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DDCNN‑F: double decker 
convolutional neural network ’F’ 
feature fusion as a medical image 
classification framework
Nirmala Veeramani 1, Premaladha Jayaraman 1*, Raghunathan Krishankumar 2, 
Kattur Soundarapandian Ravichandran 3 & Amir H. Gandomi 4,5*

Melanoma is a severe skin cancer that involves abnormal cell development. This study aims to provide 
a new feature fusion framework for melanoma classification that includes a novel ‘F’ Flag feature for 
early detection. This novel ‘F’ indicator efficiently distinguishes benign skin lesions from malignant 
ones known as melanoma. The article proposes an architecture that is built in a Double Decker 
Convolutional Neural Network called DDCNN future fusion. The network’s deck one, known as a 
Convolutional Neural Network (CNN), finds difficult‑to‑classify hairy images using a confidence factor 
termed the intra‑class variance score. These hirsute image samples are combined to form a Baseline 
Separated Channel (BSC). By eliminating hair and using data augmentation techniques, the BSC is 
ready for analysis. The network’s second deck trains the pre‑processed BSC and generates bottleneck 
features. The bottleneck features are merged with features generated from the ABCDE clinical bio 
indicators to promote classification accuracy. Different types of classifiers are fed to the resulting 
hybrid fused features with the novel ’F’ Flag feature. The proposed system was trained using the ISIC 
2019 and ISIC 2020 datasets to assess its performance. The empirical findings expose that the DDCNN 
feature fusion strategy for exposing malignant melanoma achieved a specificity of 98.4%, accuracy of 
93.75%, precision of 98.56%, and Area Under Curve (AUC) value of 0.98. This study proposes a novel 
approach that can accurately identify and diagnose fatal skin cancer and outperform other state‑of‑
the‑art techniques, which is attributed to the DDCNN ‘F’ Feature fusion framework. Also, this research 
ascertained improvements in several classifiers when utilising the ‘F’ indicator, resulting in the highest 
specificity of + 7.34%.

Skin cancer is caused by abnormal cells and can metastasise quickly if not detected  early1. Of the number of stud-
ies on melanoma using different analytical platforms, one of the pioneering efforts is Computer-Aided Diagnosis 
(CAD)2. These research efforts used automated algorithms to identify cutaneous lesions upfront by analysing 
image colour, shape, and  structure3,4. Image segmentation is still a prominent field of study—the progression 
of segmentation by statistical analysis of medical  images5. Extraction of characteristics from the lesion region 
assists in categorisation, although developing such systems has been challenging and  sluggish6. The majority 
of automated detection systems use the Asymmetry, Border, Color, Diameter, and Evolution (ABCDE) rule. In 
2001, Senan et al. were the first to work with the four aspects of this technique, which involved 122 parameters, 
and used the conventional models with an automation system  employed7. Squamous-cell carcinoma (SCC), 
basal-cell carcinoma (BCC), and melanoma are the three kinds of skin  cancer8; the former two are less prevalent 
types and are grouped as non-melanoma skin cancer. While BBC develops slowly, possibly causing tissue dam-
age, it seldom causes mortality and is usually seen in the nasal  cavity9,10. Squamous-cell skin cancer manifests 
as a hard mass with a scaly surface and crust, which may lead to the formation of an  ulcer11. Melanoma is the 
deadliest and most severe type of skin cancer that can metastasise and become chronic and life-threatening if 
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not diagnosed and treated early. Asymmetry, uneven borders, numerous colours, and distinctive dermoscopic 
structures are typical melanoma  symptoms12.

In common, melanoma detection and classification problems have two significant techniques. The first tech-
nique uses hand-crafted features, whereas the second employs deep learning approaches, notably Deep Convolu-
tional Neural Networks (Deep CNNs). Deep CNNs have acquired much traction over the past few years for image 
identification  applications13. The primary benefit of CNNs is their capacity to retrieve features from datasets 
autonomously. Thanks to the automated feature extraction method, they may perform categorisation based on 
the collected features. The most beneficial advantage of using pre-existing CNN architectures is the ability to use 
transfer learning. These designs have been pre-trained on the Image Net database and may be fine-tuned to meet 
the needs of our unique  model14. The CNN models extract convolutional features from Fully Connected Layers 
(FCN) or dense layers. While these properties generalise effectively to different images, they have difficulties 
generalising local patterns and dealing with geometric and form  differences15. Although data augmentation and 
image-rescaling methods are widely used to circumvent these  challenges16, they may not always produce the 
expected effects in many circumstances. For example, randomly cropping photographs may accidentally crop off 
a Region of Interest (ROI) from the input image, providing a considerable obstacle to performance enhancement.

Our proposed work tackles this issue by creating a segregated dataset that employs many classification algo-
rithms. Comparatively, the BSC dataset is only comprised of difficult-to-classify samples and employs more 
complex image preparation techniques. These strategies include hair removal treatments that are properly set 
to ensure minimal data loss. Furthermore, most datasets have an imbalance, with a larger number of benign 
samples and a smaller proportion of malignant samples. This imbalance exacerbates the difficulties associated 
with melanoma detection.

The classification framework presented in this article performs the data augmentation techniques to resolve 
the imbalance in the subsequent dataset while assuring minimum modifications to the images. Hence, it increases 
the size of the input training set. Another factor to consider when developing a framework is whether to priori-
tise better sensitivity or specificity. The model’s sensitivity evaluates its ability to identify real positives properly, 
whereas specificity represents its potential to recognise true negatives effectively. Due to the vital relevance of 
identifying malignant melanoma, this model includes sensitivity and specificity. In traditional melanoma segmen-
tation approaches, methods like thresholding, segmentation, and the ABCDE method are employed. However, 
when undesired features such as hair or rule markings are present, the performance of these approaches suffers. 
The ABCDE approach is handy for self-diagnosing melanoma, which evaluates asymmetry, border abnormalities, 
colour variegations, diameter, and any emerging symptoms or abnormalities in amole of  concern17. The ABCDE 
rule is vital in diagnosing malignant skin lesions in the second deck of classification, where the ’F’ flag feature is 
an additional and most influencing bioindicator for image analysis of melanoma.

Despite several works on malignant melanoma, a proper diagnosis from visual inspection remains challenging 
on account of variables, including poor contrast, illumination, and artefact occlusions with neighbouring tissues. 
The deprived colour contrast between the targeted skin lesion and the normal skin area makes the segmenta-
tion process complex. Furthermore, skin with hair texture, lighting fluctuations, and reflections contribute to 
the intricacy of dermoscopic images. Because of the variety of skin lesions, reliable identification of malignant 
melanoma is particularly challenging. Accordingly, this study offers a novel framework consisting of Double 
Decker Convolution Neural Network (DDCNN) feature fusion with the ’F’ flag feature for diagnosing human 
skin lesion classification to overcome above-mentioned challenges. This system also applies the ABCDEF rule 
to improve the prediction of melanoma.

The first deck includes a baseline CNN that assists in retrieving difficult-to-classify data using the confidence 
factor defined by the intra-class variance score. These samples are combined to produce a Baseline Separation 
Channel (BSC) subjected to hair artefact excision and augmentation. Because complex samples have a more 
significant number of cases of malignancy than benign instances, data augmentation is used to strike parity 
between the two classes of input datasets. After the dataset has been enriched and pre-processed, it is put into 
a CNN to determine bottleneck characteristics. The same dataset is used to extract biomarker details based on 
the ABCDEF (Asymmetry, Border, Color, Diameter, Evolution and Flag) criteria for the diagnosis of melanoma. 
These traits, as well as the first deck CNN-extracted attributes, are combined. A system of classification that pre-
dicts malignant melanoma is built using the fused feature set. As an aspect of the classification process, gradient-
boosting algorithmic classifiers, logistic regression (LR), and perceptron-based multi-layer classifiers are used.

The critical contributions of this presented research work are as follows:

1. A novel Double Decker Convolution Neural Network (DDCNN) feature fusion automated framework is 
designed for skin lesion classification of malignant melanoma, which integrates medical image indications 
of skin lesions based on the ABCDE criteria for successful feature selection.

