezaeiravesh 1,2 & Philipp Schlatter 1,3

Information theory (IT) provides tools to estimate causality between events, in various scientific 
domains. Here, we explore the potential of IT-based causality estimation in turbulent (i.e. chaotic) 
dynamical systems and investigate the impact of various hyperparameters on the outcomes. The 
influence of Markovian orders, i.e. the time lags, on the computation of the transfer entropy (TE) 
has been mostly overlooked in the literature. We show that the history effect remarkably affects the 
TE estimation, especially for turbulent signals. In a turbulent channel flow, we compare the TE with 
standard measures such as auto- and cross-correlation, showing that the TE has a dominant direction, 
i.e. from the walls towards the core of the flow. In addition, we found that, in generic low-order vector 
auto-regressive models (VAR), the causality time scale is determined from the order of the VAR, rather 
than the integral time scale. Eventually, we propose a novel application of TE as a sensitivity measure 
for controlling computational errors in numerical simulations with adaptive mesh refinement. The 
introduced indicator is fully data-driven, no solution of adjoint equations is required, with an improved 
convergence to the accurate function of interest. In summary, we demonstrate the potential of TE for 
turbulence, where other measures may only provide partial information.

Galileo Galilei based the scientific method on building hypotheses, making predictions and then collecting 
empirical observations founded on those  predictions1. With such an ongoing cyclic structure, the capability of 
making predictions relies on the possibility of pointing out causal relationships between different observations. 
The assessment of causal inference gets more challenging as the system’s complexity increases. However, in the 
last decades, new mathematical and computational tools have become available. Among those, the Information 
Theory (IT) discipline allows quantifying to which extent each variable of the system contributes to information 
production and the rate of exchanging information among each  other2.

Information theory describes the governing laws of information, i.e. the science of message communication. 
A message is defined as encoded information, such as the bits used to encapsulate text or the nerve signals that 
cause our lungs to contract. The amount of information in a message generated by a system can be quantified by 
the Shannon  entropy3. Similarly to the thermodynamic  entropy4, it constitutes a measure of the state of disorder 
and uncertainty. Shannon was mainly interested in estimating the amount of information transmitted in a com-
munication system, but IT metrics enable the establishment of the cause-effect relationships among processes 
of a generic system. This is due to the link between the information flux and the one-way direction of time, also 
known as time  asymmetry5. Since all the laws of physics are time-symmetric at the microscopic level and hence 
 reversible6, in principle, the arrow of time is settled by the asymmetry which arises macroscopically in the sys-
tem. IT introduces some metrics based on the Shannon entropy to statistically measure these asymmetries, see 
also Refs.7,8. Among those, one non-intrusive possibility is referred to  Wiener9, who introduced transfer entropy 
(TE). This shares some of the mutual information properties but takes the dynamics of information transport 
into account. Albeit  Schreiber2 formally derived the transfer entropy (see also Bossomaier et al.10), its predic-
tion introduces many parameters which potentially affect the results in a significant manner. These include the 
time lag between the source and target signals. As a result, the assessment of transfer entropy is far from well-
established, especially in complex dynamical  systems11,12.

Inspired by the success of IT in various  disciplines13,14, we decide to discuss and assess the transfer entropy 
to use it in chaotic dynamical systems (DS). The most famous example of a chaotic DS is probably the Lor-
enz  system15. This is a simplified mathematical model for atmospheric convection, which describes a fluid in 
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two-dimensional (2D) motion, initially at rest, uniformly warmed from the bottom and cooled from the top, 
see Eq. (1). It predicts the air convection and temperature variations in the atmospheric boundary layer. The 
model equations describe the evolution in time of the quantities x, proportional to the rate of convection, y 
and z proportional to the horizontal and vertical temperature variation, respectively. The constants σ , α and β 
are parameters that represent the Prandtl number, Rayleigh number, and the layer’s length scale, respectively. In 
the current example, we consider the typical σ = 10 , α = 28 and β = −8/3:

As shown in Fig. 1b, we consider three initial conditions slightly perturbed (x = 1+ ǫ, y = 1+ ǫ, z = 1+ ǫ) 
with ǫ ≈ 10−4 . After some time, the well-known butterfly  attractor16 is shown in Fig. 1. While the three trajec-
tories exponentially diverge in phase space, the transfer entropy computed at two different times does not show 
significant variations in the three trajectories and provides a clear indication of the causal relations among x, y 
and z. In Fig.  1c, on the one hand, the rate of convection x and the horizontal temperature y are equally causing 
each other. On the other hand, the rate of convection x is the main responsible for the changes in the vertical 
temperature variation z. At the same time, z is mostly caused by y. The Lorenz system is a simple but instructive 
example of how to exploit transfer entropy to find and quantify the causality in a chaotic system. Similar attrac-
tors can be found in natural systems, e.g. the atmosphere and the ocean, and identified by Lagrangian coherent 
structures (LCS). These structures play a critical role because they help identify regions in a fluid flow where 
particles tend to stick together or separate, providing insight into the overall flow behaviour. The LCS can pre-
dict the movement of pollutants, debris, or the dispersion of organisms (see Fig. 1a). This represents a further 
application where TE can unveil the causality behind such complex mechanisms.

