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Host‑response transcriptional 
biomarkers accurately discriminate 
bacterial and viral infections 
of global relevance
Emily R. Ko 1,25*, Megan E. Reller 2,3,4,25, L. Gayani Tillekeratne 2,3,4,5, 
Champica K. Bodinayake 4,5, Cameron Miller 6, Thomas W. Burke 2, Ricardo Henao 7, 
Micah T. McClain 2,3, Sunil Suchindran 2, Bradly Nicholson 8, Adam Blatt 9, Elizabeth Petzold 2, 
Ephraim L. Tsalik 2,10, Ajith Nagahawatte 11, Vasantha Devasiri 5, Matthew P. Rubach 3,4,12,13, 
Venance P. Maro 13,14, Bingileki F. Lwezaula 14,15, Wasantha Kodikara‑Arachichi 5, 
Ruvini Kurukulasooriya 11, Aruna D. De Silva 16, Danielle V. Clark 17,18, Kevin L. Schully 18, 
Deng Madut 3,4, J. Stephen Dumler 19, Cecilia Kato 20, Renee Galloway 20, 
John A. Crump 4,5,13,14,21, Geoffrey S. Ginsburg 22,23, Timothy D. Minogue 24 & 
Christopher W. Woods 2,3,4

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness 
globally. Gene expression classification models show great promise distinguishing causes of fever. 
We generated transcriptional data for a 294‑participant (USA, Sri Lanka) discovery cohort with 
adjudicated viral or bacterial infections of diverse etiology or non‑infectious disease mimics. We then 
derived and cross‑validated gene expression classifiers including: 1) a single model to distinguish 
bacterial vs. viral (Global Fever‑Bacterial/Viral [GF‑B/V]) and 2) a two‑model system to discriminate 
bacterial and viral in the context of noninfection (Global Fever‑Bacterial/Viral/Non‑infectious 
[GF‑B/V/N]). We then translated to a multiplex RT‑PCR assay and independent validation involved 
101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF‑B/V model discriminated 
bacterial from viral infection in the discovery cohort an area under the receiver operator curve 
(AUROC) of 0.93. Validation in an independent cohort demonstrated the GF‑B/V model had an AUROC 
of 0.84 (95% CI 0.76–0.90) with overall accuracy of 81.6% (95% CI 72.7–88.5). Performance did not vary 
with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and 
viral illness across global sites with diverse endemic pathogens.
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Infectious diseases are leading causes of morbidity and mortality  worldwide1–3. The toll is greatest in low- and 
middle-income countries (LMIC), where infections are frequently caused by pathogens that cannot be identified 
when patients present with fever and resources for testing and treatment are limited. High rates of malnutri-
tion and HIV exacerbate the problem by contributing to increased susceptibility to infection and diversity of 
 pathogens4–8. Without sensitive and specific point-of-care diagnostics to rapidly confirm or refute multiple 
etiologies of fever, bacterial infections remain untreated and viral infections are treated with antibiotics unneces-
sarily. The result has been unprecedented inappropriate antibiotic use and associated increasing antimicrobial 
 resistance9–17. The World Health Organization estimates that by 2050 antimicrobial resistance will lead to 10 
million lives lost and cost 100 trillion USD per year, leading to an urgent called for new diagnostic assays and 
approaches to combat the  problem18.

Host-response transcription patterns could fill this diagnostic gap by distinguishing between bacterial and 
viral etiologies  early19–27, including before symptoms, to limit spread and guide resource  allocation28–30. Gene 
expression classification models have shown great promise for the classification of causes of fever in high-income 
countries (HIC)31,32 with progress extending to atypical pathogens present in  LMIC20,26,33–35. These multi-analyte 
gene expression models can be translated to rapid diagnotic platforms that inform clinical  care32–34,36. In this 
study, we generated host response biomarkers for the varied etiologies of suspected infection important world-
wide, translated them to a quantitative RT-PCR multiplex platform, and validated them in a globally diverse 
independent cohort.

Methods
Global fever discovery and validation cohorts
Participants were prospectively enrolled within 48 h of presentation to academic hospitals in the  USA25,37–39, Sri 
 Lanka40–43,  Tanzania44,45,  Cambodia46–48, and Australia (Supplemental Table 1). Samples from participants were 
stored in a Duke University international biorepository and selected for analysis if they met inclusion critieria 
for suspected infection defined as: 1) a qualifying vital sign or lab abnormalities (fever ≥ 38.0 °C or ≤ 36 °C, heart 
rate ≥ 90, respiratory rate ≥ 20, and/or white blood cell count ≥ 12 (cells ×  109L), 2) clinical symptoms consistent 
with acute infection, and 3) adjudicated as meeting bacterial, viral, or noninfectious case definitions (Supple-
mental Table 2). A committee inclusive of clinical and statistical teams made final cohort selections, ensuring 
adequate balance among demographic and infectious phenotypes. The discovery cohort included 294 participants 
presenting to academic hospitals in the USA (n = 152) or Sri Lanka (n = 142). The validation cohort included 
101 participants enrolled in the USA (n = 19), Sri Lanka (n = 53), Tanzania (n = 15), Cambodia (n = 10), and 
Australia (n = 4).