2. Total Dermoscopy Score (TDS) is integrated with the intra-class variance score to address the problem of 
classifying complex samples occluded with hair artefacts. This score greatly influences the categorisation of 
challenging skin lesion input images.

3. The ‘F’ flag feature is a new indicator to the binary classification model created exclusively for diagnosing 
malignant melanoma in skin lesions images, implemented within the DDCNN feature fusion framework.

Experimental findings confirmed the usefulness and efficacy of the suggested DDCNN technique. The per-
formance evaluation demonstrates the model’s accuracy in identifying malignant skin cancer and its potential 
for use in real-world applications. This research offers a new ’F’ flag feature of cutaneous lesions to detect malig-
nant melanoma with DDCNN feature fusion architecture. The suggested approach produced promising results 
in diagnosing malignant cases by merging dual CNNs with the medical ABCDE rule, adding the intra-class 
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variance score and  TDS18. The experimental results underline the virtue and efficiency of the proposed method, 
highlighting its potential for use in practical situations.

Background
Feature hand‑crafting and its influence on classification
The feature handling in a previous  work19 was analysed to establish the high-performing predictive accuracy of 
the different melanoma detection criteria in their investigation. They also assessed the combined precision and 
recall of these factors in identifying these requirements to determine the existence of melanoma. Another  study20 
was conducted to increase classification performance by random sample mixes of skin textures, such as intensity 
correction and noise addition with ABCDE features. The feature collection was reduced to two dimensions using 
Principal Component Analysis (PCA), yielding an excellent area under the ROC plot of 94%.

Another  study21 offered a mix of hand-crafted attributes, a feature optimisation framework, and K-Nearest 
Neighbours (KNN) for melanoma diagnosis, aiming to improve the accuracy of the categorisation process. 
 Researchers22 have also used an alternative approach, proposing a melanoma detection system with geometrical 
and texture features. Furthermore, this  research23 presented an ensemble approach to melanoma categorisation, 
utilising an autonomous neural network to construct lesion regions using ensemble-based classification.

Preliminaries of deep learning techniques
Another feature extraction method is deep learning, which uses Convolutional Neural Networks (CNNs) 
to derive features dynamically without needing expert knowledge. Instead of handmade feature extraction 
approaches, deep learning learns these features during training compared to hand-crafted feature extraction 
approaches. CNNs, on the other hand, are highly computationally complex and require massive datasets for 
training to enable good feature extraction. In addition to CNNs and hand-crafted algorithms, hybrid approaches 
have lately gained popularity. The "Land Use Identification" (LUI)  task24 was achieved in the study. The deep CNN 
model is designed for the classification task from scratch. CNN and transfer learning were used in a CNN-based 
survey of feature extraction. These attributes were fed into machine learning (ML) systems like Decision Trees, 
Random Forests, Naive Bayes, Support Vector Machine (SVM), and KNN classifiers.

Several works on melanoma have employed artificial intelligence to extract features from dermoscopic skin 
cancer of multiple classes. Using the Haar cascade  algorithm25, the collected characteristics were input into 
machine learning algorithms on the facial images to recognise the emotions between six classes. In another 
study, clinical image samples were fed into machine learning algorithms that used the hybrid wavelet transform, 
employing the entropy and several other clinical metadata to produce adequate  findings26. Furthermore, der-
moscopic images were utilised in a study employing the ISIC dataset to test seven machine learning methods. 
The  study27 used a fusion approach that combines Sorted Block Truncation Coding (SBTC) and Gray Level Co-
occurrence Matrix (GLCM) characteristics. Machine learning algorithms were applied to detect and diagnose 
melanoma in a study that combined two versions of BTC feature extraction approaches with different colour 
 spaces28. Additionally,  study29 suggested combining GLCM elements with several colour samples. It put them 
through their non-distractive process to extract textural information from medical skin input images. The find-
ings showed that this approach allowed images to be classified as benign or malignant. One research  article30 
applied the cosine transform on images and discovered that a blend of decision support tree and random forest 
classifiers produced better results, providing machine learning algorithms using a fraction coefficient expressing 
the elements of dermoscopic skin images.

Moreover, many researchers have contributed multisampling learning techniques (MLTs) to discern benign 
and malignant human skin lesion  images31. To optimise dermoscopic  images32, one study introduced practical 
preprocessing approaches for effective image enhancements that promise the removal of unnecessary occlusions 
on the ROI—for instance, hair removal and cropping and noise removal techniques. Furthermore, in another 
 research33, the Multi-Sample Learning (MIL) approach was used, yielding a specificity of 87.50% in identifying 
cancerous and dermoscopic nevus images. Another  study34 focused on cutting-edge advances in melanoma image 
classification, such as classification approaches that use colour and texture attributes without preprocessing the 
photos. One  work35 also provided a set of autonomous learning techniques for the accuracy of the classification 
step. Herein, this study drew inspiration from the former literary works, aiming to contribute to the development 
and implementation of CNN for melanoma classification.

Hand‑crafted feature fusion framework and deep learning
Several studies have investigated the combination of handmade feature extraction and deep learning approaches. 
Using the ResNet-50 and DenseNet-201 CNN architectures, Li et al.36 suggested a fusion strategy that merges clinical 
representation and the Light Gradient Boosting Machine (LightGBM) algorithm with deep learning. This approach 
identified textural, colour-based, and form attributes with an accuracy of 85.3%. The CAD system for melanoma 
diagnosis was  created37, combining carefully crafted characteristics based on the ABCD features derived by ensemble 
learning. Another  study38 proposed integrating image pixel features and clinical metadata using a ResNet-50 network.

This proposed study can be distinguished from the reviewed literary works in several aspects. While numerous 
research studies focused on predicting malignant melanoma, clinical diagnosis using naked-eye inspection of 
images by experts is difficult due to various reasons, including class imbalance, noise (such as hair occlusions), 
high feature dimensionality, image size, and resolution discrepancies. The proposed methodology resolves these 
issues successfully and creates a classification paradigm for prognosticating malignant melanoma. Deep learning 
combined with hand-crafted feature extraction has shown considerable potential in melanoma identification. 
Training the sample images with artefacts in a deep-learning model was quite perplexed in existing systems. The 
proposed framework’s specificity was enhanced according to the experimental results. The primary goal for this 
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study was to effectively overcome the mentioned challenges by incorporating a segmented strategy that utilises 
intra-class variance score, data, and augmentation, ABCDE with the new ’F’ flag rule that will become prevalent 
in early diagnosis of challenging skin lesions, thereby bringing down the margin of error.

Proposed methodology
The proposed architecture comprises deck one, which contains the baseline CNN, and deck two with CNN for 
feature extraction and fusion of the ‘F’ flag feature. The classification employing the DDCNN features is the 
main element of the system. CNNs in the DDCNN system follow the Asymmetry, Border, Colour, Diameter and 
Evolution (ABCDE) rule to produce a trustworthy and solid classification archetype for exposing malignancy in 
skin lesions. Algorithm 1 elucidates the sequential workflow of the DDCNN feature fusion framework. Figure 1 
exhibits the architectural diagram of the proposed DDCNN system.

Input: Dataset of images with labels
Output: Trained classifier model with performance metrics
Step 1: Load the dataset (D)
Step 2: Resize each image in D to a fixed size (W XH) where W X H is the width and height of the image respectively.
Step 3: Convert each image in D to a pixel array of size (W, H, C). Here C represents channels.
Step 4: Split D into training data (D_train) and testing data (D_test) with a given ratio (e.g., 80:20)
Step 5: Train a convolutional neural network (CNN) model (M1) using D_train and evaluate its performance on D_test
Step 6: Compute the Confidence-Weighted Adversarial Protection Score (CWAP) for each sample in D_test using, M1 refers to deck one Model
and f refers to the obtained features.