Given that, our initial focus lies in examining the impact of different hyperparameters in a low-order vec-
tor auto-regressive model (VAR), i.e. a set of autoregressive models (ARMs) which are cross-covariated. In this 
pursuit, we introduce the transfer entropy function (TEF), drawing an analogy to the auto-correlation function 
(ACF). Note that correlation (cross and auto) is the associated covariance normalised by the variance of the time 

(1)

dx

dt
= σ(y − x)

dy

dt
= x(α − z)− y

dz

dt
= xy − βz,

Figure 1.  (a) Lagrangian wind patterns (white) in the atmosphere over central Europe and the eastern Atlantic 
Ocean on January, 25th 2023. The temperature contour plots are at the altitude of 1000 hPa . Distinguished 
trajectories, in the selected squares, qualitatively resemble Lagrangian coherent structures in the  atmosphere17. 
The TE can potentially unveil the causal relations within such mechanisms as shown below for the Lorenz 
system. The map is adapted from the open source Ref.18. (b) The Lorenz attractor in the phase space shows 
the exponential divergence of the solution starting from three similar but slightly perturbed initial conditions: 
(x = 1+ ǫ, y = 1+ ǫ, z = 1+ ǫ) with ǫ ≈ 10−4 , after t1 = 25 (top) and t2 = 100 (bottom) time units, 
respectively. The final states are highlighted by black circles. In (c), the transfer entropy is computed among 
the time series of x, y and z (proportional to the rate of convection, the horizontal and vertical temperature 
variations, respectively) at t1 (left) and t2 (right), respectively.
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 series19. Next, we shift our focus to a more complex chaotic system, namely, the incompressible Navier–Stokes 
(NS) equations in the turbulent regime, which serve as a realistic model for various flows. The transfer entropy 
exhibits numerous strengths, being a non-intrusive approach that only necessitates at least two time series to 
analyse. Additionally, our study highlights the connections between the TE and other extensively used tools 
in turbulence research, e.g. the cross-covariance. Eventually, related to the direct numerical simulations of the 
incompressible NS equations, we exploit the IT metrics to propose novel machinery for controlling numeri-
cal errors, where the TE serves as a sensitivity indicator for automatic grid refinement in computational fluid 
dynamics (CFD). This novel application can be of interest for CFD developments targeting exascale  simulations20.

Results
Low-order vector autoregressive model
To assess the TE, several hyper- and numerical parameters are required to be defined. The degree to which the 
TE estimation is impacted by them has yet to be determined. To begin tackling this issue, we consider samples 
generated from a first-order vector autoregressive  model21 defined as:

where the associated noise samples are chosen to be Gaussian and correlated:

The time series x and y are the source S and target T, respectively. We ensure stationary conditions, i.e. the model 
parameters ai , bi and ρǫ are chosen to have the eigenvalues of the square matrix in (2) lying within the unit circle. 
Including  xi−2 and yi−2 , the model (2) has also been extended for a second-order VAR. In both scenarios, we first 
draw initial samples for x and y from U ∈ [0, 1]2 . Then the model is used to generate 2N samples. The initial N 
samples are discarded to account for the burn-in process and obtain a statistically stationary time series with N 
 samples22. The number of samples N can potentially constitute a source of uncertainty in the entropy estimation. 
Nonetheless, previous  studies23 have shown that the Shannon transfer entropy estimation is robust and works well 
even for relatively small sample size. Our results confirm past  observations23: when N is larger enough to capture 
the relevant dynamics (e.g. N ≥ 50, 000 in the current case) no difference is observed in the TE up to the second 
digit, see the table in Fig. 2c. A similar trend is observed for p = 2 (not shown here). Furthermore, we extend 
the previous  analysis23 by also looking at different Markovian orders τ , i.e. the maximum time lags considered 
when computing the TE. In Fig. 2c, τ is chosen to be the same for both source and target. For the first-order VAR, 
the table shows that there is no distinction between considering the first and tenth Markovian orders. The result 
remains unchanged for the second-order VAR. Therefore, the TE calculation is not affected by taking a time lag, 
i.e. a Markovian order, larger than p, where p is the order of the VAR. Contrary, the computational cost is largely 
affected by choosing a maximum time lag ten times larger, as discussed below. Unlike the maximum time lag, 
which corresponds to the Markovian order, the minimum time lag τmin indicates a time shift in the past which 
allows excluding the influence of a certain interval on the current state. A clarification of the meaning of τmin is 
provided in Fig. 2a. In contrast to previous works, where a variable time lag is  considered24, we introduce the 
transfer entropy function (TEF) in analogy with the autocorrelation function (ACF). When computing the ACF, 
we estimate for how long in time, or for how many time steps, a process is correlated with itself (at the current 
state)25. Similarly, the TEF measures how far in the past the source is causally related to the current state of the 
target (also, knowing how much about the past of the source would lead to the reduction of uncertainty in the 
future of the target). As an example, given τmin = 1 and τ = 5 for the source ( τmin = 1 and τ = 1 for the target), 
we consider the causality generated by the last five samples on the current state of the target with a time window 
for the TE estimation equal to Lw = 5 . In the TEF estimation, when the time shift t (corresponding to τmin as 
explained in Fig. 2) increases to τmin = 2 , by keeping a fixed Lw , we consider the entropy transferred between 
the source interval [2, 6] (instead of [1, 5]) and the current target state. The TEF in Fig. 2b drops to zero for t = 1 
and t = 2 for the first- and second-order VAR, respectively. The result shows that the VAR order determines the 
system embedding time for the transfer entropy. Differently, for the ACF the system embedding time is defined 
by the integral time-scale of the time  series26.