Samples and etiologic testing
Blood was collected at enrollment in PAXgene RNA tubes (QIAGEN) at all sites. Sera were collected at both 
enrollment (acute phase) and 2–6 week follow-up (convalescent phase) in Sri Lanka and Tanzania. Naso-phar-
yngeal swabs were collected at enrollment in the USA, Sri Lanka, and Australia. All samples were processed 
according by standardized protocols, stored at − 70 °C, and shipped on dry ice.

Etiologic testing was performed using reference standard methods to confirm or refute possible bacterial and 
viral causes of suspected infection endemic to the region. Blood culture and/or urine antigen tests performed as 
part of clinical care confirmed bacteremia for USA subjects. Bacterial isolates and urine collected in Cambodia 
confirmed Burkholderia pseudomallei by blood culture, sputum culture, and/or urine antigen  testing47,49. For 
participants enrolled in Sri Lanka and Tanzania, bacterial zoonoses were confirmed by a ≥ fourfold rise in titer 
of microscopic agglutination testing for Leptospira spp. and Brucella spp.44,45, or indirect immunofluorescence 
assay for Rickettsia spp. (Spotted Fever Group, Typhus Group, and Orientia tsutsugamushi) and Coxiella burnetii, 
and/or by polymerase chain reaction (PCR) in a USA reference laboratory. For participants enrolled in the USA 
and Sri Lanka, respiratory viral infections were confirmed by PCR on nasopharyngeal samples (Luminex Inte-
grated System NxTAG Respiratory Pathogen Panel; Luminex Corporation; Austin, TX)50. For those enrolled in 
Sri Lanka, acute dengue was confirmed by fourfold rise in antibody titer, viral isolation, and/or PCR at a refer-
ence  laboratory41,51. The Tanzania study performed blood culture and/or blood smears for malarial pathogens.

Reference standard adjudication of etiology
Phenotypic adjudication of bacterial, viral, or noninfectious etiology independent of cohort selection (described 
above) was performed by a panel of ≥ 2 physicians who reviewed all available microbiologic data, de-identified 
clinical data extracted from case report forms (international), or the full medical records (USA) (Supplemental 
Table 2). Participants known to have malaria by blood smear were excluded due to insufficient frequency required 
to generate a parasitic classifier. Non-infectious cases had supportive clinical and radiographic data along with 
negative testing for infectious etiologies. Infectious cases were defined by positive etiology testing and supportive 
clinical data. Participants included from Tanzania had confirmed bacterial etiologic testing, but did not undergo 
testing for viral co-infection because dengue testing and respiratory viral swab were not available as part of this 
study (Supplemental Table 1).
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Generation and normalization of transcriptomic data
Total RNA was extracted from whole blood collected and stored at − 70 °C in PAXgene Blood RNA tubes using 
the PAXgene miRNA Extraction Kit (QIAGEN) according to manufacturer’s instructions. RNA yield and integ-
rity were assessed using NanoDrop ND-2000 spectrophotometer (ThermoFisher Scientific, Wilmington, DE) 
and 2100 Bioanalyzer with RNA 6000 Nano kit (Agilent Technologies, Santa Clara, CA), respectively. All RNA 
was purified under BSL3 conditions by approved protocols at Duke Regional Biocontainment Laboratory, except 
B. pseudomallei mRNA isolated under BSL4 conditions by standard procedures at the Navel Medical Research 
Laboratory.

RNA sequencing was performed at EAGenomics/Q2 Labs (Durham, NC) for 183 samples and the Duke 
Sequencing and Genomic Techologies Facility for 111 samples. Library preparation resulted in selected poly-A 
mRNA for sequencing using GlobinClear RNA Reduction (Invitrogen) and TruSeq Stranded mRNA Library Kit 
(Illumina) for the EA Genomics/Q2 Labs batch, and NuGEN Universal Plus mRNA-Seq Library Prep Kit with 
AnyDeplete Globin depletion (NuGEN/Tecan) for the Duke Sequencing Facility batch. Sequencing libraries were 
sequenced on Illumina HiSeq 2500 instrument (EA Genomics/Q2 Labs) or NovaSeq 6000 instrument (Duke 
Sequencing Facility) with 50 bp paired-end reads and target of > 40 million reads per sample, including crossover 
of 24 samples between the two batches to allow for quality control and batch corrections.

Nanostring multiplex transcript detection platform
Quantitative RT-PCR assays for genes in both the Global Fever Bacterial/Viral (GF-B/V) and Global Fever-
Bacterial/Viral/Noninfectious (GF-B/V/N) models were developed using the NanoString platform. Total RNA 
(100 ng) from each participants was analyzed using a NanoString nCounter XT custom transcriptional response 
probe panel (NanoString Technologies, Seattle, WA). Nanostring assay processing was performed by the Duke 
Microbiome Core Facility according to manufacturer instructions.