M1 (CWAP = f(M1, x), where x is an image)
Step 7: Determine a threshold value (T) for CPVS based on the distribution of scores in D_test (e.g., using a validation set)
Step 8: For each image x in D_test, if f(M1, x) < T, then move it to a separate dataset (D_BSC) for further inspection 
Step 9: Handpick a subset of images with hair (D_hair) from D_BSC
Step 10: Apply a hair removal function (F1) to each image in D_hair to obtain a new dataset (D_no_hair)
Step 11: Apply an augmentation function (F2) to balance the classes in D_train and D_no_hair
Step 12: Repeat steps 1 to 5 using a more complex CNN model (M2) with multiple layers and filters 
Step 13: Extract the features (F3) learned by M2 from D_train and D_no_hair
Step 14: Apply a feature extraction function (F4) to the features to obtain a new feature set (F_ABCD)
Step 15: Fuse the feature sets (F_M1, F_M2, F_ABCD) using a fusion function (F5) to obtain a single feature vector for each image
Step 16: Use the fused features as input to a classifier model (M3)
Step 17: Fit M3 using D_train and evaluate its performance on D_test
Step 18: Compute performance metrics (e.g., accuracy, precision, recall, F1-score, an area under the curve) for M3 on D_test
Step 19: Return M3 and the performance metrics as the algorithm's output.

Algorithm 1.  DDCNN () Sequential workflow representation.

Figure 1.  Architectural diagram of the proposed DDCNN system.
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Deck‑one baseline CNN
The first deck baseline  CNN39 typically performs primary classification, recognises problematic samples like those 
with hair artefacts and processes the data samples in the early steps. The intra-class variance score calculates the 
probability of benign or malignant lesions. The Baseline Separated Channel dataset (BSC) is a separate dataset 
that contains the problematic samples, which is vital in the segregation of the dataset. The cut-off point over 
the intra-class variance score is the confidence factor, established by comparing divergence with the error ratio.

The BSC is subjected to preprocessing techniques to eliminate contaminants like hair to guarantee data 
balance and cleanliness. A summary of the features used in the CNN model can be found in Table 1. Four con-
volution blocks comprise the design, each with a unique arrangement of convolutional, normalisation batch, 
maximum pooling, and dropout layers. Flattened and dense layers with dropouts are placed after these blocks.

To further explain, consider the example of (F*g) (t), where t is a real numerical variable and g (τ) represents 
the convolutional process of F(t). Equation (1) is processed at each convolutional layer to carry out the whole 
image’s convolving procedure:

Overall, the technique requires harrowing sample extraction in the first layer and using a baseline CNN for 
classification. The intra-class variance score is computed to distinguish between benign and malignant lesions. 
The samples are divided into the BSC according to the confidence factor. The BSC is pre-processed to remove 
hairs, and the CNN model, presented in Table 2, operates on the cleaned data using convolutional blocks and 

(1)
(

F ∗ g
)

(t) =

∫ +∞

−∞

F(τ )g(t − τ)

Table 1.  CNN specifications applied in BSC.

Layers Descriptions Activations

convolutional2D_1 Size of (3,3)- 15 filters ReLu

batch_norm_layer1 – –

convolutional2D_2 Size of (3,3)- 15 filters ReLu

batch_norm_layer2 – –

max_pool2D_1 (2,2) pool size –

dropout_layer1 0.2 Rate –

convolutional2D_3 Size of (3,3)- 15 filters ReLu

batch_norm_layer3 – –

max_pool2d_2 (2,2) pool size –

dropout_layer2 0.2 rate –

convolutional2D_4 Size of (3,3)- 15 filters ReLu

batch_norm_layer4 – –

max_pool2d_3 Size (2,2)

flatten_layer1 – –

dense_layer1 100 units ReLu

dropout_layer3 0.2Rate –

dense_2 2 Units SoftMax

Table 2.  Deck two CNN model of ABCDEF feature extraction.

Layers Descriptions Activations

convolutional2D_1 Size of (3,3) -32 filters ReLu

convolutional2D_2 Size of (3,3)- 64 filters ReLu

max_pooling2D_1 (2,2) pool size –

convolutional2D_3 Sze of (3,3)- 128 filters ReLu

max_pooling2d_2 Pool size (2,2) –

convolutional2D_4 Size of (3,3)- 256 filters ReLu

max_pooling2d_3 Pool size (2,2)

flatten_Layer1 – –

dense_Layer1 256 units ReLu

dense_Layer2 128 units ReLu

dense_Layer3 64 units ReLu

dense_Layer4 32 units ReLu

dense_Layer5 2 units Sigmoid
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the following layers. The most noticeable characteristics (maximum value) inside each pooling zone are chosen 
to down-sample the feature maps by utilising maximum pooling layers. Here, Eq. (2) calculates the size of a max 
pooling layer’s output feature map:

where nfm_h stands for the input feature map’s height;nfm_w is its width; nch represents the total number of chan-
nels; fs is the filter’s size; and Ls denotes the stride length. ReLU and SoftMax activation layers are used in the 
architecture. An example of a linear activation function is the Rectified Linear activation function (ReLU), which 
results in the output value as positive and zero otherwise for the corresponding input. Equation (3) is used to 
calculate the value provided to the ReLU activation function, represented as f(Z):

A scaling function called SoftMax converts the input data into probabilities. The vector representing the prob-
ability for each conceivable outcome, corresponding to various classes, is an outcome obtained from the SoftMax 
activation function. The SoftMax function’s denominator has a cumulative term that serves as a normalisation 
factor for the ith element (zi ∈ Z) of the supplied vector (z), guaranteeing that each value of the returned vector 
is 1. Equation (4) illustrates the mathematical definition of the SoftMax activation function, where k stands for 
the total number of classes:

Binary cross-entropy and the Adam optimiser are the loss functions used in this model. The Adam optimiser 
is set up during the model’s compilation with 0.001 as an initial learning rate and a loss function of binary cross-
entropy. Accuracy serves as the evaluation metric. The training set is used with a batch limit of 40 to train the 
CNN model. Basic preparation operations are performed on the dataset before training, including scaling and 
array format conversion. The trained CNN framework is then used to generate predictions on the test dataset. 
The likelihood of each test sample being benign or malignant, as well as the anticipated class and the actual class 
labels, is computed. The confidence factor is the contradiction between the benign and malignant lookalike 
samples, also known as the intra-class variance score. For each test sample, this computation is completed. Upon 
examination, it is found that the error ratio, which is summarised as the proportion of several erroneous samples 
(where the class that was predicted falls short of the actual one classification) and the total number of samples 
that lie within that scale, is 0.05 when the confidence factor drops below 0.999995. This shows that, within this 
range, the model is 95% accurate in its predictions.

Further investigation reveals that the frequency of incorrectly categorised samples rises as the certainty fac-
tor falls below 0.99, leading to an error ratio of 0.3, which indicates that the model is accurate only 70% of any 
given time within this range. Following several iterative trials with different cut-off values, it was discovered 
that 0.999995 is the threshold value that produces the necessary problematic samples (with a certainty factor of 
0.999995). Then, these complex samples are transferred to a separate dataset. Algorithm 2 explains the steps in 
creating an independent dataset for difficult-to-classify samples.

Input: input {x} is the set of test images and {y_actual} is the list of actual class, {y_predict} is the list of predicted class and {P_benign, 
P_malignant} is the list of probabilities of samples being benign and malignant
Output: A dataset containing the challenging sample input images
Step 1: Initialise n to the number of test samples: n = len(x)
Step 2: Initialize an array P_diff to hold the confidence factor of each sample: P_diff = []
Step 3: For i = 0 to n-1, do steps 4 to 12:
Step 4: Set P_diff[i] = abs(P_benign[i] - P_malignant[i])
Step 5: Initialize total samples t = 0 and misclassified samples m = 0
Step 6: Pick random values for k and j
Step 7: for i = j to k, do steps 8 to 11:
Step 8: if y_actual[i] != y_predict[i], Goto 10
Step 9: t = t + 1
Step 10: update m = m + 1
Step 11: Calculate the error ratio e = m/t
Step 12: Repeat steps 6 to 11 until the best values of k and j are found through trial and error.

Algorithm 2 Do_BSC() Pseudocode representation of the baseline separated channel.

The misclassification in the deck one is controlled and regularized by the error ratio ‘e’ given in Algorithm 2. 
Given that the allowable 0.05 error ratio was set, the numerical values of j and k were calculated to be 0.999995 
and 1, respectively. This choice is made in light of the algorithm’s capacity to classify data accurately 95% of the 
time. The remaining data points are then moved to a confined dataset if their intra-class variance score is less 
than 0.999995. The best values of k and j were evaluated by the image patches that do not find any more hairy 
pixel in the processed patches. In that case, the image will terminate and go to the final classifier, and the rest is 
performed as given in the Algorithm 2 sequential steps.

