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Gene expression profiling 
and protein–protein network 
analysis revealed prognostic hub 
biomarkers linking cancer risk 
in type 2 diabetic patients
Harshita Kasera 1, Rajveer Singh Shekhawat 1, Pankaj Yadav 1* & Priyanka Singh 1*

Type 2 diabetes mellitus (T2DM) and cancer are highly prevalent diseases imposing major health 
burden globally. Several epidemiological studies indicate increased susceptibility to cancer in T2DM 
patients. However, genetic factors linking T2DM with cancer have been poorly studied. In this 
study, we followed computational approaches using the raw gene expression data of peripheral 
blood mononuclear cells of T2DM and cancer patients available in the gene expression omnibus 
(GEO) database. Our analysis identified shared differentially expressed genes (DEGs) in T2DM and 
three common cancer types, namely, pancreatic cancer (PC), liver cancer (LC), and breast cancer 
(BC). The functional and pathway enrichment analysis of identified common DEGs highlighted the 
involvement of critical biological pathways, including cell cycle events, immune system processes, 
cell morphogenesis, gene expression, and metabolism. We retrieved the protein–protein interaction 
network for the top DEGs to deduce molecular-level interactions. The network analysis found 7, 6, 
and 5 common hub genes in T2DM vs. PC, T2DM vs. LC, and T2DM vs. BC comparisons, respectively. 
Overall, our analysis identified important genetic markers potentially able to predict the chances of 
PC, LC, and BC onset in T2DM patients.

Abbreviations
T2DM  Type 2 diabetes mellitus
PC  Pancreatic cancer
LC  Liver cancer
BC  Breast cancer
DEGs  Differentially expressed genes
PPI  Protein-protein interaction
PBMC  Peripheral blood mononuclear cells
log2FC  Log2 fold change
GO  Gene ontology
KEGG  Kyoto encyclopedia of genes and genomes
FDR  False discovery rate

Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder that can occur at any age, albeit wide-
spread in the middle (i.e., 45 years) to late age individuals. Insulin resistance, a condition in which muscle, liver, 
and fat cells fail to use insulin properly, precedes the onset of T2DM. Eventually, the beta cells of the pancreas 
cannot produce enough insulin due to progressive cell mass reduction or dysfunction. T2DM is characterized 
by insulin resistance and  hyperglycemia1. The genome-wide association studies in the past have revealed some 
403 distinct genetic variants in T2DM, which could influence beta-cell functioning, adipocytes, liver, skeletal 
 muscle2, and many other tissues. As a result, it is not surprising that chronic T2DM can lead to additional 
complications such as nephropathy, cardiomyopathy, retinopathy, and  neuropathy3. Consequentially, many 
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differentially expressed genetic markers that could confer T2DM susceptibility were  identified4. Subsequent 
bioinformatics analysis of these differentially expressed genes has revealed the genetic association of T2DM 
with these co-morbidities5. These findings have advanced our understanding of complications arising due to 
T2DM and have prospective applications in designing personalized prognostic and diagnostic tools for such 
heterogenic human diseases.

Cancer is another heterogenic disease that is also the second leading cause of human  death6. It is characterized 
by unrestricted growth of abnormal cells. In some cases, these abnormal cells could metastasize to other parts 
of the human body. Liver, pancreatic, and breast cancers are among the most common cancer  types7. It is well-
known that T2DM and many common cancers share several risk factors like aging, obesity, and an unhealthy 
 lifestyle8. Different epidemiological studies in the past suggest that T2DM condition increases the risk of several 
cancers, including liver,  pancreatic9,  breast10,11, and  endometrial12. They report standardized incidence ratios to 
indicate an increased risk of cancers in T2DM patients. Pancreatic and liver cancers showed the highest standard-
ized incidence ratios in different populations of T2DM patients from Denmark, Tyrol/Austria, Taiwan, Sweden, 
Australia, the Chinese  mainland13,  Finland14, and Lithuania. In addition, a few meta-analysis studies reported an 
increased risk of breast cancer in diabetic  women10,11. There is no clear molecular understanding of T2DM link 
to specific cancer types yet. However, the state of insulin resistance, hyperinsulinemia, hyperglycemia, chronic 
inflammation, and increased oxidative stress in T2DM could probably elicit mitogenic pathways and cause these 
 cancers15. Moreover, a few Mendelian randomization studies indicate a positive association between T2DM and 
the risk of pancreatic, breast, lung, liver, and kidney  cancer16,17. Despite the availability of extensive evidence 
from epidemiological and meta-analysis that links cancer risk to T2DM, a systematic study of the shared genetic 
markers possibly predisposing this risk in T2DM patients is lacking for the common cancer types, namely pan-
creatic (PC), liver (LC), and breast (BC) cancer.