Statistical analysis
We used Limma-voom modeling to obtain differential expression of transcripts ≥ tenfold in bacteria versus virus 
infected participants with an adjusted p-value < 0.01 in the discovery cohort. A cutoff of ≥ tenfold was used to 
identify the most highly differentially expressed genes. A significance threshold of 5% false discovery rate (FDR) 
was used. Pathway analysis used Database for Annotation, Visualization and Integrated Discovery (DAVID) and 
ENRICHr programs to create broad functional groups. Transcripts that did not fit into well-defined ontologic 
clusters were categorized by literature review.

To develop predictive models, the discovery cohort included Duke and Sri Lanka participants because these 
sites had similar extensive phenotypic analysis for both bacterial and viral pathogens and adequate populations 
of at least two of the phenotypes classes. We developed a simple binary GF-B/V model including only partici-
pants with bacterial or viral infection (Fig. 1A). Since fever or suspected infections may be neither bacterial nor 
viral, we incorporated participants with non-infectious illness as a control group in a second modeling approach 
(GF-B/V/N). The GF-B/V/N model used two binary predictive classifiers for discrimination: bacterial vs. non-
bacterial (viral or non-infectious), and viral vs. non-viral (bacterial or non-infectious). The categorization of 
bacterial or viral illness by the GF-B/V/N test is made for each participant by comparing the probabilities of each 
binary classifier (Supplemental Fig. 1A). High-confidence noninfectious samples were only available from the 
USA, but there were no significant difference in expression of control house-keeping genes that would suggest 
a site specific or confounding affect.

Standard quality control and principal component analysis was performed and ensured there were no site 
dependent effects or inappropriate clustering of the data. We then conducted supervised regularized regres-
sion (Least Absolute Shrinkage and Selection Operator [LASSO]) analysis of the entire transcriptome. Nested, 
repeated (500 repeats) fivefold cross-validation was performed to estimate predicted probabilities. All model-
building steps were performed on training data only to maintain unbiased estimates generated on the test fold. 
Predicted probabilities were utilized to estimate area under the receiver operating curve (AUROC) and ROC01 
method was used to select a cutoff to estimate accuracy and characterize performance. Use of 500 sets of predic-
tions for the discovery cohort limited calculation of predicted confidence intervals by the standard  approach52, 
but was more representative of model development.

The validation cohort was designed to represent a more typical global population; thus, sites representative 
of a single class or with less extensive phenotyping were included. To generate NanoString nCounter assays, we 
expanded feature prediction to include correlated transcripts that can substitute for one another with respect to 
class prediction (bacterial, viral, or noninfectious). Feature selection was performed using elastic net regression 
and the selection frequency across resampling iterations measured variable importance. Characterizing perfor-
mance in a targeted validation study required selecting 263 transcripts (Supplementary Table 3). Endogenous 
control transcripts (TRAP1, DECR1, TBP, and PPIB) were incorporated to normalize for differences in sample 
input and correct for technical variability. A model was trained on the NanoString data using 91 participants from 
the discovery cohort (47 bacterial, 34 viral, 10 noninfectious), accommodating known positive control normaliza-
tion to reduce technical variability and allow background subtraction using negative controls. Discovery cohort 
participants selected for model training on NanoString prioritized three goals in the following order: 1) balance 
of infectious etiologies and phenotypes, 2) robust performance in the discovery models, and 3) representation 
from diverse geographic regions and pathogens. Noninfectious samples were not incorporated into the validation 
cohort due to availability of unique specimens and a desire to incorporate increased infectious etiologies. The 
NanoString GF-B/V and GF-B/V/N models were then fixed and applied to the independent validation cohort.

Confidence intervals were calculated using the epiR package in R. exact binomial for the sensitivity, specificity, 
and model  accuracy53. The approach of Simel et al. was used to calculate confidence intervals for the positive and 
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negative likelihood  ratios54. Confidence intervals for the validation AUROCs were calculated using the method 
of  DeLong52. A confidence interval for the overall accuracy of the GF-B/V/N model for the discovery cohort was 
estimated by taking 10,000 bootstrapped samples. We used the nonparametric Mood’s median test to calculate the 
p-value estimating the differences in median ages and to evaluate whether the proportion of women in bacterial 
samples was different than non-bacterial samples.

Ethical approval
Prospective collection of specimens and data after written informed consent by subjects or their legally authorized 
representatives, and assent was obtained for minors less than 18 years old. Studies were approved by Institutional 
Review Boards of Duke University Health System, Faculty of Medicine, University of Ruhuna, Johns Hopkins 
University, Naval Medical Research Center, Kilimanjaro Christian Medical Center Research Ethics Committee, 
Tanzania National Institute for Medical Research National Research Ethics Coordinating Committee, University 
of Otago Human Ethics Committee (Health), and the USA CDC. This study used deidentified specimens and 
clinical data, and was approved by Duke University Health System (Durham, NC) Institutional Revew Board 
(Duke IRB Pro00072857). All research was conducted in accordance with the Declaration of Helsinki.