(2)
nfm_h − fs + 1

Ls
∗
nfm_w − fs + 1

Ls
∗ nch

(3)f (Z) =

{

Z,Z > 0

0,Z ≤ 0

(4)ez i =
ez i

∑k
j=i e

z i
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Several image processing techniques are used to efface the hair from the lesions to simplify the categorisation 
procedure. The image is first changed to grayscale to streamline the ensuing processes. Then, using the hair to rep-
resent the black region against the light-coloured backdrop of the lesion, a black hat filter accentuates the bright 
locations of interest inside the darker background. This filter effectively highlights the hair in the photograph, 
which is followed by a thresholding approach. The fundamental idea of thresholding is to assign a specific amount 
to a pixel only if it exceeds a predetermined threshold; otherwise, an alternative value is given. In the resulting 
image, hair is the only feature that stands out against the dark background, which is handled using Algorithm 3.

Algorithm 3 Hair_removal() process.

Finally, this image of highlighted hair, which is from the threshold masked image and the original image 
with the hair, was subjected to an inpainting algorithm. The parameters x, y refers to the image coordinates 
that would be used in the hair removal Algorithm 3. The variables k and l are used as iterators for the summa-
tion over the neighboring pixels of the patch I_{i,j}. These variables are used to traverse the set of neighboring 
pixel coordinates. Whereas, the [N/p] and [M/p] notations represent integer division. It denotes the maximum 
number of patches that can fit in the N and M dimensions of the input image when the patch size is p. It ensures 
that patches are non-overlapping. In Fig. 2, the original image was modified to remove the masked areas that 
match the hair, resulting in an image with no visible hair. A lot of effort is taken to prevent adding noise during 
the inpainting algorithm, so the local neighbourhood around the pixel to be painted must be considered. The 
normalised weighted sum of all the pixels in the neighbourhood is then calculated to replace the missing pixel. 
The pixels that are near the target location are given more attention. This method produces an image where the 
original hair-containing pixels are effectively replaced, resulting in a hair-removed image with no additional 
pixels or noise.

Several data augmentation approaches are then used to improve the Baseline Separated Channel (BSC) data 
balance. These consist of horizontal flipping, random noise, and rotation at random angles. In the image aug-
mentation process, a random rotation of 25% towards the left and 25% in the opposite direction is applied to 
each image, which mainly contributes to adding variety and diversifying the dataset. Mirror images are produced 
by directly flipping the image array using the horizontal flipping function. The dataset size can be increased, 
and orientation variants can be included with the help of this augmentation technique. Gaussian-type noise 
addition is chosen to include randomness in the images. The noise addition is fixed at 0.05 to prevent significant 
changes in the image. The Gaussian distribution’s mean and variance are other parameters left at their default 
settings. By using these strategies for data augmentation, the BSC dataset is expanded, boosting data balance 
and diversification to improve training.

Deck two CNN &feature fusion
The second deck CNN architecture then takes the BSC dataset as its input. Table 2 lists the specifics of the CNN 
model that contains five dense layers, of which the 64-unit dense layer is chosen for feature engineering. The 
CNN’s dense layers automatically extract the pertinent features and are layered just before the last activation 
functions. Given its function in activations and classifications, selecting the final dense layer is helpful since it 
allows for the extraction of precise information. The binary cross-entropy loss function and Adamax optimiser 
are both used. As mentioned above, these features are applied to each training and testing image and each dataset 
is stored separately.

Extraction of ABCDEF features
The ABCD  rule40 is a method that medical experts use to identify if a mole is benign or cancerous. The abbre-
viation ABCD stands for the following rules. The letter A signifies the word asymmetry, which denotes that the 
mole’s two sides differ. B stands for border, emphasising jagged, notched, uneven, or blurry borders. The letter 
C stands for colour, indicating the existence of irregular colouring with different tones of brown or black as well 
as the potential presence of pink, red, white, or blue colours. The letter D represents diameter, which signifies 
that a mole’s diameter is greater than 0.6 cm. The ABCD bio indicator of melanoma has the  rule41 that includes 
assessing the common traits of asymmetry of the lesion in images, irregular borders of the target lesion, colour 
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distribution and multiple colour variations, and diameter. Equation (5) presents the Total Dermoscopy Score 
(TDS), indicating if a mole is benign or malignant, based on the ABCD rule:

A lesion is considered benign if its TDS is lower than 4.75. The lesion is deemed suspicious when the TDS is 
between 4.75 and 5.45. A TDS greater than 5.45 implies cancer.

A patient’s mole image is analysed to determine the ABCDE features, and the relevant numerical attributes 
related to these features are then  obtained42–45. The method for extracting the ABCDE characteristics is described 
in Algorithm 4. The image is first put through a process that isolates the mole’s primary area of occupancy, 
removing the surrounding areas.

Input: Final dataset with augmented images
Output: Numerical values of the ABCDE dataset
1. Grayscale the input images.
2. Determine Otsu threshold values from the image histogram.
3. Apply binary dilation and erosion using a disc-shaped structuring element.
4. Perform image masking.
5. Analyse threshold image with asymmetry, Border, evolution, and diameter functions; analyse the resulting image with colour function.
6. Calculate the affected ( ), unaffected ( _ )concerning asymmetry using equation 6.
8. Detect pixel borders to create a border matrix and inverse of shape factor to compute using equation 7.
11. Compute standard deviation and mean pixel values.
12. Compute colour and distribution using colour variegation.
13. Compute the Diameter using Equation(8).
14. Perform change detection with the evolve () function.
15. Return asymmetry, Border, colour, and diameter values.

Algorithm 4 Extraction of ABCDE features.

This separated image is then saved independently and subjected to additional grayscale processing to simplify 
recognising asymmetry, border, and diameter. The RGB values are transformed into HSV digits using the mole’s 
original colour image. The Otsu threshold  technique46, which repeatedly chooses the best threshold value to 
separate foreground and background pixels, is simultaneously applied to a black-and-white image.

(5)TDS = 1.3 ∗ A+ 0.1 ∗ B+ 0.5 ∗ C + 0.5 ∗ D

Figure 2.  Hair removal process from different sample images of hair from ISIC 2019 and ISIC 2020 datasets.
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Following that, the output is exposed to the process of binary dilation performed by the 3 × 3 structuring ele-
ment, which sets the output value as the highest among the nearby pixels. The image is then subjected to binary 
erosion to determine the output pixel’s value as being the lowest among the neighbouring pixels. Each of these 
edited photos is kept separately.

The image is then masked, allowing for the selective covering up or revealing of specific areas. A separate 
file is also kept for this masked image. The asymmetricity, border irregularity, colour variegation, and diameter 
attributes are taken from the two processed images.

Equation (6) is used to determine the impacted and unaffected areas separately to obtain the asymmetry 
parameter A:

where anon_aff  is the unaffected area; and aaff  is the affected area.
Concerning the border parameter, Eq. (7) yields the lesion’s border perimeter:

where p is the lesion perimeter; and aaff  is the affected area. The RGB colours are converted to HSV values to 
compute the volatility for the colour parameter. The colour attribute is obtained by dividing the resultant stand-
ard deviation by 10.

input: Extracted ABCDE Features, [image names] is the list of all images in the segregated dataset
Output: Fused Features
Step 1: Create CNN model with architecture in Table 2

model = create_cnn_model()
Step 2: Compilation of the model

model.compile(optimizer='adam', loss='binary_crossentropy')
Step 3: Create an intermediate model without the last dense layer

intermediate_model = create_intermediate_model(model)
Step 4: Obtain 64 features from the intermediate model

features = extract_features(intermediate_model, dataset)
Step 5: Store features, filenames, and target classes

store_features(features, filenames, target_classes)
Step 6: Merge ABCDE features with CNN features using the filename as a common column

merged_dataset = merge_features(abcde_features, cnn_features, filenames)
Step 7: Remove columns with all zero activations

filtered_dataset = remove_zero_activations(merged_dataset)
Step 8: Final dataset with fused features and target labels

final_dataset = get_final_dataset(filtered_dataset)

Algorithm 5 Feature fusion framework.