The turbulent channel flow
To comprehensively assess TE as a causality measure, we apply it to complex dynamical systems, specifically 
turbulent flows. These flows are ubiquitous and profoundly influence multiple facets of our daily lives, also 
appearing in many engineering applications. In recent decades, the fluid dynamics community has been actively 
exploring a multitude of tools to gain new physical insights. Previously, different kind of causality measures has 
been used to study the energy redistribution among turbulence  scales28–32, the interaction of porous media with 
free turbulent  flow33 and more recently, for subgrid-scale modelling in large eddy simulation (LES)8. Conversely, 
in the present work, we begin with the analysis of the TE variation with the wall-normal distance since the near 
wall dynamics, with its self-sustaining cycle, constitutes the root cause of friction  drag34. Then, we discuss the 
relation between the transfer entropy and other standard statistical tools, e.g. the cross-covariance. As we focus 
on wall-bounded turbulence, it is necessary to introduce the viscous length δν = ν/uτ , the friction velocity 
uτ = √

τw/ρ̄  , where τw is the wall shear stress and ρ̄ is the density, in contrast to ρ indicating the correlation 
coefficient. The friction-based Reynolds number is Reτ = uτ δ/ν , here ν is the kinematic viscosity and the outer 

(2)
[

xi
yi

]

=
[

a0
b0

]

+
[

a1 a2
b1 b2

] [

xi−1

yi−1

]

+
[

ǫxi
ǫyi

]

,

(3)[ǫx , ǫy]T ∼ N (0,Cǫ), Cǫ =
[

a23 ρǫa3b3
ρǫa3b3 b23

]

.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22344  | https://doi.org/10.1038/s41598-023-49747-1

www.nature.com/scientificreports/

layer characteristic length is taken to be δ = h , the channel half-height (here Reτ = 300 ). The wall distance is 
also expressed in viscous length units as y+ = y/δν.

The standard observable “causal” relation in the investigation of turbulence has been the correlation in time. 
But what does the correlation really tell us? Is it indeed a causality measure? The answer is: not always; and even 
when it is, it does not tell everything. In the given channel flow (Fig. 3), let us consider a fixed distance from 
the wall y+ = 30 , where the Pearson, or linear, correlation coefficient between the streamwise velocity and the 
friction velocity (both spatially averaged in the streamiwse and spanwise directions) is ρu−uτ = ρuτ−u = 0.54 . 
Given that ρ varies between −1 and 1; the coefficient indicates a relatively high level of linear correlation, as one 
could expect. However, the question remains: what is the cause? The time correlation can not answer as it is a 
symmetric measure, but the transfer entropy estimation shows a clear causal direction: TEu−uτ = 0.0448 (u is 
the source and uτ is the target) and TEuτ−u = 0.353 . It is worth noting that, according to the TE definition in 
Sect. Causality as a measure, the transfer entropy can vary between 0 and 1. At y+ = 30 , the net information 
goes from uτ to u, i.e from the wall to the flow. We thus clearly observe that knowing the history of uτ improves 
our understanding of u and not vice versa ( uτ is mainly causing u). The role of the wall as an information source 
is a remarkable finding. The dominant directionality of the TE from the wall to the flow away from the wall is 
a crucial observation that can help tackle challenging tasks, such as the development of novel techniques for 
drag reduction (DR), e.g. by moving  walls35,36,37. For this family of DR techniques, such a causality of the wall 
boundary condition to the outer region is pivotal, as it ensures that wall control can significantly influence flow 
further from the wall. Previous approaches failed in measuring such causality by using cross-correlation. Dif-
ferently, the TE depicts the directional information in a clear way. At this point, it is interesting to explore the 
extent to which the wall actively influences the streamwise velocity. This also results in a deeper comprehension 
of the interplay between the wall and the near-wall velocity streaks. Indeed, the TE varies in a non-trivial way 
with the wall distance, as described below.

Thus, we look at the TE variation away from the wall. Figure 4c,d show how TE varies with τmin at different 
locations. Here, τmin is expressed in eddy turnover time (ETT) which is defined as ETT= uτ /h and characterises 
an integral time of turbulence associated with the lifetime of larger vortices. This represents an estimation of 
the time scale required to transfer energy from the large to the small scales. We report that the wall-frictional 

Figure 2.  (a) Illustration of the TE estimation given two time series, i.e. the source S and target T, with samples 
drawn from a bivariate Gaussian distribution. For both S and T, several parameters must be defined: i. the 
maximum time lag τ , i.e. the Markovian order, ii. the minimum time lag  τmin that indicates a time shift for 
the beginning of the region of influence taken into account, and iii. the transfer entropy estimation window 
Lw = τ − τmin + 1 . For the target, we always consider τmin = 1 and τ = 1 . For the time signals S and T, each 
bullet corresponds to a sample: the present state is black (marching in time from left to right), the past states 
for the source S and the target T are in green and in blue, respectively. Considering a Markovian order for the 
source equal to 5 ( τ = 5 ) and no time shift ( τmin = 1 ), the entropy transferred to the present target state is 
computed. The time shift (t) introduced in the transfer entropy function (TCF) calculation, in analogy with the 
autocorrelation function (ACF), corresponds to τmin . The considered green S states are progressively shifted and 
Lw is kept constant. The examples for t = 1 ( S1 ), t = 2 ( S2 ) and t = 24 ( S3 ) are shown. (b) The TCF and ACF for 
the first and second-order vector autoregressive models as a function of the t time shift. (c) The transfer entropy 
between two time series generated from the first-order vector autoregressive model (2) for a progressively larger 
number of samples N. Two different Markovian orders are considered: τ = 1 and τ = 10.
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velocity (source) is causing, with a net transferred entropy, the streamwise velocity (target) for y+ ≤ 56 . Con-
versely, for y+ ≥ 59 no significant information is transmitted based on the negligible values of the TEs. This is 
clear in Fig. 4c, where the TE drops below 0.05, i.e. less than 5% of the level of information for the target arises 
from the source. Hence, we consider the level of causation of uτ not significant since other sources contribute 
for the remaining 95%. Furthermore, the TE shows remarkable differences compared to the auto-correlation 
function which has been widely used in the past for turbulent channel  flows38,39. First, the TE does not level out 
to zero, rather it reaches an asymptotic value larger than zero, around 0.5 ETT (at least for a limited time interval 
≈ 40 ETT). Moreover, the TE drops down after a longer time, whereas the ACF dropping is more abrupt (both 
around 1 ∼ 5 ETT), see Fig. 4b. It is also worth noting the significantly different computational costs of comput-
ing TE and ACF. On the one hand, the ACF has a negligible cost of the order of a few seconds. On the other one, 
the cost (C) of estimating TE scales almost linearly with the number of history time lags taken from the source, 
see Fig. 4a. The cost scaling was performed in serial on a workstation equipped with an Intel i9 CPU (14 cores).