Results
Participants and pathogens
The discovery cohort consisted of participants from the USA and Sri Lanka with median age 48 years (IQR 31–61; 
range 10–86 years), 48% female, 1.4% Hispanic, 28.5% White, 19% Black/African American, 49.5% Asian/South 
Asian (Table 1). The median age of the USA cohort was higher than the Sri Lankan cohort (54 years [(IQR 42–66] 
vs. 37 years [IQR 26–51], p = 0.51), although this was not statistically significant. Those with bacterial infections 
were more likely to be male (p = 0.001), but this was not site or pathogen specific. USA participants had more 
severe illness (intensive care, 16.4% [n = 25/152], mechanical ventilation, 8.5% [n = 13/152], and mortality 7.2% 
[n = 11/152]) than those in Sri Lanka (intensive care, 0.7% [n = 1/142], mechanical ventilation, 0.7% [n = 1/142], 
and mortality, 0.7% [n = 1/142]). However, determining severity of illness between internationally diverse clini-
cal settings, types of infection, and standards of care may be misleading. Chronic HIV was low across the total 
cohort (3 USA in discovery cohort, 3 Tanzania in validation cohort), and although HIV status was not collected 
for Sri Lanka the incidence in the country is < 0.01%.

The discovery cohort included 102 participants with bacterial (42 with bloodstream infections and 60 bacte-
rial zoonoses), 125 with viral (82 respiratory, 43 dengue), and 67 with non-infectious illness (e.g., pulmonary 
embolus, congestive heart failure, COPD/Asthma, cancer, autoimmune disorders). The validation cohort had 
101 participants (52 bacterial, 49 viral) and represented a wider range of demographics, geographic locations 
(USA, Sri Lanka, Tanzania, Cambodia, and Australia), and pathogens (Table 1). Patients with non-infectious 
illness were not analyzed in the validation cohort.

Differential gene expression of global pathogens
To identify differentially expressioned genes, we employed a conservative approach, using a 5% FDR and a ≥ ten-
fold change in expression. We identified 38 unique genes increased at least tenfold in participants with bacterial 
illness, and these were divided into 18 primary clusters (Table 2). Transcripts corresponded to known pathways 
for acute phase reactants, antimicrobial killing, innate immunity, and immune response. Similarly, we identified 
65 unique genes associated with increased expression by tenfold or greater in viral infection, and these were 
divided into 17 primary clusters (Table 2) primarily corresponding to interferon response and chemokine/
cytokine pathways.

Bacterial versus viral classification: a simple binary model
We conducted predictive analysis to develop a binary model (Fig. 1A) using the entire transcriptome from the 
discovery cohort. The Global Fever-Bacterial/Viral (GF-B/V) model classified bacterial from viral disease with 
high accuracy when internally validated using fivefold cross-validation: AUROC of 0.93 (Fig. 1B), sensitivity 
of 84.2% (95% CI 75.6–90.7), specificity of 94.7% (95% CI 88.6–97.7), and overall accuracy of 89.7% (95% CI 
85.0–93.4). Additional performance characteristics are shown in Table 3. The model demonstrated similar per-
formance after stratifying for specific pathogen (Fig. 1D), site, age, sex, or race (Supplemental Fig. 2).

To independently validate this model using a quantitative RT-PCR system that more closely approximates a 
clinical assay, we used the NanoString system to measure expression levels of 27 highly predictive genes (Sup-
plemental Table 4A). After training a classification model on subjects from the discovery cohort, the model and 
its parameters were fixed and applied to the validation cohort. We incorporated both pathogen and geographic 
diverisity (Table 1). For the discrimination of bacterial and viral infection, the GF-B/V model an AUROC of 0.84 
(95% CI 0.76–0.9) (Fig. 1C), sensitivity of 78.8% (95% CI 65.3–88.9), specificity of 84.3% (95% CI 71.4–93.0), and 
overall accuracy of 81.6% (95% CI 72.7–88.5) with additional performance characteristics reported (Table 3). 
Additionally, GF-B/V discriminated difficult-to-diagnose bacterial zoonotic pathogens not included in the dis-
covery cohort, such as spotted fever group rickettsiae, B. pseudomallei, and Brucella spp. (Fig. 1E).

Classification of bacterial and viral infections in the setting of other illness: a complex model
The Global Fever-Bacterial/Viral/Noninfectious (GF-B/V/N) classifier provides two probabilities, a measure of 
bacterial infection or viral infection in the context of nonbacterial/nonviral illness as a control (Supplemental 
Fig. 1A). Theoretically, this model has the potential for identifying a co-infection if both the probability of bacte-
rial and viral infection were high (Supplemental Fig. 1A). For classification of bacterial infection (bacterial vs. 
nonbacterial model) the AUROC was 0.92 (Supplemental Fig. 1B), with sensitivity 87.7% (95% CI 79.0–89.8), 
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Table 1.  Demographics and participant characteristics of discovery and validation cohort. Days ill number 
of days ill prior to presentation, ICU Intensive care unit, Mech. Ventilation Invasive Mechanical Ventilation, 
NA not applicable, S. aureus Staphylococus aurus, S. pneumo Steptococcus pneumoniae, E. coli Escherichia 
coli, K. pneumo Klebsiella pneumoniae, FluA Influenza A, FluB Influenza B, RSV Respiratory Syncitial Virus, 
C. burnetii Coxiella burnetii, VGS Viridians group Streptococcus, P. aerug Pseudomonas aeruginosa, HRV 
Human Rhinovirus, Paraflu ParaInfluenza, hMPV. human Metapneumovirus, B. pseudomallei Burkholderia 
pseudomallei.