The impacted region and its perimeter are used to calculate the diameter parameter via Eq. (8):

where aaff  stands for the affected area; and p is the perimeter. Within a segregated dataset, these metrics have been 
calculated for each sample. A CNN approach also yields measures for asymmetry, border, colour, and diameter 
in addition to crucial information. A variety of machine-learning approaches use a combination of these met-
rics and data. Figure 3 provides a visual depiction of the overall process of this research module. The evolution 
of the skin lesion is calculated by observing the changes in the area and border features of the lesion over time 
intervals. In the proposed work, it is considered a less significant feature since the implementation focuses on 
early detection of melanocytic lesions. Algorithm 5 describes the procedures involved in merging these various 
aspects. The ABCDE features that are extracted is fused with this novel ‘F’ flag feature to add features that influ-
ence early diagnosis based on presence and absence of a blue-white veil (BWV). The feature fusion process was 
deduced as a sequential algorithm where the final classification of the cancerous vs. non-cancerous skin lesion 
are distinguished as two targets of melanoma and non-melanoma respectively.

‘F’ Flag feature
This study’s ’F’ feature fusion involves fusing the new bio-indicator to the other ABCDE feature for melanoma 
classification to distinguish between cancerous and non-cancerous lesions. This ’F’ flag feature discriminates 
the classes based on the presence and absence of a specific characteristic called a blue-white veil (BWV), which 
is a numerical feature extracted from the images through pixel-level processing. To characterise the ’F’ flag fea-
ture and impose a higher prediction rate, it is also blended with the texture information of the skin lesion. The 

(6)A =

(

(

aaff /anon_aff
)

∗ 100

10

)

(7)B =

(

(p ∗ p)/(4 ∗ 3.14 ∗ aaff )
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)

(8)D =
√

(4 ∗ a)/(p ∗ 10)



10

Vol:.(1234567890)

Scientific Reports |          (2024) 14:676  | https://doi.org/10.1038/s41598-023-49721-x

www.nature.com/scientificreports/

confidence factor is used for the induced decision value for the decision support hierarchical tree. This feature 
supported as a flag is considered one of the prevalent features and is defined in Eq. (9):

Herein, the pixel-level features were obtained from the samples during the classifiers training phase. Among 
all features, the most contributing two specific properties, notably F7 (the pigment of grey-blue areas) and F13 
(atypical globules pigment network), are necessary from the pixels during the rule application phase. The deci-
sion tree uses these two properties to make categorisation decisions. Following the application of the decision 
tree to an image, the applied rules are used to build the initial binary veil mask. A 3 × 3 majority filter is used to 
enhance the smoothness of the mask  boundaries47. The majority class label in each pixel’s 3 × 3 neighbourhood 
is substituted for its value throughout this filtering operation.

The problem with using SFlag1 alone is that a blue nevus might be misclassified as melanoma due to its high 
percentage of blue-white areas. The misclassification of skin lesions based on color spots is solved by these geo-
metrical characteristics which is expressed as the lesion’s ellipticity and/or  circularity48: The circularity of a lesion 
can be characterised as given in Eq. (10):

where px is the number of points on the lesion boundary; (rn, cn) is the spatial coordinate of the kth boundary 
point; and (r ̄, c ̄) is the centroid obtained from the skin lesion image. The third flag feature and measure of the 
ellipticity of a lesion is given in Eqs. (11) and (12) respectively:

where M is the moment invariant; and  µxy represents central moments. The inclusion of SFlag2 and SFlag3 is 
justified by the possibility that extremely circular and/or elliptical lesions with flag patches represented as the 
new bio-indicator ’F’ can be separated from melanomas. ABCDEF combined the method with fivefold cross-
validation to create a classification model.

Classification with DDCNN feature fusion framework
This study employs seven distinct classifiers that can be classified into three groups for effective skin lesion clas-
sification of dermoscopy images. These categories are deep neural network classifiers, ensemble-based classifiers, 
and long-established algorithmic classifiers.

In this work, a multi-layer perceptron was used as the deep learning classifier, and the combination of the 
gradient boosting classification algorithm, XG boosting classifier, and bagged classifier constitute the ensemble 
learning classifiers. Decision trees, SVM, and logistic regression were applied as the machine learning classifiers. 
Recognising each classifier’s distinctive qualities and the requirement to choose the best classifier for this par-
ticular use case are the justifications for using multiple classifiers. Out of several experiments, selected the best 
option by testing these different classifiers. Bagging is preferred because of its ignoble variance; XGBoost was 
considered because of its speed; and SVM was chosen due to its potential with smaller datasets. Each classifier 

(9)SFlag1 =
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Figure 3.  Extraction of Asymmetry, Border, Colour, Diameter and Evolution characteristics.
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has unique advantages, and thus, the second deck CNN has the ensemble classifier that trained the model to 
be highly exact in performing the classification task of distinguishing malignant samples from typical lesions.

Deep neural learning classifier
Through artificial neural networks, deep neural networking is an aspect of machine learning that imitates human 
experts regarding image processing capacity. The multi-layer perceptron (MLP) is a prominent deep learning 
classifier for issues related to classification.

Multi‑layer perceptron
MLP was chosen because it works well with numerical datasets and has a remarkable knack for spotting pat-
terns and trends. Each node in an MLP functions as a neuron and is divided into an input layer, hidden layers, 
and an output layer. Neurons, besides the input nodes, use nonlinear activation functions. The MLP uses back 
propagation, a training method, to improve the neural network’s performance. In Table 3, the model’s architec-
ture is displayed.

In this work, an MLP structure was constructed with four layers, including a sole input layer, a trio of hid-
den layers, each with 64 numbers of nodes, and one output layer. The activation function was performed by the 
Rectified Linear Unit (ReLu).

Ensemble classifiers
Ensemble classifiers are a group of classifiers that integrate their separate judgements, frequently by voting, to 
categorise brand new data. This method improves classification robustness and  accuracy49.

Functional gradient boosting classifier
Due to its excellent accuracy and effectiveness in two-class classification situations, the gradient-boosting clas-
sifier was chosen. Each model in gradient boosting seeks to outperform its forerunner by lowering errors. It 
concentrates on blending an entirely novel model to the residual errors produced by the preceding model rather 
than fitting a model to the complete dataset at each stage.

Three essential elements are involved in gradient boosting. First, it is crucial to optimise the loss function, 
which measures the model’s accuracy in making predictions based on the available data. Second, predictions 
are made using weak learners like decision trees. These decision trees find the ideal division points based on 
metrics like the Gini index.

Eventually, the third element of this method enables the supplemental inclusion of numerous learners, even 
if weak, to reduce the loss of function. Each tree has been included using gradient descent to minimise the loss. 
Twenty estimators in total were used in this study, and the best learning rate for the classification was determined 
by testing several learning rates using the deviance loss function.

Bootstrap aggregating classifier
The bagging classifier was chosen since it reduces variance and guards against overfitting while combining 
numerous weak learners to produce a robust classifier. This kind of classifier aggregates the predicted outcomes 
of each subset of the original data to achieve the final prediction.

The bagging classifier slashes the variance of computations like decision trees by including randomisation 
early in the process and using an ensemble. In this work, a Decision Tree Classifier was employed as the base 
classifier, and 10 base estimators were used. A distinct portion of the training data, chosen randomly with 
replacement, was used for each decision tree’s training. Each decision tree’s output was combined to create the 
final categorisation during testing. By using a voting mechanism amongst the base classifiers, this method suc-
cessfully lowered overfitting and variance.

eXtreme gradient boosting(XGBoost) classifier
A machine learning approach called XGBoost uses gradient boosting to merge different models. Due to its 
exceptional versatility and quickness, which make it the perfect option for datasets of minimal to intermediate 
sizes circumstance, also chosen the XGBoost classifier. Parallel  processing50 is used in its entirety of our proposed 
work. Boosting teaches models in a sequential process, where each new model seeks to correct the faults caused 
by its predecessors instead of training each model separately. An essential benefit of this iterative technique is 
that the freshly developed models concentrate on fixing the mistakes introduced by the earlier estimators. The 
method uses CART-based decision trees, and for this specific model, 100 estimators were used as it is known 

Table 3.  MLP specification parameters.