In this work, we performed gene expression analysis to identify predominant differential expressed genes 
(DEGs) from the peripheral blood mononuclear cell (PBMC) samples of T2DM patients, posing a risk towards 
three common cancer types (PC, LC, and BC). Their functional enrichment analysis indicated the involvement 
of gene expression, cell transport, and oxidation pathways. The protein–protein interaction (PPI) network pro-
vided common hub genes between T2DM and the three cancer types. We identified TGFB1 as a common hub 
gene between T2DM and PC/LC, significantly affecting survival in cancer patients. Therefore, the identified hub 
genes have a potential prognostic and therapeutic value in patients with T2DM patients and high cancer risks.

Results
Shared DEGs in T2DM and three common cancer types
Gene expression data of Homo sapiens in different diseased conditions were obtained from gene expression omni-
bus (GEO) database. Table 1 provides the summary of three different datasets used in our study. We employed 
a three-tiered filtering criterion to identify the shared DEGs between T2DM and three cancer types (Fig. 1). 
The raw gene expression datasets were normalized for each GEO study using the GEO2R tool (Supplementary 
Fig. S1). We identified 94 DEGs shared between T2DM and LC using our filtering criterion (Supplementary 
Fig. S2). Of these, 59 DEGs were upregulated, while 35 were downregulated (Supplementary Fig. S3). Likewise, 
for T2DM vs. BC comparison, we identified 16 shared DEGs (Supplementary Fig. S2), including 8 upregulated 
and 8 downregulated (Supplementary Fig. S3). For T2DM vs. PC, the three stringent filtering criteria resulted 
in an insignificant number of shared DEGs. However, using FDR ≤ 0.1 at filter 1, we identified 66 shared DEGs 
(Supplementary Fig. S2). Interestingly, the GSE15932 dataset also has data from 8 patients suffering from T2DM 
and PC disease. We applied the first two filtering criteria on T2DM & PC dataset, which identified 1203 DEGs 
(Supplementary Fig. S2). Surprisingly, we observed 69% (46 DEGs) shared DEGs of T2DM vs. PC overlapping 
with the DEG identified from T2DM & PC. For further functional analysis, we proceeded with the above 46 DEGs 
in T2DM vs. PC, where 26 were upregulated, and 20 were downregulated (Supplementary Fig S3). Similar valida-
tion could not be performed for T2DM vs. LC and T2DM vs. BC due to the unavailability of such a dataset. We 
observed a strong Pearson’s correlation (0.98 for T2DM vs. PC, 0.90 for T2DM vs. LC, and 0.87 for T2DM vs. BC) 
for the identified shared DEGs between T2DM and three common cancer types (i.e., PC, LC, and BC). Table 2 
summarizes the number of shared DEGs narrowed down after applying our filtering criteria to each dataset.

Table 1.  Overview of GEO datasets used in this study. The dash (–) symbol indicates that the information is 
not available. T2DM: type 2 diabetes mellitus, PC: pancreatic cancer, LC: liver cancer, BC: breast cancer.

Accession ID Sample type Sample size Gender Age (in years) Country

GSE15932

T2DM 8

Male/female 43–80 China
PC 8

T2DM & PC 8

Healthy 8

GSE58208

LC 10

– – SingaporeHealthy 5

Others 12

GSE27562

BC 37

Female – USAHealthy 31

Others 94
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Figure 1.  Schematic representation of the workflow used to identify differentially expressed genes (DEGs) and 
narrow down to the common hub genes in T2DM vs. respective cancers datasets.