Eventually, we observe the connection between the TE and the cross-covariance in a such high-dimensional 
chaotic dynamical system. The cross-covariance measures the degree of similarity between two processes: x and 
the lagged y, as a function of the time lag k (with both signals always demeaned). It determines to what extent 
they match up and, particularly, at what lag the best match occurs: γxy(k) = Cov(xi , yi+k) is the cross-covariance 
function (CCovF). If normalised, the cross-correlation function (CCF) is obtained: ρxy(k) = γxy(k)/

√

σ 2
xi
σ 2
yi

 , 
where γxy(k) = Cov(xi , yi+k) is the cross-covariance function and σ 2

xi
 is the variance of x at time i19. The pro-

cesses x and y correspond to the streamwise and frictional velocities, respectively. For k > 0 and k < 0 , we 
compute γxy(k > 0) and γxy(k < 0) , with the only symmetry γxy(k) = γyx(−k) . Note that, the CCovF and TE 
are both asymmetric metrics considering the directionality of linear correlation and information transfer, 
respectively.

By looking at the entropy transferred from u to uτ a negligible value (according to the 5% minimum threshold 
of TE) is reported for y+ ≥ 5 . Instead, from uτ to u, we see that the TE levels out at y+ = 20 , showing its first 
plateau. Similarly, the CCovF has a peak around y+ = 20 , when it starts to decrease (Fig. 5a,b). Furthermore, 
for γxy(k < 0) , which is equal to γyx(k > 0) , indicates an effect of the past of the uτ on the streamwise velocity u, 
evidenced by a bump in the curve for y+ > 20 , corresponding to the beginning of the TE’s plateau. Eventually, 
both TE and γxy drop to constant values around y+ ≈ 100 . While the source and target show a negative cross-
covariance (Fig. 5b), the transfer entropy becomes negligible indicating a weak information transfer (Fig. 5a). 
Although a concrete explanation of the physics behind these observations is beyond the scope of the present 
study, a general point to note is that the phase shift between the source and target time series that is related to 
the turbulence structures and their convection has led to these observations. At the current Reynolds number 
( Reτ = 300 ), y+ ≈ 100 corresponds to the end of the log-law region. It is notable that both metrics highlight 
a drop in the causality/correlation with this distance from the wall. To the authors’ knowledge, the TE and 
cross-covariance γxy connection for the turbulent time signals is highlighted here for the first time. The physical 
interpretation of the bump is not straightforward since the time series are averaged in the spanwise direction. 
Nonetheless, these trends were confirmed by further tests with pointwise (not averaged in space) time series, 

Figure 3.  Sketch of the computational setup: Representation of an instantaneous velocity magnitude field of 
the turbulent flow at Reτ = 300 and two time series (in relation to the number of time samples ( nt ), spatially 
averaged in the streamwise and spanwise directions) extracted for the friction and the streamwise velocities uτ 
and u, respectively.
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indicating turbulent events like bursts or similar. However, this is out of the scope of the current work which aims 
to show the connection between TE and CCovF and to promote the TE as an integral tool to investigate high-
order dynamical systems as it is more informative than the CCovF. Indeed, the CCovF suffers from significant 
spurious oscillations for very high k. In addition, it just allows for k-point measure, where an accumulation of 
the past is considered, differently from the TE, which enables the encapsulation of a shift in the history effect, 
i.e. multiple k.

Causality-based algorithms for computational fluid dynamics
In addition to data analysis of turbulent flows, the causal metrics have a great potential to improve available 
numerical techniques for turbulence simulation. In particular, we propose here a novel application of IT metrics 
in CFD which nowadays aims to push the Reynolds number limit further by making the required computational 
cost more affordable. In this regard, the adaptive mesh refinement technique (AMR) constitutes a necessary tool 
for next-generation CFD  solvers40. Our group has implemented the AMR in the open-source spectral-element-
based code  Nek500041 and assessed its accuracy and  reliability42–45. One of the main AMR ingredients is the 
measurement of the committed error in the numerical computation of the Navier–Stokes equations. We imple-
ment the spectral error indicator (SEI) by Mavriplis (1989)46, which measures and extrapolates the truncation and 
quadrature errors. The reader can refer to Ref.47 and to Refs.48–50 for the technicalities and some applications. The 
main drawback of this standard approach is that the SEI can not refine according to a given quantity of interest 
(QoI). Differently, other estimators as the adjoint error estimator (AEE)42,43 can improve the mesh according 
to a user-defined objective function J. This becomes even more important in direct numerical simulations of 
turbulent flows where most of the sensitivity analysis  fails51.