Discovery cohort

USA Sri Lanka

Total (n = 294) Bacterial (n = 42) Viral (n = 43)
Noninfectious 
(n = 67) Bacterial (n = 60) Viral (n = 82)

Age, median (IQR) 48 (31, 61) 58 (49, 66) 50 (28, 66) 54 (42, 66) 41 (31, 50) 34 (23, 51)

Sex, n (%)

 Male 155 (52.7) 28 (66.7) 14 (32.6) 30 (44.7) 39 (66.7) 38 (51.2)

 Female 139 (47.3) 14 (33.3) 29 (67.4) 37 (55.3) 21 (33.3) 44 (48.8)

Race, n (%)

 Hispanic 142 (48.3) 38 (90.5) 39 (93.0) 65 (97.0) – –

 Non-Hispanic
4 (1.4) 2 (4.8) 1 (2.3) 1 (1.5) – –

5 (1.7) 2 (4.7) 2 (4.6) 1 (1.5) – –

Ethnicity, n (%)

 White 87 (29.5) 27 (64.3) 25 (58.1) 35 (52.2) – –

 Black 56 (19.0) 13 (31.0) 14 (32.6) 29 (43.3) – –

 Asian/S. Asian 144 (49.0) 0 (0.0) 0 (0.0) 2 (4.7) 60 (100) 82 (100)

 American In/Alaska 
Na 5 (1.7) 2 (4.8) 1 (2.3) 2 (3.0) – –

 Hawaiian/Pacific Is 1 (0.3) 0 (0.0) 1 (2.3) 0 (0.0) – –

 Other/unknown 1 (0.3) 0 (0.0) 0 (0.0) 1 (1.5) – –

 Duration ill, median 
days (IQR) 4 (3, 6) 3 (2, 5.5) 4 (2. 5, 5.5) 3 (2, 11) 5 (3, 8) 4 (3, 5)

 Hospital length of 
stay, median days 
(IQR)

4 (2, 6) 6 (3, 9) 0 (0, 15) 2 (1, 6) 5 (4, 6) 4 (3, 6)

 Intensive care, n (%) 26 (8.8) 11 (26.2) 3 (7.0) 11 (16.4) 1 (1.7) 0 (0.0)

 Mech. ventilation, 
n (%) 14 (4.8) 6 (14.3) 1 (2.3) 6 (9.0) 1 (1.7) 0 (0.0)

 Mortality, n (%) 12 (4.0) 5 (11.9) 0 (0.0) 6 (9.0) 0 (0.0) 1 (1.2)

 Pathogens –

11 S. aureus 17 FluA NA 30 Leptospira spp. 43 Dengue

14 S. pneumo 12 FluB 27 Rickettsia spp. 23 FluA

9 E. coli 14 RSV 3 C. burnetii 16 FluB

9 K. pneumo

Validation cohort

USA Sri Lanka Cambodia Tanzania Australia

Total (n = 101) Bacterial (n = 3) Viral (n = 16) Bacterial n = 24) Viral (n = 29) Bacterial (n = 10) Bacterial (n = 15) Viral (n = 4)

Age, median (IQR) 36.5 (27.8, 54.3) 61 (60.5, 73.5) 49 (29, 60) 37 (29.5, 58) 30 (25, 47) 51 (36.3, 58.8) 34 (30.5, 41.5) 27 (27, 35.5)

Sex, n (%)

 Male 55 (54.5) 3 (100) 5 (31.3) 14 (58.3) 21 (72.4) 5 (50.0) 6 (40.0) 1 (25.0)

 Female 46 (45.5) 0 (0.0) 11 (68.8) 10 (41.7) 8 (27.6) 5 (50.0) 9 (60.0) 3 (75.0)

Race, n (%)

 Hispanic – 3 (100) 16 (100) – – – – 4 (100)

 Non-Hispanic – 0 (0.0) 0 (0.0) – – – – 0 (0.0)

 Unknown – 0 (0.0) 0 (0.0) – – – – 0 (0.0)

Ethnicity, n (%)

 White 12 (11.9) 2 (66.7) 6 (37.5) – – – – 4 (100)

 Black 26 (25.7) 1 (33.3) 10 (62.5) – – – 15 (100) 0 (0.0)

 Asian/S. Asian 63 (62.4) 0 (0.0) 0 (0.0) 24 (100) 29 (100) 10 (100) – 0 (0.0)

 Pathogens

1 S. aureus 2 Dengue 15 Leptospira spp. 18 Dengue 10 B. pseudomallei 3 Brucella spp. 4 FluA

1 VGS 4 FluA 9 Rickettsia spp. 7 FluA 2 Rickettsia spp.

1 P. aerug 2 RSV 4 HRV 10 C. burnetii

2 HRV

3 Paraflu

3 hMPV
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specificity 84.2% (95% CI 78.2–89.1), and accuracy 85.2% (95% CI 80.6–89.1) (Table 3). For the classification of 
viral infection (viral vs. nonviral model), AUROC was 0.91 (Supplemental Fig. 1C), with sensitivity 83.7% (95% 
CI 76.0–89.8), specificity 81.5% (95% CI 74.8–87.1), and accuracy 82.5% (95% CI 77.6–86.7) (Table 3). Similar 
to the binary model, the GF-B/V/N test demonstrated good performance for a broad range of bacterial and viral 
pathogens (Supplemental Fig. 1D,E).