Table 2.  Summary of the number of genes filtered with three-tiered filtering criteria (statistical significance 
(filter 1; adjusted p-value ≤ 0.05 unless specified), biological significance (filter 2;  log2FC ≥ |0.5|) and 10% 
relative distance around linear regression line of the correlated gene (filter 3).

Disease type

Number of genes

Common Statistical significance Biological significance Relative distance

T2DM vs. PC 22,190 98 (adjusted p-value ≤ 0.1) 76 66 (46 common with T2DM & PC)

T2DM & PC 22,190 1996 1203 Not applicable

T2DM vs. LC 22,190 142 110 94

T2DM vs. BC 22,190 212 20 16
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Functional enrichment and pathway analysis of shared DEGs
To understand the functional relevance of identified common genes between T2DM and three cancers (PC, 
LC and BC), we utilized GO biological process and KEGG signaling pathway analysis tools from GENECODIS 
software. The GO biological process of the shared DEGs in T2DM vs. PC comparison showed enrichment of 
vesicle-mediated transport, protein export from the nucleus, engulfment of target by autophagosome, posi-
tive regulation of cellular protein metabolic process, positive regulation of protein localization to nucleus, etc. 
(Table 3). The KEGG pathway analysis results were insignificant for the T2DM vs. PC comparison. In the T2DM 
vs. LC comparison, the shared DEGs revealed enrichment in several critical biological processes such as ATP 
biosynthetic process, peptide modification, regulation of RNA splicing, regulated exocytosis, and neutrophil 
degranulation (Table 4). We also found enrichment of KEGG pathways shown in Supplementary Table S1, 
(section T2DM vs. LC), which includes synaptic vesicle cycle (hsa04721, p = 5.63 ×  10−2), rheumatoid arthritis 
(hsa05323, p = 5.63 ×  10−2), collecting duct acid secretion (hsa04966, p = 5.63 ×  10−2), phagosome (hsa04145, 
p = 5.63 ×  10−2), and oxidative phosphorylation (hsa00190, 9.05 ×  10−2).

Similarly, analysis of common DEGs in T2DM vs. BC comparison led to the enrichment of hydrogen perox-
ide catabolic process, cellular oxidant detoxification, autophagic cell death, regulation of DNA recombination, 
hemoglobin biosynthetic process, and plasminogen activation from GO biological process (Table 5). The KEGG 
pathway analysis results were insignificant for the T2DM vs. BC comparison. Overall, cellular transport, gene 
expression, and cellular oxidation pathways were affected in this analysis, which motivated us further to perform 
the interaction analysis at the molecular level.

Deducing molecular level interactions using PPI network
The above analysis linked identified common genes to specific biological pathways, which intrigued us to inves-
tigate their relationship at the molecular level. We constructed the protein–protein interaction (PPI) networks 
of identified common DEGs between T2DM and three cancer types (PC, LC, and BC). Our analysis yielded 16 
nodes (genes) in T2DM vs. PC, 25 in T2DM vs. LC, and 5 in T2DM vs. BC in the main connected PPI networks 
(Supplementary Table S2, Fig. 2a–c).

In the PPI network analysis, the node size reflects their degree, and node color indicates the expression pat-
tern, thus making it possible to deduce certain hub genes for respective disease conditions. Moreover, network 
analysis provides information on the important hub genes and enriched processes and pathways involving 

Table 3.  Shows top significantly enriched GO:BP involving the identified DEGs for T2DM vs. PC patients. 
FDR: false discovery rate, DEGs: differentially expressed genes, Count: number of DEGs.