In the current section, we aim to explore the possibility of using TE as a measure of the causality between 
different regions of the mesh and J for the purpose of driving the grid refinement algorithm. Thus, we can have 

Figure 4.  (a) Estimation of the cost (C expressed in seconds) considering a progressively larger history of 
the source ( τ ). The calculation involves just two time series: the streamwise velocity and the wall friction 
velocity as source and target, respectively. The minimum time lags τmin are set to one. (b) The auto-correlation 
function of the velocity u at different wall-normal distances as a function of the time delay expressed in terms of 
eddy-turnover-time. The bottom panel represents the TE between the wall friction velocity uτ and streamwise 
velocity u at various wall normal distances. In (c), uτ acts as the source with the streamwise velocity being the 
target. This order is reversed in (d). A longer history effect is taken into account by using τ = 10 . The velocity 
probes located in the viscous sublayer ( y+ < 5 ), in the buffer layer ( 5 < y+ < 30 ), in the log-law region 
( 30 < y+ < 0.3y/h , for Reτ = 300 this reads 30 < y+ < 90 ) and in the outer region ( y+ > 90 ) are coloured in 
blue, green, orange and red, respectively. The layers classification follows  Pope27, noting the comparably short 
extent of the logarithmic region due to the low Reynolds number.
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a method that can automatically refine or coarsen the mesh in the regions of the domain where the solution 
is, respectively, highly or slightly in causal relation with J in a similar way as adjoint-based error estimators 
are  designed42,43, 52 for exploiting the sensitivity information. As an example, in the flow around an airfoil or a 
cylinder, the drag and lift are suitable QoIs. We consider here a circular cylinder, see Fig. 6a. By monitoring the 
time signals of the velocity field in a given element and the cylinder drag, the TE can be evaluated. Note that the 
causality measure itself is not sufficient to drive the refinement process as we need a quantity that describes the 
current mesh quality, i.e. its associated error gets smaller as the mesh quality is enhanced. For this reason, we 
propose to combine the SEI ( ε ) with TE introducing a new causality-based error estimator:

where TEx→y is the transfer entropy evaluated for a given time interval T from the source x, the velocity magni-
tude interpolated in the centre of each element, to the target y, the drag of the cylinder. Therefore, the εTE provides 
a time-averaged error measurement per element. Eventually, the TE acts as a weight for the SEI providing a cau-
sality measure w.r.t. J, similarly to the adjoint error estimator, where the dual solution provides a local  sensitivity52.

In our simulation, the initial mesh is chosen extremely coarse, with only 292 spectral elements and polyno-
mial order 7 resulting in approximately 1.8e4 grid points. The following error indicators are compared: the SEI 
and the causality-SEI (CSEI). The number of elements is increased by a factor of 10 and the functional J is the 
drag coefficient, CD , on the circular cylinder. The causality between the source ‖ui(t)‖ and the target CD(t) is 
measured for each element i with the embedding delay τ = 10 for the source and τ = 1 for the target (in both 
terms τmin = 1 ). As previously discussed, the choice of these hyperparameters can play an important role in the 
causality assessment. In addition, the cost of estimating the transfer entropy in a complex dynamical system 
can increase significantly by the time lag τ . For the 2D cylinder, the TE estimation is robust when at least one 
vortex shedding is captured in the source’s history, i.e. τ ≥ 1 . Here, the total number of samples collected before 
computing the TE (and performing the refinement) corresponds to 10 vortex-shedding cycles. The SEI is nor-
malised by its maximum global value and the symmetry of the plots in Fig. 6b) is a qualitative indicator of the 
temporal convergence of the measurement. In Fig.  6b), centre, it is clear that the CSEI tends to further refine 
the region in front of the cylinder, around the stagnation point and in the boundary layer separation locations 

(4)εTE = ε · TEx→y ,

Figure 5.  (a) Variation of the TE and (b) cross-covariance between the source and target with the vertical wall 
distance. In the TE estimation, the time lag parameters are chosen according to the previous discussion, see 
Fig. 4. Particularly, τmin = 1 and τ = 10 , where the maximum time lag guarantees that the TE gets an asymptotic 
value. Analogously, to ensure that the same part of the source’s history is taken into account for calculating the 
cross-covariance function (CCovF), the same lead/lag is used ( k = 10 ). (c) The CCovF for k > 0 and (d) for 
k < 0 at selected y+ locations. The streamwise and wall-friction velocities are denoted by x and y processes, 
respectively. The black circle highlights the bump present in γxy(k < 0) starting from y+ > 20 , exactly where 
the TE’s plateau begins.
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(Fig. 7b). The CSEI results are in agreement with the adjoint error estimator described by Refs.42,43, showing 
that the TE can potentially provide an alternative to the standard adjoint-based sensitivity analysis techniques 
while being completely data-driven without the need to solve adjoint equations. For the sake of completeness, 
the Pearson correlation coefficients are also reported in Fig. 6b, right. Regions in the wake, corresponding to 
the vortex alternations show mildly positive and negative correlations. Nonetheless, around the cylinder, the 
correlation does not measure any relation between the flow velocity and the drag of the cylinder. Moreover, the 
Pearson correlation coefficient does not provide any kind of goal-oriented measure, mainly because it is linear 
in contrast to the transfer entropy which considers nonlinearities.

A quantitative measure of the error on the cylinder drag is provided in Fig. 7a. The error on the functional of 
interest J(uN ) w.r.t. the reference solution J(uref ) is computed as δJ = |J(uref )− J(uN )| , similarly to Ref.42. The 
CSEI rapidly drops below 10−4 with only Nel = 600 elements. This occurs because the refinement is aimed to 
improve the measurement of the functional, via the transfer entropy weighting. Afterwards, a plateau is reached 
as the large error in the wake drives the meshing. Differently, the SEI starts to increase the resolution in the wake 
and only after a few rounds even the front and near wake parts of the cylinder are solved accurately. In this way, 
a larger number of elements is required to have the same accuracy in the measurement of the drag.