Layers Output Shape Parameters

Input (None, 784) 0

Dense_1 (None, 512) 4,01,920

Dense_2 (None, 256) 1,31,328

Dense_3 (None, 2) 514

Activation (None, 2) 0
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that this method can overfit. To address this problem, added this eta parameter to prevent overfitting. The tech-
nique includes several improvements, such as cross-validation, sparsely awareness (adding samples encountered 
infrequently), and regularisation (using L1 and L2 regularisation to avoid overfitting).

Machine learning classifiers
Making predictions about the class to which a set of supplied data points belongs is the challenge of ML classi-
fiers. These classes are frequently referred to as labels or targets.

Decision support trees
The decision trees were designated in this work due to their effectiveness in handling numerical data and ease 
of use. Additionally, they provide speedy and effective processing and are simple to  visualise51. Decision trees 
utilise both the CART and index of Gini methods to locate the possible inferior sub-tree that precisely reflects the 
input  data52. The feature with the biggest information gain, as determined by the value of the entropy Eq. (13), 
has been selected as the decision tree’s root node:

where information gain is given in Eq. (14):

The attribute with the lowest IG is split by applying the Gini Index to the attributes of the CART decision-
tree framework (15):

Implementation of support vector machines
The traditional classifier list employs a SVM to reduce errors and speed up the  process53. The main benefit of 
using an SVM is that it performs incredibly well with relatively tiny datasets. Creating a decision border that 
divides an n-dimensional environment into discrete classes is the ultimate goal of an SVM  classifier54. The SVM 
meticulously forms this boundary, known as a hyper plane, using particular points called support vectors. SVM 
determines the best decision extremity by choosing the border that maximises the degree of separation from 
the neighbouring data points of all classes. The hyper plane is the best border since it has the largest distance 
between each class’s nearest points. When the data cannot be separated linearly, a revamped form of SVM known 
as Kernel SVM is used. The data that are not linearly separable are converted into linearly distinct data by Kernel 
SVM. As a measure of the Support Vector Machine in this study, a sigmoid kernel was used.

Logistic regression analysis
Logistic  regression55 was chosen for analysis due to its ease of use and effectiveness during training. Regularisa-
tion can be used to reduce overfitting as well. In this instance, the remaining uncorrelated variables can be used 
to forecast which of two classes the answer variable will belong to. In this procedure, the sigmoid functionσ(t), 
denoted by Eq. (16), is essential:

The input data are transformed by this S-shaped function onto a scale ranging from 0to 1. Values under 0.5 
are categorised as 0, and those greater than 0.5 are classified as 1. The sigmoid function’s output also offers the 
likelihood that the event will occur. For example, if the return value is 0.72, then there is a 72% chance for that 
event to occur.

Experimental results and discussions
Materials
Evaluated our proposed framework on three public benchmark datasets, including ISIC  201956, ISIC  202057and 
PAD-UFES-2058 dataset. These ISIC datasets were taken from the International Symposium of Biomedical Imag-
ing Collaboration (ISBI) for the detection of melanoma. From ISIC 2020, 2700 malignant lesions and 3000 benign 
samples of 5700 images were utilised in this study. As the mostly recent curated dataset, ISIC 2020 is available 
at https:// chall enge2 020. isic- archi ve. com/.

Results and discussions
This section summarises the results of the original CNN model, the creation of a baseline dataset with several 
categories, and the methods used for preprocessing an image, feature extraction, and classification. The experi-
mental dataset was randomly split 70:30 into training and testing sets, yielding 2302 and 989 samples, respectively. 
The proposed technique was evaluated in 15 iterations. The training phase was evaluated using the training set 
for each subsequent run using a tenfold cross-validation approach, with the residual set being used to assess the 
model’s generalisability to new data. The standard CNN model has four convolutional layers, each with 15 filters 
and a 3*3 pixel size. Binary cross-entropy was chosen as the loss function, while Adam’s method was employed 
as the optimiser. The CNN model was trained with 150 epochs, as shown in Fig. 4. Softmax, the last activation 
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function used, produced the predicted probability. A BSC comprises samples with confidence levels below a 
predetermined threshold.

Table 4 displays the results of the baseline deck one CNN. Based on the data, CNN had trouble classifying 
unseen samples, especially when trying to identify cancerous samples.

The test set assessed the CNN model and calculated the likelihood of each sample being benign or cancerous. 
According to Table 5, the model was somewhat over fitted, and changing the hyper parameters or increasing the 
total count of epochs did not significantly increase accuracy. These results can be ascribed to the CNN model’s 
lightweight and quick nature. After 40 epochs, training for the CNN model stabilised, and no significant changes 
were seen. The training procedure was therefore stopped after 50 epochs. The difficult samples were divided into 
a BSC, using this CNN model as the starting point for identifying readily recognisable samples. An alternate 
classification method was used on the BSC to calculate the difference between an unlabelled sample and a sample 
labelled benign or malignant.

Different ranges of intra-class variance scores were considered using a trial-and-error method. The overall 
count of samples falling inside each range and the quantity of incorrectly classified samples were calculated. The 
results in Fig. 5 show a decreasing relationship between the frequency of inaccurate predictions and the intra-class 
variance score. Samples with an error ratio of more than 30% and confidence factor of less than 0.999995 were 
moved to a separate dataset. By utilising a different model to train these samples, this phase seeks to increase 
prediction confidence.

As seen in Fig. 6, the error ratio increased as the intra-class variance score fell because more samples within 
that range were incorrectly classified. When the intra-class variance score diminished from 0.999995 to 0.90, 
the number of incorrectly categorised samples increased from 19 to 92. It is evident that increasing the range 
and reducing the intra-class variance score caused the error ratio to increase. Notably, 95% of samples with a 

Figure 4.  (a) Training Accuracy vs Epochs; (b) Training Loss vs Epochs.

Table 4.  Deck one CNN parameters of DDCNN.

Parameters & results

Epochs 50

Optimizer Adam

Loss Binary cross-entropy

Batch size 40

Training accuracy 98.7

Testing accuracy 90.5

Training loss 0.047

Testing loss 1.03

Table 5.  BSC dataset sample size.

2 classes Before aug After aug

Hairy sample 236 412

Non-hairy sample 417 417

Total 653 829
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probability difference greater than 0.999995 were correctly identified. On the other hand, samples with a confi-
dence factor (intra-class variance score) less than 0.999995 were shifted to a newly segregated dataset.

A correlation analysis was performed to thoroughly explore the connection between the confidence factor 
and error ratio, and the outcomes are displayed in Fig. 6. The confidence factor for each image was determined, 
and the photos were separated into several ranges represented by the letters A to L, where L refers to the highest 
confidence factor, and A represents the lowest. The decreasing trend seen from Range A to L shows an inverse 
link between the confidence factor and error ratio. The error ratio decreases in direct proportion to the confi-
dence factor. By examining several sets, the effect of the confidence component is illustrated. Set A displays the 
largest average error ratio and lowest confidence factor. On the other hand, Set L has the lowest average error 
ratio and the highest confidence factor. Figure 6 reveals that this pattern is consistent over all conceivable ranges 
and emphasises the negative relationship between the confidence factor and error ratio. With a confidence factor 
above the cut-off, the baseline CNN was used to classify samples, producing an average error ratio of 0.0437.

Therefore, samples falling within ranges A to J, as shown in Fig. 6, and having a confidence factor lower 
than 0.9999965 were moved to the BSC. These samples are considered challenging to categorise because their 
confidence factor is below the predetermined level, so this segregated dataset is devoted to additional classifica-
tion efforts.

A glimpse of the samples included in the BSC dataset is shown in Fig. 7. In this BSC phase, hair removal 
was performed as preprocessing to make extracting characteristics from the samples easier. Figure 8 shows the 
detailed procedure for hair removal during the no-hair image extraction process. The image was initially con-
verted to grayscale, then a black hat filter was used to emphasise the dark interest areas. The thresholding method 

Figure 5.  BSC results concerning the confidence factor and number of image samples.