Description Annotation ID Count FDR DEGs

Vesicle-mediated transport GO:0016192 7 1.15 ×  10−3 SFT2D1, TRAPPC1, RAB32, TFG, STXBP2, GSN, SYT15

Plus-end-directed vesicle transport along microtubule GO:0072383 2 1.38 ×  10−2 KIF13A, KIF3A

Receptor catabolic process GO:0032801 2 3.52 ×  10−2 TGFB1, SMURF1

Protein export from nucleus GO:0006611 2 3.52 ×  10−2 TGFB1, SMURF1

Engulfment of target by autophagosome GO:0061736 1 3.52 ×  10−2 SMURF1

Negative regulation of translation in response to endoplasmic reticulum stress GO:1902010 1 3.52 ×  10−2 SESN2

Response to muscle stretch GO:0035994 2 3.52 ×  10−2 GSN, NFKBIA

Septin ring assembly GO:0000921 1 3.52 ×  10−2 ANLN

Positive regulation of cellular protein metabolic process GO:0032270 2 3.52 ×  10−2 TGFB1, NFKBIA

Positive regulation of protein localization to nucleus GO:1900182 2 3.60 ×  10−2 SESN2, TGFB1

Table 4.  Shows top significantly enriched GO:BP involving the identified DEGs for T2DM vs. LC comparison.

Description Annotation ID Count FDR DEGs

ATP biosynthetic process GO:0006754 4 2.1 ×  10−3 TGFB1, COX5B, ATP6V0C, ALDOA

Peptide modification GO:0031179 2 1.58 ×  10−2 GGT2, GGT1

Regulation of RNA splicing GO:0043484 4 1.96 ×  10−2 PTBP1, MBNL2, CDK11A, SRSF10

Negative regulation of mRNA splicing, via spliceosome GO:0048025 3 1.96 ×  10−2 PTBP1, SRSF7, SRSF10

Regulated exocytosis GO:0045055 7 2.19 ×  10−2 TGFB1, CTSD, CYBA, ATP6V0C, RHOG, 
ALDOA, DBNL

Neutrophil degranulation GO:0043312 6 2.54 ×  10−2 CTSD, CYBA, ATP6V0C, RHOG, ALDOA, 
DBNL

Regulation of mast cell degranulation GO:0043304 2 9.16 ×  10−2 UNC13D, STXBP2

Negative regulation of glomerular filtration by angiotensin GO:0003106 1 9.16 ×  10−2 CYBA

Reactive nitrogen species metabolic process GO:2001057 1 9.16 ×  10−2 PRDX5

Proton transmembrane transport GO:1902600 4 9.16 ×  10−2 ATP6V0E1, ATP6V0D1, ATP6V0C, COX5B
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major hub nodes as represented by a colored ring around each node (Fig. 2a–d). Our network analysis revealed 
important genes associated with more than one biological pathway, thus suggesting their evident involvement in 
the respective disease conditions. The important genes from the T2DM vs. PC network included, HIST2H2AA3, 
HIST2H2AA4, NFKBIA, SESN2, SMURF1, TGFB1, TNRC6A (Fig. 2a). The T2DM vs. BC network could not 
reveal the genes associated with the biological pathways due to insufficient DEGs (Fig. 2b). For the T2DM vs. LC 
network, ALDOA, ATP6V0D1, ATP6V0C, ATP6V0E1, TGFB1, CYBA, CTSD, and DBNL genes were considered 
significant (Fig. 2c).

Interestingly, a common gene, TGFB1, between T2DM vs. PC and T2DM vs. LC, is upregulated in both 
conditions. This gene codes for a growth factor in cell proliferation, differentiation, and death. We used these 
findings as a basis for further investigation of hub genes.