Discussion & conclusions
In this study, we begin discussing the transfer entropy (TE) estimation for two time series, whose samples are 
generated from a low-order vector auto-regressive (VAR) model. The importance of autoregressive models in 
constructing smooth archetypes for the (auto-) correlation function of turbulence time series was first pointed 
out by Oliver et al.53. This is required for an accurate estimation of uncertainties in turbulence first-order statisti-
cal moments. The main finding of our experiment is reported in Fig. 2b: the causality time scale is determined 
from the order of the VAR rather than the integral time scale of the time series which has been found relevant for 
uncertainty estimation in turbulence  statistics21,26. Thus, the order of the VAR for modelling high-order statistics 
could be obtained from one of these time scales, with the integral one representing a conservative choice and 
without the need for any mathematical criteria for the order selection.

In turbulent flows, the transfer entropy shows a high potential to estimate the causal relationship between 
different flow variables and position in the flow. The advantage of the proposed approach is that the analysis can 
be performed either as a post-processing step based on the stored time series or, potentially, during the runtime as 
an in-situ analysis. To this end, we used the IDTxl Python  toolkit54 applied to turbulent channel flow. We compare 
standard statistical quantities, e.g. the cross-covariance function, with the transfer entropy. The connection with 

Figure 6.  (a) The flow around a circular cylinder at ReD = 200 . The velocity magnitude contour plot and 
the spectral element grid are shown. Each element contains ( N + 1)×(N + 1 ) GLL points, where N = 7 is the 
polynomial order. (b) From left to right: the time-averaged spectral error indicator per element, the transfer 
entropy and the Pearson correlation coefficient between the velocity magnitude interpolated to the centre of 
each element (source) and the cylinder drag (target) for the initial mesh. The time series have been collected for 
at least 10 vortex shedding periods. The SEI varies between 0 and 1 (normalised w.r.t. the maximum), the TE 
varies between 0 and 1, and the Pearson correlation coefficient can vary between −1 and 1.
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the cross-covariance between autocorrelated time series is analysed in detail: when the cross-covariance reaches 
its maximum, the TE levels out (Fig. 5). Observing the relationship between these two statistical metrics is crucial 
since it enables the usage of TE as an alternative to cross-covariance/correlation, with the striking advantages of 
encapsulating a shift in the history effect and not suffering from significant spurious oscillations for very high 
lags. Furthermore, the TE analysis between wall friction and the streamwise velocity signal at different wall-
normal distances proves the importance of the direction of information. The wall friction velocity uτ influences 
u from the wall up to the upper limit of the buffer layer ( y+ ≈ 50 ), but vice-versa only the immediate near-wall 
region ( y+ ≤ 3 ) u has a significant influence on uτ . This is a crucial outcome for wall modelling that aims to 
estimate accurate wall shear stress using flow data farther from the wall. In the standard wall modelling, the data 
from the logarithmic layer is commonly imported to a wall model. However, the results of our study show that 
the TE from the streamwise velocity to the wall shear stress varies with the wall distance. Thus, the magnitude 
of the TE can be used as an indicator of the sampling point to enhance the accuracy of the predicted wall shear 
stress. Note that the existing wall modelling approaches are mainly based on the correlations and still provide 
unsatisfactory results for more complex flow  situations55.

As a final demonstration, a novel transfer entropy application is presented for data-driven error control in 
computational fluid dynamics. Our exploratory results indicate that TE can be used as a sensitivity measure, 
by computing the causality between different flow observables (state variables), thus linking them together in 
a directional sense. This information can then be used, in conjunction with local grid information, to drive a 
fully data-driven causality-based adaptive mesh refinement (AMR) strategy. This method may even be appli-
cable in situations where other linear methods (such as adjoint sensitivity analysis) fail due to the exponential 
sensitivity to the initial conditions of chaotic dynamical systems. Furthermore, no additional equations need to 
be solved, leading to implementational and computational efficiency.

In conclusion, these initial yet significant results indicate the potential of transfer entropy in turbulent 
dynamical systems. They highlight a number of areas where directional causality information can be useful, 
if not critical. For the fully turbulent wall-bounded flows, we see an application of TE in the development of 
both data-driven error-controlling schemes and wall models where, during the training phase, it is necessary 

Figure 7.  (a) The error on the functional of interest, i.e. the drag of the cylinder, with different numbers of 
spectral elements Nel . For the SEI and CSEI, the error in the functional of interest J(uN ) is measured w.r.t. the 
reference solution J(uref ) : δJ = |J(uref )− J(uN )| . (b) The comparison between the converged mesh obtained 
through causality-based (left) and standard (right) spectral error indicators in the flow past a circular cylinder. 
The element boundaries are shown in black with the velocity magnitude contour plot..
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to separate causality-related relations from pure correlations. This is particularly relevant given the comparably 
low causality from the outer parts to the near-wall region of the flow discussed in Sect. "The turbulent chan-
nel flow", and the relation between cross-covariance (or similarly cross-correlation) and TE. Further studies, 
in particular at higher Reynolds numbers with more extensive scale separation and at varying flow conditions 
including pressure gradients, will certainly be enlightening as to understand the interactions between the vari-
ous layers in the turbulent flow. Similar extensions of the TE concept can be thought of for the understanding 
of low-order models of more complex turbulent flows, e.g. when analysing cause-effect relations of large-scale 
instabilities. The potential of causal sensitivity analysis, in particular, related to adaptive meshing, is extremely 
interesting from a computational point of view. Since classical adjoint-based methods fail due to the exponential 
instabilities occurring at unsteady turbulent flows (or are impractically  expensive56), the TE may provide at least 
an approximate way of quantifying the sensitivities which then, coupled with a suitable local error indicator, will 
give useful information for controlling the accuracy the QoI. Also, in this case, further studies, in particular for 
3D turbulent flows will be considered in future.