Translation of the 2-model GF-B/V/N system to NanoString was exploratory in nature because it only vali-
dated the GF-B/V/N test for bacterial and viral illness, evaluating how often bacterial or viral disease was mis-
classified in the context of nonbacterial/nonviral illness. We measured expression of 33 genes for the bacterial 
model and 19 for the viral model (Supplemental Table 4B,C). In the validation cohort, the bacterial model had an 
AUROC of 0.84 (95% CI 0.76–0.93) (Supplemental Fig. 1F), sensitivity of 82.7% (95% CI 69.7–91.8), specificity of 
80.4% (95% CI 66.9–90.2), and accuracy of 81.6% (95% CI 72.7–88.5) (Table 3). The viral model had an AUROC 
of 0.85 (95% CI 0.77–0.93) (Supplemental Fig. 1G), sensitivity of 76.5% (95% CI 62.5–87.2), specificity of 80.8% 
(95% CI 67.5–90.4), and accuracy of 78.6% (95% CI 69.5–86.1) for viral infection (Table 3). Performance was 
similar across pathogens (Supplemental Fig. 1H,I), except for a single Viridans group streptococcus case.

Table 2.  Differential expression of genes upregulated at least tenfold in bacterial versus viral illness. Genes 
upregulated in bacterial disease are conversely downregulated in viral disease and vice versa.

Functional category Genes

Upregulated in bacterial infection

 Acid/base equilibrium CA4

 Acute phase reactants ALPL, C4BPA, HP, HPR, ORM1, ORM2

 Antimicrobial killing ARG1, PGLYRP1, PI3, S100A12, SLPI

 Apoptosis/development KREMEN1

 Cell division SPATC1

 Cell migration ITGA7

 Cell motility CFAP126

 Epigenetics KDM5D

 Extracellular matrix integrity ADAMTS2, PCOLCE2

 Heavy metal binding MT1H

 Immune regulation (cell surface receptors) CD177, CD300LD, VSIG4

 Innate immune response IL1R2

 Metabolism OLAH, SLC51A, VNN1

 Protein degradation MMP8, PGA4

 Protein processing/sorting AP3B2, FAM20A, GALNT14, ZDHHC19

 Signal transduction BMX, NECAB1, RCVRN

 Transcription KLF14

 Translation EIF1AY

Upregulated in viral infection

 Amino acid metabolism IL4I1, SDS

 Antimicrobial killing DEFB1

 Apoptosis BCL2L14

 Autophagy RUFY4

 Cell activation receptors LY6E

 Cell–cell interactions AGRN, DSP, SIGLEC1

 Cell differentiation/growth AXL, EPHB2

 Cell motility DZIP1L, TTC21A

 Cell structure/junctional JUP, KRT5, NEXN, OTOF, SAMD4A

 Electrochemical gradiant NKAIN1

 Exocytosis EXOC3L1

 Interferon response/chemokines/cytokines DDX60, HERC5, HERC6, IFI27, IFI44, IFIT1, IFIT2, IFIT3, ISG15, LAMP3, MX1, NRIR, 
OAS1, OAS2, OAS3, OASL, RSAD2, USP18, CCL2, CCL8, CXCL10, CXCL11, FPR3, LIP

 Intracellular trafficking FBX039, RABGAP1L, RIN2

 Mitochondrial DNA synthesis CMPK2

 Pattern recognition receptors CLEC4F, TLR3

 Transcription HES4, HESX1, ZNF684

 Non-coding or poorly characterized/unknown ALMS1P1, ERICH3, HSPB9, KCTD14, LINC00487, LOC100133669, LOC101927027, 
LOC105369192, SPATS2L, TMEM252, TMEM255A, XIST
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Figure 1.  Performance of GF-B/V model to classify bacterial and viral disease in a global cohort. (A) A binary 
model (GF-B/V) provides a single score that discriminates bacterial from viral infection. High probabilities 
closer to 1 are associated with bacterial infection and low probabilities closer to 0 indicate viral infection. 
(B) AUROC curve of the discovery cohort (RNA sequencing) for GF-B/V model. (C) AUROC curve of the 
validation cohort (NanoString platform) for GF-B/V model. (D) Predicted probabilities for the GF-B/V 
model in the discovery cohort for bacterial pathogens (blue) compared to viral pathogens (orange) using 
RNA sequencing. (E) Predicted probabilities for the GF-B/V model in the discovery cohort for bacterial 
pathogens (blue) compared to viral pathogens (orange) using NanoString assay. Bacterial abbreviations: Gram 
negative bacilli = Escherichia coli, Klebsiella pneumoniae, Rickettsia spp. = Spotted fever group, Typhus group, 
Orientia tsutsugamushi. Viral abbreviations: Other Resp. Virus = human Rhinovirus, Parainfluenza, human 
Metapneumovirus, Respiratory Syncytial Virus.
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Discordant classifications
Discordant cases in the validation cohort were similar between the two classifiers (19 GF-B/V, 19 GF-B/V/N; 
with overlap of 15 for both models) (Supplemental Table 5). A review of these discordant cases did not identify 
any pattern with respect to site or pathogen. The relative increased number of Sri Lanka patients was nearly 
proportional to the total number in the whole cohort. Interestingly, when predictive genes were fixed and the 
model weights were allowed to vary among the validation cohort, performance improved.