Hub genes identification and survival analysis
We ranked the nodes in our PPI network analysis based on eleven different topological features using the cyto-
Hubba plugin in the Cytoscape tool (see details in the materials and methods section). Thus, we identified the 
top 15 genes for T2DM vs. PC and T2DM vs. LC (Supplementary Table S3). We noticed several hub genes such 
as HIST2H2AA4, SESN2, and TNRC6A for T2DM vs. PC and ATP6V0D1, ATP6V0C and TGFB1 for T2DM vs. 
LC that were top-ranked in almost all the computed topological features. This analysis was not performed for 
T2DM vs. BC due to the insufficient number of identified common DEGs. We further narrowed common hub 
genes based on their top ranking and commonness across the computed topological features. Accordingly, we 
could identify seven genes as the hub genes for the T2DM vs. PC comparison. The relative  log2 fold expression of 
these genes in two diseased conditions is represented in Fig. 3a. For the T2DM vs. LC comparison, we identified 
six hub genes. We found similar expression levels of these genes in T2DM and LC disease conditions, as indicated 
in Fig. 3b. For the T2DM vs. BC comparison, five genes identified from PPI network analysis were considered 
the hub genes, as represented in Fig. 3c. We identified 17 hub genes combined for the three comparisons, which 
could serve as potential biomarkers. Further, survival analysis was also performed for all the common hub genes 
using a web resource UALCAN, which analyzes publicly available cancer OMICS  data18,19. The survival analysis 
revealed 4 hub genes (ATP6V0C, p < 0.051; ATP6V0D1, p < 0.02; ATP6V0E1, p < 0.0002 and TGFB1, p = 0.042) 
with significant p-value ≤ 0.05 to be linked with poor survival (Supplementary Fig. S4). The expression levels of 
these four hub genes were similar to our analysis. Interestingly, we found a common hub gene TGFB1 between 
T2DM vs. pancreatic cancer and T2DM vs. liver cancer patients, which significantly affects survival. In the case 
of breast cancer samples, the diagnosis was benign, so, likely, the survival is not dependent on the identified 
common hub signatures for these samples.

We further validated the identified prognostic 17 hub markers from our study using three additional publicly 
available datasets for T2DM patients (Supplementary Fig. S5a). Our validation analysis revealed overlapping 
functionally-enriched gene ontology biological processes (Supplementary Fig. S5b–e). Out of the 17 hub genes, 
we could validate 12 genes (p-value ≤ 0.05) based on their expression profile (Supplementary Fig. S5f), despite 
differences in their sample sources (whole blood sample vs. PBMC) and variability in detection ranges due to 
different platforms (Supplementary Fig. S6).

Discussion
T2DM and cancer have burdened the health sector throughout the world. Recently, several epidemiological 
studies have indicated a causal link between T2DM and common cancer types. However, the genetic association 
of T2DM to these cancers remains largely unknown. Our work identifies a genetic association between T2DM 
and three common cancer types, i.e., PC, LC, and BC. Our analysis identified 7, 6, and 5 hub genes showing a 
correlation between T2DM and the three cancers, i.e., PC, LC, and BC, respectively.

The KEGG pathway and GO biological process analyses showed enrichment of vesicle-mediated transport, 
vital in tumor microenvironment remodeling and transport of secretory insulin or other circulating mediators 
in  diabetes20–23. Neutrophil deregulation is known to be associated with  diabetes24 and cancer cell progression, 
metastasis, and activating dormant cancer  cell25. Moreover, we noticed positive regulation of metabolic and 

Table 5.  Shows top significantly enriched GO:BP involving the identified DEGs for T2DM vs. BC comparison.