The main drawbacks of an accurate estimation of TE are the computational cost, as discussed in Sect. "The 
turbulent channel flow", and the choice of the relevant hyperparameters. Through the extended application of 
the TE, we will certainly gain more experience and guidelines on choosing appropriate settings.

Methods
Causality as a measure
The causality definition has been long debated. Albeit the idea of cause-effect is well-established in our minds, its 
quantitative definition remains unclear. Here, we do not aim to discuss all possible options, rather we describe 
the metric adopted in the present work.

To this end, let us first recall some basic information theory concepts since the notion of information differs 
from our common meaning. Indeed, we deal with discrete random variables Y, which take values equal to y in a 
discrete (finite) set and have a probability density function (PDF) p(y) = Pr(Y = y) . Considering a given event 
Y = y , the information of Y is defined as:

where the logarithm base is arbitrarily chosen. On the one hand, the natural base e (the Euler’s number) expresses 
I in units of nats, where nat is the amount of information gained by observing an event of probability 1/e. On the 
other hand, base 2 expresses the information in bits. As the reader might be more familiar with the bits rather 
than nats, we look at an example of the information contained in the event Y(heads) for a fair coin-tossing 
Y ∈ {heads, tails} , where p(heads) = p(tails) = 0.5 . From now on, we abbreviate heads and tails as hd and tl 
respectively. Observe that we can always modify the information units by changing the base of logarithms. In 
base 2, we thus obtain information for Y(hd) equal to I(Y = hd) = 1 bit, i.e. to communicate the result of our 
coin-tossing we just need 1 bit as this is a binary outcome.

In this context,  Shannon3 generalised the thermodynamic entropy  concept4 to an arbitrary variable. In this 
way, the Shannon entropy expresses the estimated mean value of I(y):

This defines the average number of bits, or nats, to express n independent draws of a discrete variable Y which 
follows a distribution p(y):

For the fair coin example, the Shannon entropy results in H(Y) = 1 . Considering now a biased coin-tossing, 
where we can only get heads with the probabilities p(hd) = 1 and hence p(tl) = 0 : The Shannon entropy returns 
H(Y) = 0 . This straightforward example demonstrates how the Shannon entropy can measure the uncertainty 
of the state. Indeed, when all the outcomes are equiprobable, H is maximum while H becomes zero when the 
process is completely deterministic with no uncertainty.

The last piece of the puzzle to compute Schreiber’s causality is the Kullback entropy K57. For an event Y, K 
measures the divergence between two probability distributions which are both related to the discrete state y:

When the Kullback entropy is used for a conditional probability, it is often called Kullback–Leiber divergence:

as it provides a null divergence when the event Y is fully independent of X.
With this in mind, we now move to the meaning of causation. In 1956,  Wiener9 introduced the following idea: 

“A signal X is said to cause Y when the future of signal Y is better predicted by adding knowledge from the past and 
present of signal X, rather than by using present/past of Y alone”. Several years later, in 2000,  Schreiber2 proposed 
a rigorous derivation, starting from the generalised Markov condition:

(5)I(y) = −log[p(y)] ,

(6)H(Y) = I(Y) =
∑

y

−p(y)log[p(y)] ≥ 0.

(7)H(Y) = −p(hd)log[p(hd)] − p(tl)log[p(tl)] .

(8)K(Y) =
∑

y

p(y)log
p(y)

q(y)
.

(9)K(Y |X) =
∑

y,x

p(y, x)log
p(y|x)
q(y|x) ,
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where m and n are the orders of Markov process for the source x and target y:

with m, n ≥ 1 . In the preceding sections, the Markovian orders are associated with τ , while τmin represents a time 
shift in the past. This shift allows us to exclude the influence of a specific interval on the current state, see Fig. 2a. 
The relation (10) is fully satisfied when the y-dynamics is independent of the present and past of x. When it is 
not,  Schreiber2 uses the Kullback–Leiber entropy to measure the divergence of relation (10) which results in:

Eventually, expression (13) can be re-written as sum of four Shannon entropies:

From the current formulation, it follows that TEX→Y varies between 0 (no causation) and 1 (Y is only caused 
by X)2.

Transfer entropy calculation
Concretely, the transfer entropy estimation concerns the computation of the different joint and marginal prob-
ability distributions introduced in Eq. (14). In the literature, we identify two macro-categories for probability 
distribution estimation: parametric and non-parametric  approaches58. In the parametric approach, an estima-
tor is designed based on the assumption of a certain model for the PDF, the choice of which is often difficult to 
justify. Furthermore, we need to find the parameters that optimally fit the sample probability densities to our 
assumed distribution.

We, instead, use a non-parametric approach, namely the nearest-neighbour  estimator59, which avoids arbi-
trariness or biases arising from  binning60,61. The nearest-neighbour technique is also known as κ NN or κ-NN, 
since it considers the κ-th nearest neighbour, and guarantees an adaptive resolution scaling the chosen distance 
with the density. Kozachenko and Leonenko (KL)62 introduced an asymptotically unbiased estimator based on 
κ-NN statistics assuming a constant distribution of the random vectors within the neighbourhood. In the final 
entropy estimation, the following approach gives a bias depending on the dimensionality size. Kraskov et al.63 
first observed that the same formulation holds for varying κ values. As a fixed κ is not required, the bias limita-
tions that occur with individual KL estimates are overcome and an exact estimator for independent variables is 
obtained. In the current study, we rely on such an approach using the IDTxl Python  toolkit54, widely employed 
in the IT  community64–67.