Discussion
We utilized a 294-participant multinational prospectively enrolled cohort to develop a bacterial versus viral 
host-response classifier that incorporates LMIC with representation of zoonotic bacteria and arboviruses. 
While others have utilized publically available data to apply host-response transcriptional classifiers to atypical 
global  infections33, this cohort is the largest prospectively enrolled with robust clinical, phenotypic, and adju-
dication data. Translation of the GF-B/V test to a multiplex gene expression detection platform demonstrated 
good performance (overall accuracy of 81.6% [95% CI 72.7–88.5]) in independent validation despite different 
genetic backgrounds, geographies (five countries), and pathogens. For example, a person with a positive GF-
B/V NanoString test in the validation cohort was 5-times more likely to have a bacterial infection and 3-times 
less likely with a negative test. Such a test could provide timely diagnostic reassurance to inform antibiotic use 
and guide clinical care.

Decreasing morbidity, mortality, and misuse of antimicrobials from infections requires improved diagnosis 
at the time a patient presents to care. LMIC have decreased laboratory infrastructure, so performing multiple 
pathogen-based tests is unrealistic. Accurate acute-phase pathogen-based diagnostics do not exist for many 
bacterial zoonotic infections, such as ricktettsial infections, that require different treatment from antibiotics 
empirically used for routinely cultivatable organisms. Point-of-care biomarkers commonly utilized in high-
resource settings, like C-reactive protein and procalcitonin, have yielded mixed performance in LMIC (e.g., low 
specificity, poorer performance for bacterial zoonotic pathogens)27,50,55–57, and are potentially affected by higher 
rates of malnutrition, parasitic disease, HIV, and co-infection58. Host-response gene expression assays are poised 
to fill this  void25–27,31–33,59,60.

Tremendous progress has been made developing host-response diagnostics in HIC in multiple disciplines, 
including infectious  diseases31,59–61. Recently, an algorithmic approach utilizing publically available data extended 
this method to intracellular and atypical pathogens prevalent  globally33. Rao et al., utilize a co-normalization 
technique to diminish study variability and batch effects. While the signal for the bacterial versus viral classifier 
was preserved, the co-normalization technique could potentially reduce biological variability and artificially 
improve overall performance in a population with increased variability of pathogens and genetic ancestry. Addi-
tionally, use of publically available data does not align enrollment criteria or apply an even reference standard. 
Prospective validation of this promising work will be critical to determine performance in a real world popula-
tion of global infections.

Taking a different approach, our study utilized existing biorepository specimens of prospectively enrolled 
patients that meet reliable eligibility criteria and apply a consistent diagnostic reference. This approach preserves 
biological variability while avoiding potential bias and confounding. Access to participant-level clinical, biologic, 
and etiologic data allows refinement of the cohort not possible for publically available data. Additionally, the 
GF-B/V incorporates a significant number of zoonotic bacterial pathogens that are both extracellular (e.g. Lep-
tospirosis spp.) and intracellular (e.g. Ricketsial spp.) at the model development and validation phase, while other 
studies have a low percentage of Leptospirosis or other extracellular pathogens representated in LMIC  settings33.

A binary bacterial versus viral classifier provides a simple approach to identifying bacterial infections, but 
does not account for other treatable etiologies of suspected infection. Layered diagnostic tests using multiple 

Table 3.  Performance characteristics for Global Fever classifier models for acute bacterial and viral infection. 
The top of the table provides performace characteristics for the GF-B/V model and the bottom of the table 
shows performance of the GF-B/V/N model. In the discovery cohort, performance characteristics are 
calculated using nested cross validation on the original RNA sequencing data. In the validation cohort, the 
model is fixed and applied to NanoString data of an independent bacterial and viral cohort. Positive and 
negative predictive value requires knowledge of prevalence in the community which is not known for global 
infections. Thus, these could not be calculated.