Description Annotation ID Count FDR DEGs

Hydrogen peroxide catabolic process GO:0042744 3 1.10 ×  10−4 HBD, HBG2, HBG1

Cellular oxidant detoxification GO:0098869 3 1.85 ×  10−3 HBD, HBG2, HBG1

Autophagic cell death GO:0048102 1 5.40 ×  10−2 CDKN2D

Regulation of DNA recombination GO:0000018 1 5.40 ×  10−2 ALYREF

Hemoglobin biosynthetic process GO:0042541 1 5.40 ×  10−2 ALAS2

Plasminogen activation GO:0031639 1 5.40 ×  10−2 PGK1

Positive regulation of circadian rhythm GO:0042753 1 5.40 ×  10−2 THRAP3

DNA synthesis involved in DNA repair GO:0000731 1 6.05 ×  10−2 CDKN2D

Protein neddylation GO:0045116 1 6.05 ×  10−2 UBE2M

Maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, 
LSU-rRNA) GO:0000462 1 6.96 ×  10−2 NGDN
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Figure 2.  Protein–protein interaction network for (a) T2DM vs. PC, (b) T2DM vs. BC, and (c) T2DM vs. LC. 
The colored circle around the nodes represents different enriched pathways to which these nodes are linked. The 
small nodes (in white color) indicate additional interactors. The node color indicates overexpressed genes (red) 
and under-expressed genes (blue). The node size represents the node’s degree, and the node’s color intensity 
represents the  log2 fold change (FC) value of differentially expressed genes (DEGs). The color chart (d) illustrates 
different enriched pathways and their annotation identity.
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cellular protein metabolic processes in T2DM vs. PC conditions. Our analysis also revealed important pro-
cesses contributing to gene expression, including regulation of RNA splicing and protein degradation, which 
are required to maintain homeostasis. In nutshell, we identified seven hub genes (HIST2H2AA3, HIST2H2AA4, 
NFKBIA, SESN2, SMURF1, TGFβ1, TNRC6A) in T2DM vs. PC, six common hub genes (ATP6V0D1, ATP6V0C, 
ATP6V0E1, CTSD, CYBA, TGFβ1) in T2DM vs. LC and five common hub genes (ALYREF, CDKN2D, NGDN, 
THRAP3, UBE2M) in T2DM vs. BC, respectively (Fig. 3). Supplementary Table S4 provides the detailed function 
and description of these hub genes. Noteworthy, The NFKBIA gene involved in the NFKB pathway has a crucial 
role in the initiation and progression of  PC25, and its gene polymorphism has an implicit role in the prognosis 
of  T2DM26. TGFB1 is involved at an early and advanced stage in liver  tumorigenesis27, and TGF-β signaling 
plays diverse roles in β cell development and functioning that has an impactful role in diabetic  condition28. The 
V-ATPase H+ transporting genes (ATP6V0D1, ATP6V0C, ATP6V0E1) maintain the intracellular pH and thus 
are critical for the Warburg effect observed in the cancer  cells29. The CTSD gene has a role in decreasing the 
expression of IGFBP3, contributing to mitogenesis in hepatoma  cells30, and it also has increased plasma activity in 
T2DM male  patients31. The ALYREF gene plays a significant role in cellular growth, apoptosis, and mitochondrial 
energy metabolism in  BC32, and as a 5mC-related gene that could have a functional role in  T2DM33. THRAP3 
deficiency sensitizes BC cells, suggesting a probable involvement in  DDR34. Also, THRAP3 plays a direct role in 
controlling diabetic gene programming by interacting with PPARγ35.

Thus, our analysis provides insight into biological and molecular events that could link T2DM with three 
common cancer types (PC, LC, and BC). Further, the identified genetic markers hold the potential to predict the 
chances of cancer onset in T2DM patients. However, systematic approaches for data collection, which consider 
variations in genetic profiling based on ethnicity, sex, and age, could further expand our understanding. Notably, 
such markers in T2DM patient PBMC samples predisposing to increased cancer risk could help diagnosis at an 
early stage and provide benefits for developing personalized therapeutic strategies.

Disease
BC
T2DM

Disease
LC
T2DM

a) b) c)

f)e)d)
Disease

PC
T2DM

Log2FoldChangeLog2FoldChangeLog2FoldChange

Figure 3.  The barplot (a–c) shows  log2 fold change expression of identified hub genes in T2DM vs. PC, T2DM 
vs. LC, and T2DM vs. BC comparison, respectively. The volcano plots (d–f) highlight the common hub genes for 
T2DM vs. PC, T2DM vs. LC, and T2DM vs. BC, respectively. The symbols represent whether the p-value and 
 log2FC value of that particular DEG is for T2DM (triangle) or three cancers (circle). The shared hub genes are 
labeled in black, while other DEGs are shown in lighter colors.
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Material and methods
Microarray data collection
The raw gene expression data of Homo sapiens used in this study was available at the gene expression omnibus 
(GEO; http:// www. ncbi. nlm. nih. gov/ geo/) database. The studies used in this work specifically comprised the 
expression profile of the peripheral blood mononuclear cells (PBMCs) using the Affymetrix platform GPL570. 
The GSE15932 dataset included expression data of 32 PBMC samples containing 8 healthy individuals, 8 T2DM, 
8 PC, and 8 samples of both T2DM and PC patients. The LC gene expression data along with their respective 
healthy controls were collected from GSE58208. The study comprised of gene expression analysis of PBMC 
samples from healthy individuals, liver cancer and hepatitis B carrier patients. The GSE27562 datasets collected 
the breast cancer gene expression profile and the healthy women samples. Blood was collected from 37 women 
who have benign breast cancer in comparison to 31 healthy individuals.