Albeit the κ-NN kernel estimator is classified as a non-parametric approach, since no model for the PDF is 
assumed, some parameters need to be chosen, starting from the mass of the nearest-neighbours κ . Following 
Kraskov et al.63, we employ a mass equal to 4. Two other hyperparameters which might severely affect the TE 
evaluation are the following: the embedding delays τ , i.e. the Markovian orders m and n for the target and the 
source in (11) and (12), respectively, and the Theiler correction window which excludes the auto-correlation 
effects from the  estimation63. The Theiler correction is usually set to 1 and the Markovian order m for the target is 
also taken to be 1 since we are interested in the past/present source causation on the current target. These settings 
are used in the results presented above (see also the Appendix). Additionally, the numerical approach necessitates 
specifying the dimensionality of the time series, including the number of samples (denoted as nt ) and the num-
ber of permutations (denoted as np ) used for statistical significance. The number of permutations corresponds 
to the times the samples are shuffled to generate surrogate data, from which TE is subsequently re-estimated.

Direct numerical simulation using spectral-element method
The direct numerical simulations (DNS) have been carried out with the spectral-element code  Nek500041. The 
code uses the spectral element method (SEM)68 which combines local spectral accuracy, i.e. nearly exponential 
error convergence, and geometrical flexibility of finite element methods. With the PN − PN−2 formulation, 
the functional spaces for the velocity and pressure are spanned by the Lagrange interpolants integrated over 
Gauss–Lobatto–Legendre points (GLL) and Gauss–Legendre (GL) points, respectively. In the simulations dis-
cussed, the polynomial order in each element is N = 7 . Regarding the time integration, we use a third-order 
implicit backward differentiation (BDF) with an extrapolation scheme of order three for the convective term.

The DNS of the incompressible turbulent flow between two parallel planes at Reτ = 300 is  performed69. 
Periodic boundary conditions are applied in the streamwise, x, and spanwise, z, directions. No-slip/no-penetra-
tion boundary conditions are applied at the wall. The computational domain sizes are Lx = 2πh , Lz = πh and 
Ly = 2h , where h is the channel half-height. The flow is driven by a fixed mass flux which translates to a constant 
bulk velocity for constant-density flows. The numerical setup is shown in Fig. 3.

For the AMR application, the two-dimensional flow around a circular cylinder is simulated at ReD = 200 , 
where the Reynolds number is based on the incoming velocity, the cylinder diameter (D) and the kinematic 

(10)p(yt |ynt , xmt ) = p(yt |ynt ) ,

(11)ynt =(yt−1, ..., yt−n),

(12)xmt =(xt−1, ..., xt−m),

(13)TEX→Y =
∑

yt ,y
n
t ,x

m
t

p(yt , y
n
t , x

m
t )log

p(yt |ynt , xmt )

p(yt |ynt )
.

(14)
TEX→Y =H(ynt , x

m
t )−H(yt , y

n
t , x

m
t )

+H(yt , y
n
t )−H(ynt ).
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viscosity ν . The computational domain is a box expanded in the streamwise and spanwise directions as 
(−10D, 20D) and (−10D, 10D) , respectively. The left boundary is an inlet with constant non-dimensional veloc-
ity u(x0, t) = (1, 0, 0) . The side boundaries are periodic, and no-slip and impermeability conditions are imposed 
at the cylinder’s surface. After discarding the initial transient, we collect the time series for the spectral error 
indicator and the velocity magnitude (at each element’s centre) for at least 10 vortex shedding periods.

Adaptive mesh refinement
Adaptive mesh refinement (AMR) is a technique for error-driven meshing with the improvement of the overall 
numerical accuracy based on an error indicator. Thus, higher Reynolds numbers and more complicated geom-
etries, with a significant reduction of the computational costs are  allowed40.

Our group has implemented the AMR in Nek5000 keeping the good properties of the native code, e.g. the 
high scalability, fast convergence and favourable numerical  properties47. The two main ingredients of the AMR 
algorithm are the error indicator (or estimator) and the refinement method. Concerning the latter, among the dif-
ferent possibilities available in the literature, the h-refinement scheme is used. It consists of splitting isotropically 
the elements and refining and coarsening the mesh locally. The hanging nodes at the non-conforming interfaces 
are treated via the parent-to-children interpolating  operator70. To handle the grid hierarchy of the mesh and to 
perform parallel partitioning, we rely on the external libraries  p4est71 and  parMetis72, and parRSB, respectively. 
Further details for the interested reader can be found in  Offermans47. When it comes to measuring the error, 
we use the spectral error indicator (SEI) which was introduced first by  Mavriplis46. The SEI is a local measure of 
the truncation and quadrature errors combined for the solution fields. To understand the SEI, we can look at a 
simple problem where u is the exact solution to a system of one-dimensional partial differential equations and 
uN is a corresponding approximate spectral-element solution with polynomials of order N. We expand u(x) on 
a reference element in terms of the Legendre polynomials as,

where ûp are the associated spectral coefficients and Lp(x) is the Legendre polynomial of order p. The estimated 
error ε = �u− uN�L2 results in:

where we assume an exponential decay for the spectral coefficients of the form û(p) ≈ c exp(−σp) . The param-
eters c and σ are obtained via interpolating in a linear least-squares sense the log(ûp) for p ≤ N  . In a three-
dimensional problem, the maximum error among each component is considered, providing a single spectral 
indication per element. As we do not aim to track instantaneous features in time, but rather converge to a statis-
tically stationary mesh, we perform a time-average of ε for a given interval T. In this study, we use the transfer 
entropy as a weighting function for the SEI, to directly incorporate the causality in the error-reduction mesh 
adaptation scheme (Supplementary Information).

Data availability
All data needed to evaluate the conclusions are present in the paper. Additional data related to this work are 
available upon reasonable request to the corresponding authors.
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