Cohort Comparison
Sensitivity, % 
(95% CI)

Specificity, % 
(95% CI)

Model accuracy, % 
(95% CI)

Positive likelihood 
ratio (95% CI)

Negative 
likelihood ratio 
(95% CI)

Global fever bacterial/viral model (GF-B/V)

 Discovery Bacterial versus viral 84.2 (75.6–90.7) 94.7 (88.6–97.7) 89.7 (85.0–93.4) 14.7 (7.2–30.5) 0.2 (0.1–0.3)

 Validation Bacterial versus viral 78.8 (65.3–88.9) 84.3 (71.4–93.0) 81.6 (72.7–88.5) 5.0 (2.6–9.6) 0.3 (0.1–0.4)

Global fever bacterial/viral/noninfectious model (GF-B/V/N)

 Discovery
Bacterial versus nonbacterial 87.7 (79.0–89.8) 84.2 (78.2–89.1) 85.2 (80.6–89.1) 5.5 (3.9–7.7) 0.2 (0.1–0.3)

Viral versus nonviral 83.7 (76.0–89.8) 81.5 (74.8–87.1) 82.5 (77.6–86.7) 4.5 (3.3–6.3) 0.2 (0.1–0.3)

 Validation
Bacterial versus nonbacterial 82.7 (69.7–91.8) 80.4 (66.9–90.2) 81.6 (72.7–88.5) 4.2 (2.4–7.5) 0.2 (0.1–0.4)

Viral versus nonviral 76.5 (62.5–87.2) 80.8 (67.5–90.4) 78.6 (69.5–86.1) 4.0 (2.237.1) 0.3 (0.2–0.5)
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binary classifiers, like GF-B/V/N, are more generalizable for a global population, and are attractive given the 
breadth of pathogen diversity and febrile illness globally. Precedent exists for layered transcriptional expression 
classifiers that incorporate other classes of  illness25,32. We demonstrate a more complex model can discriminate 
bacterial from viral infection in an independent validation cohort, but the absence of noninfectious samples in 
the validation cohort limits full evaluation in a real world population. Thus, we cannot comment on noninfec-
tious illness, but simply on nonbacterial or nonviral disease. However, we demonstrate that misclassification 
by GF-B/V or GF-B/V/N is largely overlapping, reassuringly demonstrating that incorporating more complex-
ity does not reduce performance in a limited population of bacterial and viral illness. Incorporating multiple 
models for this and other work has previously been shown and will need to be addressed going  forward62. While 
exploratory, a model with this complexity is not available in other published work on global pathogens, such as 
leptospirosis or rickettsial  infection31,33,63,64. The composite model could provide a path forward in the complex 
milleu of global illness.

Host response biomarkers could change clinical practice, but expansion of these diagnostics to LMIC must 
be inexpensive, easy to operate, and clinically interpretable. Host gene expression diagnostics for non-infectious 
applications are considered high complexity tests, often run in referral laboratories. However, technical advances 
have enabled highly multiplexed quantitative, real-time PCR systems that operate in a sample-in, answer-out 
format with results available in < 1-h32,36,60. As simpler host gene expression tests continue to be developed, cost-
of-goods and simplicity will be key parameters for their implementation in LMIC  settings65. Host response-based 
biomarker panels have also extended to proteomics and  metabolomics64,66,67, which may be less expensive and 
amenable to field deployable diagnostics. Progress refining host-response biomarkers in international cohorts 
must occur alongside technological advances in platform development to allow more rapid translation to LMIC. 
The results presented here suggest easy translatability of this approach to LMIC.

GF-B/V and GF-B/V/N multi-analyte biomarkers have attractive features, but there are limitations to this 
study. Translation to a PCR-based detection system revealed lower accuracy in the validation cohort compared 
to the RNA-seq based classification in the discovery cohort. This could be due to technical differences (e.g., 
going from RNAseq to NanoString) but is also an expected difference between discovery and validation, the lat-
ter of which includes a wider array of infections and variability of illness. Analysis of discordant classifications 
suggests that genes used in the models have strong predictive power, but that individuals have variability in the 
amount, or weight, each gene contributes to the model. Consistent with this is the observation that both clas-
sifiers had a reduction of performance on pathogens not hightly represented in the discovery cohort (Viridians 
group Streptococcus, non-influenza respiratory viruses, Coxiella burnetii). The GF-B/V/N model is constrained 
by reliance on non-infectious illness as a control rather than being representative of febrile illness globally. Addi-
tional limited availability of high confidence noninfectious samples prevented incorporation into the validation 
cohort, prohibiting validation of the performance of the GF-B/V/N test for nonbacterial/nonviral illness or co-
infection. It will be critical for future studies to perform iterations and optimization on expanded cohorts with 
increased pathogen (e.g. atypical viruses, tuberculosis, malaria, cryptococcus) and host diversity (e.g., a larger 
cohort of children and immunocompromised hosts) that would be expected to improve model weights, overall 
performance, and be more representative of febrile  illnesses62.

We found that novel host transcriptional biomarkers could accurately discriminate diverse bacterial and viral 
infections, including those endemic in not only high-income temperate regions but also LMIC in the tropics. 
Translation of these tests to a custom multiplex gene expression platform, such as the NanoString, shows promise 
for identification of infections in increasingly diverse populations with the future possibility of point-of-care 
application. Host-response biomarkers to distinguish bacterial from viral infection could improve clinical care 
and antibiotic stewardship across the globe.

Data availability
All data in this article were generated as part of this work. All RNA sequencing data has been submitted to GEO 
under accession number GSE211567. NanoString transcripts are included in supplemental information. Token 
to access GSE211567: obqzkkoarjwpfct.
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