Data pre-processing and identification of DEGs
The raw gene expression data was normalized using the GEO2R tool. The prospective shared genetic markers 
between T2DM and three cancer types (PC, LC, and BC) were obtained by applying three filters. Our first filter 
is based on the adjusted p-value, indicating the statistical significance of differentially expressed genes. We 
considered genes having adjusted p-value ≤ 0.05 for further analysis. Our second filtering criteria is based on 
the relative  log2FC of gene expression, calculated for disease condition samples with respect to healthy condi-
tion samples indicating the biologically significant genes. We retained genes having absolute  log2FC ≥ |0.5| for 
further analysis. Lastly, we kept correlated genes falling within the 10% interval from a regression line passing 
through the origin (i.e., x = 0 and y = 0 on an xy plane) between  log2FC in T2DM and respective cancer types. 
Only upregulated or downregulated genes in both conditions were selected for further analysis. Pearson cor-
relation was calculated for the genes narrowed down after applying filtering criteria in each condition, using the 
cor function in the R software.

Functional enrichment analysis of DEGs
The gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis were performed to annotate the biological function of the DEGs using the online software GENECODIS. 
We considered a cut-off of the false discovery rate (FDR) at 0.10 to define the significance level.

Protein–protein interaction (PPI) network construction and visualization
The PPI network analysis was performed based on the Search Tool for the Retrieval of Interacting Genes 
(STRING, https:// string- db. org), a database of known and predicted protein–protein interactions. We used 
genes differentially expressed in T2DM and three cancer types (PC, LC, and BC) to construct the PPI network. 
Interaction with a score > 0.8 was deemed statistically significant. The PPI network was created using Cytoscape 
(version 3.8.2), an open-source software for visualizing molecular interaction networks and biological pathways.

Hub genes identification
The hub genes were explored using the cytoHubba application in the Cytoscape tool. For this purpose, the PPI 
network was analyzed to compute various topological features, including degree, maximal clique, centrality, den-
sity of maximum neighborhood component, maximum neighborhood component, edge percolated component, 
bottleneck, eccentricity, closeness, radiality, betweenness, and stress. The top 15 nodes were considered notable 
genes in the network for each computed topological feature. The nodes common to all topological features were 
regarded as the critical hub genes or key nodes in the network.

Survival analysis
The survival analysis was performed using UALCAN to analyze expression data from publicly available databases 
(http:// ualcan. path. uab. edu/ index. html)18,19. The correlation between hub gene expression and survival in the 
three cancer types was analyzed by UALCAN. The patients with cancer were split into two groups according 
to the expression of a particular gene (high vs. low/medium expression), and the survival time was compared 
between the two groups.

Validation dataset analysis
To validate the discovery dataset (GSE15932), we shortlisted 3 validation datasets (GSE23561, GSE69528, and 
GSE189005) matching criteria of T2DM, Homo Sapien taxid, expression profile by array, and blood samples. Raw 
gene expression data for GSE69528 and GSE189005 datasets were normalized using GEO2R tool. GSE23561 raw 
gene expression data was normalized by "normalizeBetweenArrays" command of Bioconductor package limma 
V3.562 in R4.3.0. Significant DEGs in T2DM were obtained after applying a filter for adjusted p-value ≤ 0.05 
and log2FC ≥ |0.5|. Functional enrichment analysis of the obtained DEGs was performed using GENECODIS. 
For representation, only functionally enriched GO:BP overlapping with the discovery datasets were shown in 
Fig S5c–e. The expression profile of the 17 hub genes among discovery and validation datasets were plotted and 
color-coded (yellow and green shaded boxes) when found significant (p ≤ 0.05) in any of the validation datasets.
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Data availability
The datasets used during the current study are available on the gene expression omnibus database (URL: http:// 
www. ncbi. nlm. nih. gov/ geo/). The datasets used in this study are available with the following accession IDs: 
GSE15932, GSE58208 and GSE27562. The codes used in the study are available on GitHub (https:// github. com/ 
Rajve erSin gh27R/ Cross- Pheno type- Analy sis).
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