Figure 6.  Average error ratio vs. confidence factor ratio.
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was then applied to the filtered image. Last, the inpainting technique removed the hair-containing regions from 
the original image, leaving behind a hairless image.

Data augmentation is commonly used for benign samples to correct the imbalance in the BSC dataset, where 
a larger percentage of samples are malignant. Table 5 details the BSC dataset’s split and augmentation procedure. 
This augmentation strategy was performed to reduce overfitting, as seen in the deck one baseline CNN. Over-
fitting can be successfully reduced using augmentation approaches, and the dataset can be properly balanced.

The augmentation methods used in this work included random rotation to 180,270, and 360, random noise 
addition, and horizontal flipping. Examples of the augmented data produced using these methods are shown in 
Fig. 8. The expanded BSC dataset for 150 epochs was used to trained the deck two CNN. Four convolutional layers 
of 32, 64, 128, and 256 filters, each with a filter size 3*3, make up the CNN architecture. In addition, five dense 
layers with 256, 128, 64, 32, and 2 units each are included. The third dense layer of the CNN, which recognises 
and retains 64 crucial features, was chosen to perform feature selection. These desired features were obtained 
using the ReLU activation function from a fully linked layer with 64 units (features). The CNN predicts whether 
a lesion is benign or malignant based on these factors or traits. Two units make up the last dense layer, with one 
unit confirming the presence of cancer. Binary cross entropy was employed as the loss function. Applying this 
CNN, it was possible to merge the retrieved 64 features with the ABCDE features by saving them as a feature file. 
Table 8 summarises the acquired results and details the deck two CNN architecture. Although the overfitting 
was reduced, testing accuracy was still only 85%.

The separated dataset provides valuable attributes, including asymmetry, border irregularity, colour variega-
tion, and  diameter59. The image was cropped to highlight the mole and exclude extraneous elements. Only the 
section that contains the lesion was kept; while everything else was thrown away. This image was further cropped 
and saved separately. After that, Otsu’s threshold was applied to the grayscale  image60. Following this thresholding 
process, binary dilation and binary erosion were applied to the result. The final image was saved independently 
and then masked, which made it possible to extract information like asymmetry, borders, and diameter. The 
many stages of ABCDE extraction for both hairy and non-hairy images are graphically represented in Fig. 9. This 
example emphasises the necessity of hair removal to get precise extraction results. It is pertinent to mentioned 
that extraction will not be successful without effective hair removal.

Utilising the coloured image is a step in getting the colour characteristic from an image. The RGB data are 
transformed into HSV numerical values to do this. A visual illustration of how the model learns to recognise 
various features inside images is provided in Fig. 11, which shows how the CNN extracts features at each layer. 
The model’s internal operations are better understood thanks to this visualisation. It also helps, in some circum-
stances, in determining the possible reasons why the model fails. It is clear from assessing the feature maps of 
normal and melanoma images that the lesion’s colour and form are essential characteristics. Figure 10 shows 
a second deck CNN feature map of a benign image obtained in the proposed DDCNN. Unfortunately, there 
are times when it is difficult to discern between the two groups using these attributes, which reduces accuracy.

The file name is described by four extracted features in each dataset column: asymmetry, border, colour, and 
diameter. Combining these four features with the 64 features obtained via CNN, 68 features were used in the 
classification procedure. Seven distinct classifiers were employed to carry out the classification. The results of 
these classifiers are shown in Table 9. A test size of 30% of the original dataset was employed for each classifier. 
The model was then utilised to assess untrained images, which acted as the test data when the training phase 
was complete. Several performance  indicators61, including accuracy (Acc), precision (Pre), sensitivity (Sens), 

Figure 7.  Hairy image samples segregated at the baseline separation channel (BSC).
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specificity (Spec), and Area Under Curve (AUC), were calculated to assess and boost the prediction rate. Some 
performance metrics were used to increase forecast accuracy.

Accuracy, as defined in Eq. (17), quantifies the capacity to distinguish between melanoma and benign 
instances:

Precision, defined in Eq. (18), is the ability of the model to correctly classify melanoma:

Sensitivity, often called recall, measures how well cases of melanoma can be recognised during Eq. (19):

Specificity, expressed in Eq. (20),is a measure of how well benign situations may be recognised:

Together, these indicators help to increase the prediction rate and assess the effectiveness of the classification 
model.

Discussion
Results indicate that the proposed Double Decker Convolution Neural Network (DDCNN) feature fusion frame-
work was able to predict malignant melanoma while overcoming image problems, such as hair presence, overfit-
ting, time requirements, and low specificity. Nevertheless, it should be noted that this research was limited to 
binary classification tasks. Future research will examine visual attention approaches to solve more general skin 
lesion classification issues. A productive methodology will also be used to select features and identify melanoma 
from a benchmark database. The proposed method is contrasted with current state-of-the-art approaches in 
Table 6. The suggested technique’s high accuracy, AUC, and specificity are particularly noteworthy. In terms of 
general accuracy, there is still space for growth.

Tables 7 and 8 overview the outcomes of several classifiers trained with and without the ’F’ flag feature. It 
can be seen that the gradient boosting classifier outperformed the other ensemble classifiers, closely followed by 
the bagging classifier. The most successful machine learning classifier was determined to be logistic regression.

To ascertain the efficacy of the ’F’ flag feature, it was tested with several ablation trials, as shown in Table 10. 
The final improved specificity of classifiers confirms the influence of the newly employed biomarker for the early 
diagnosis of melanoma. It may be optimised to various loss functions and modify hyper-parameters. Gradient 
boosting classifiers provide a great deal of versatility. Cross-validation was used in this study to test multiple 
learning rates, and the optimal rate was discovered to be 0.1. Adding the ’F’ flag feature along with Asymmetry, 
Border, Colour, and Diameter increased the accuracy of the 5 classifiers. The gradient boosting and bagging 
classifiers had the highest precision, indicating a high percentage of correctly categorised examples, as seen in 
Table 9. The gradient boosting classifier had the highest specificity, accurately recognising benign cases, while 
the multi-layer perceptron had the highest recall, detecting the majority of actual cases of melanoma. Different 
kernels (Polynomial, Gaussian, and Sigmoid) were sought in the support vector machines (SVM) classifier. It 
was decided to utilise the sigmoid kernel because it produced the best accuracy. Using the ISIC 2020 dataset, 
the accuracy of the compared different classifiers before the ’F’ feature fusion ranged from 87.6% to 92.28%. 
After adding the ’F’ feature fusion, the accuracy varied from 87.38% to 93.75%. The gradient boosting classifier 
outperformed the others, with the most remarkable specificity of 98.47%.

The boxplots in Fig. 11 show how ABCDE characteristics are produced. The estimates of the associated attrib-
utes, including Asymmetry, Border, Colour, and Diameter, are shown on the x-axis. The ABCD characteristics, 
where a large number of samples lie above the mean, are notable examples of this transparent discovery. These 
samples primarily fit into the malignant class, according to further examination. By analysing structures in their 
values (more or less than the mean), these parameters play a vital role in predicting malignancy and become 
essential criteria for categorisation. In this instance, the diameter characteristic does not show abundance among 
samples beyond the mean. However, study shows that larger diameter values are typically linked to malignancy.

The Table 11 demonstrates how various classifiers were evaluated to see which one could correctly categorise 
melanoma instances. With an accuracy of 93.6%, the gradient boosting classifier fared the best and had the high-
est success rate compared to the other classifiers.

The sensitivity of a system (how well it can identify positive cases) and specificity (how well it can identify 
negative cases) are combined in the AUC (Area Under Curve) assessment. This metric aids the comprehen-
sion of precision with which a classification system may discriminate between positive and negative classifica-
tions. Determining if a system is biased towards positive or negative cases can be challenging when performing 
individual examination on sensitivity and specificity. Because of this, AUC is regarded as an exemplary metric 
for evaluating various classification schemes for both positive and negative scenarios. The Receiver Operating 
Characteristic (ROC) area under the curve is used to compute AUC. This graph displays various sensitivity and 

(17)Acc =
TrueMalignant + TrueBenign

Total number of input skin lesion images

(18)Pre =
TrueMalignant

TrueMalignant + FalseMalignant

(19)Sens =
TrueMalignant

TrueMalignant + FalseBenign

(20)Spec =
TrueBenign

TrueBenign + FalseMalignant
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specificity combinations as the categorisation threshold varies. The classification approach is closer to a perfect 
predictor if the AUC value is more prominent. The ROC, which illustrates how well the classification model per-
forms, is shown in Fig. 12a. It has a perfect curve and an extremely effective AUC value of about 0.96. Generated 
a confusion matrix to see how the model enacts. The amount of true positives, true negatives, false positives, and 

Figure 8.  Augmented samples of the skin lesion images.
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Figure 9.  (a) Input image; (b) Processed scale image; (c) Perimeter and feature calculated image; (d) Masked 
image; (e) Resulting image.

Figure 10.  Feature maps of the benign skin lesion input images.

Table 6.  Parameters and outcome of deck two CNN.

Parameters & results

Epochs 250

Optimizer Adam

Loss Binary cross-entropy

Batch size 16

Training accuracy 95.67

Testing accuracy 92.53

Training loss 0.048

Testing loss 2.03
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false negatives predicted by the model is displayed in a grid-like format. The confusion matrix for the test class 
is shown in Fig. 12b. The model’s high specificity is explained by the fact that it correctly predicted the major-
ity of the benign samples, which is helpful. Only five cancerous samples were mistakenly classified as benign.

Table 9 summarises the processing time and temporal performance of the designed system, which was run at 
4.20 GHz on an Intel i7-7700 processor with 8 GB of RAM. Despite using two CNN frameworks, the shorter com-
putation time can be attributable to these models’ lightweight design. The deck-two CNN needed only 0.5 min for 
each epoch, compared to the deck-one baseline CNN’s average time of 2 min. Techniques for data pre-treatment, 
such as data augmenting and hair elimination, and were also successfully carried out. The automated and quick 
ABCDEF classification method worked well. The new ’F’ flag feature bio-indicator of melanoma identification 
clearly improves prediction accuracy. As a result, our model was trained in a mere 10 h, which is exceptionally 
effective given the size of the dataset, and it took only 1 min to test a batch of samples. Yet, automation of image 
portions containing hair is one area where personal intervention is still required.

Table 10 reveals the improved specificity of identifying the cancerous lesions from the suspicious benign 
lesions when the ’F’ feature was incorporated into the training process of all seven classifiers. Among these, the 
resulting improvement of 7.34% is noted for the best case and 0.49% for the most negligible value. This capabil-
ity of the proposed DDCNN ‘F’ flag feature fusion confirms its ability to classify melanoma, which is critical for 
early diagnosis.

The classification accuracy (%) of the proposed DDCNN ’F’ flag feature fusion framework for the ISIC 2020 
dataset was determined to be 93.75%, as shown in Table 11. Comparatively, the classification accuracy (%) of 
other state-of-the-art  methods69–75 ranged from 81.8 to 92.4. Moreover, the proposed framework achieved the 
highest specificity (98.4%) and precision rate (98.56%) compared to other cutting-edge classifiers.

Significance and limitations
The ‘F’ flag feature contributes as an influencing morphological feature that helps in the classification of mela-
noma at early stages. Also, the proposed DDCNN-F handles the images occlusion with hair artefacts separately 
from BSC. The fusion of the feature with each pretrained model confirms the improvise in the accuracy and speci-
ficity. This will greatly facilitate the automated detection of melanoma in early stages which benefits the patients 
and prevent severe metastasis. Though the proposed model achieves better specificity and precision, it still finds 
some difficulties for the over-hairy images, which are not effectively handled by our hair removal algorithm. Due 
to higher order inpainting, the images may have leaks in certain pigment features of the dermoscopic image. This 
should be taken care of so that the loss of 6.25% can still be reduced and that would result in better accuracy.

Conclusion and future work
This study proposes a framework composed of a double-decker convolution neural network (DDCNN) with the 
‘F’ flag feature indicator to categorise dermoscopy images as benign nevus or malignant melanoma. The method 
employs a base CNN to categorise smaller data. Herein, an apportioned dataset for difficult samples was produced 

Table 7.  Evaluation metrics of different classifiers result for the sample input images without utilising the ’F’ 
flag feature. Significant values are in bold.

Classifiers (Without ’F’ Flag Feature) Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Multi-Layer  perceptron62 85.47 90.61 81.01 91.89

Gradient boosting  classifier63 87.6 97.51 88.63 97.47

Bagging  classifier64 88.83 89.6 89.6 90.06

XGBoost  classifier65 90.87 92.86 85.52 92.41

Decision  trees66 87.29 91.69 84.32 90.96

Logistic  Regression67 88.71 91.98 89.45 91.25

SVM68 92.28 93.6 90.92 93.67

Table 8.  Evaluation metrics of different classifiers for the sample input images trained with the ’F’ flag feature. 
Significant values are in bold.

Classifiers (With ’F’ Flag Feature) Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Multi-layer perceptron 92.81 89.78 96.69 88.97

Gradient boosting classifier 93.6 98.56 89.67 98.47

Bagging classifier 93.75 98.56 88.08 98.4

XGBoost classifier 92.82 94.66 91.12 94.52

Decision trees 87.38 91.69 84.32 90.96

Logistic regression 91.17 91.49 93.35 92.25

SVM 92.77 94.66 89.45 94.38
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Table 9.  The detailed process and time of the proposed framework.

Process Time taken

Time taken for each epoch in deck 1 CNN 90 s

Total time is taken for first deck CNN 1.2 h

Data preprocessing 0.5 h

Time is taken for epochs in deck 2 CNN 30 s

Total time is taken for second deck CNN 2.5 h

ABCDE an ’F’ flag feature fusion and final classification 2.5 h

Total time taken for the entire model execution 7.8 h

Figure 11.  (a) Asymmetry, (b) border, (c) colour, and (d) diameter box plots.

Figure 12.  (a) ROC plot of the proposed framework; (b) Confusion matrix of two classes: benign and 
malignant.



21

Vol.:(0123456789)

Scientific Reports |          (2024) 14:676  | https://doi.org/10.1038/s41598-023-49721-x

www.nature.com/scientificreports/

based on the intra-class variance score. In this dataset, hair removal was done to simplify the categorisation of 
samples. Rotation, flipping, and random noise addition were used as data augmentation techniques to balance 
the dataset and improve the proportion of benign samples. The samples were subsequently trained using a differ-
ent CNN model to extract bottleneck CNN characteristics. The photos also contained ABCDEF features, which 
were all retrieved and merged. The influencing ’F’ flag feature incorporated in the second deck of the proposed 
framework plays a vital role in identifying melanoma samples from regular lesions. This ’F’ feature, fused with 
other bio-indicators of melanoma, showed to outperform other detection methods in terms of accuracy. The 
retrieved features were used to classify the images using a combination of machine learning, deep learning, and 
ensemble classifiers, and then the accuracy of each method was compared. For samples with easy identification, 
the first module’s accuracy in the initial categorisation stage was 95%. A deep learning classifier (Multi-Layer 
Perceptron) obtained 91.21% accuracy in the second stage using the segregated dataset. In comparison, the 
machine learning classifier (Logistic Regression) achieved an accuracy rate of 91%, and the ensemble of classi-
fiers (Gradient Boosting) achieved 92% accuracy. Combining the ABCDEF features significantly increased the 
proposed DDCNN ‘F’ feature fusion algorithm’s overall performance in melanoma classifications, resulting in 
93.75% accuracy under the extensive evaluations. Our future research will be intended to develop a web applica-
tion with automated reports on ABCDEF features value with confidence factor of being melanoma, that helps 
in the early diagnosis of skin cancer extended towards other medical conditions with trending feature fusion 
on multimodal  images76. Moreover, the extension of this model can be rigorously fine-tuned for other non-
melanoma skin disease diagnosis and can further implemented with staging with treatment planning.

Data availability
The ISIC 2019 and ISIC 2020 data are available at the following Kaggle link: https:// chall enge2 020. isic- archi ve. 
com. The proposed feature fusion framework code on DDCNN-F can be shared upon reasonable request to the 
corresponding author, premaladha@ict.sastra.edu.
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