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DiaNet v2 deep learning based 
method for diabetes diagnosis 
using retinal images
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Diabetes mellitus (DM) is a prevalent chronic metabolic disorder linked to increased morbidity and 
mortality. With a significant portion of cases remaining undiagnosed, particularly in the Middle East 
North Africa (MENA) region, more accurate and accessible diagnostic methods are essential. Current 
diagnostic tests like fasting plasma glucose (FPG), oral glucose tolerance tests (OGTT), random 
plasma glucose (RPG), and hemoglobin A1c (HbA1c) have limitations, leading to misclassifications 
and discomfort for patients. The aim of this study is to enhance diabetes diagnosis accuracy by 
developing an improved predictive model using retinal images from the Qatari population, addressing 
the limitations of current diagnostic methods. This study explores an alternative approach involving 
retinal images, building upon the DiaNet model, the first deep learning model for diabetes detection 
based solely on retinal images. The newly proposed DiaNet v2 model is developed using a large 
dataset from Qatar Biobank (QBB) and Hamad Medical Corporation (HMC) covering wide range of 
pathologies in the the retinal images. Utilizing the most extensive collection of retinal images from 
the 5545 participants (2540 diabetic patients and 3005 control), DiaNet v2 is developed for diabetes 
diagnosis. DiaNet v2 achieves an impressive accuracy of over 92%, 93% sensitivity, and 91% specificity 
in distinguishing diabetic patients from the control group. Given the high prevalence of diabetes and 
the limitations of existing diagnostic methods in clinical setup, this study proposes an innovative 
solution. By leveraging a comprehensive retinal image dataset and applying advanced deep learning 
techniques, DiaNet v2 demonstrates a remarkable accuracy in diabetes diagnosis. This approach 
has the potential to revolutionize diabetes detection, providing a more accessible, non‑invasive and 
accurate method for early intervention and treatment planning, particularly in regions with high 
diabetes rates like MENA.

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by Hyperglycaemia and is associated with 
increased long term morbidity and  mortality1,2. According to the International Diabetes Federation (IDF), there 
were 537 million people affected by diabetes worldwide in 2021 and this number is expected to be increased to 
more than 600 million by 2030. In Middle East and North Africa (MENA), there were 73 million people affected 
by diabetes in 2021 with an expectation of 87% increase in the cases to reach 136 million by  20453. The two main 
type of DM are type 1 DM (DM-1) and type 2 DM ( DM-2), the latter accounts for almost 90% of the  cases4. Early 
detection of diabetes has a big impact on treatment and prevention of further complications, however, a report by 
the IDF has indicated that about 50% of people affected with diabetes in 2021 were undiagnosed and  unaware5.

To diagnose diabetes, healthcare professionals have been using tests such as fasting plasma glucose (FPG), 
oral glucose tolerance tests (OGTT), random plasma glucose (RPG), and hemoglobin A1c (HbA1c)6. Although 
these tests are widely used, they have some limitations. For example, FPG has been reported to have lower sen-
sitivity for diabetes  detection7. In fact, a report by the World Health Organization and  IDF8 stated that 30% of 
undiagnosed diabetes were missed using FPG. Furthermore, it is mandatory to be fasting for a person to take 
this exam for at least 8 h, and this might be inconvenient for some people. Due to its poor reproducibility, it 
is recommended to repeat FPG within 3 months  time9. OGTT is lobor-intensive and time-consuming and it 
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needs to be administered under specific conditions for the results to be accurate, including specific diet prior to 
the test and to ensure that a 2-h sample is collected within 5 min of 120  min8. Moreover, 12% of people who are 
tested with OGTT are misclassified as either diabetic or suffer from impaired glucose tolerance (IGT)10. For the 
RPG, although this test could be taken at any time without conditions such as fasting, the National Institute of 
Diabetes and Digestive and Kidney  Diseases11 has stated that it has greater variability within the same patient, 
affected by changes in lifestyle and dietary and is less sensitive in measuring diabetes. The HbA1c is currently 
the gold standard for diabetes detection as it reports the average blood glucose. According to the American 
Diabetes Association (ADA), HbA1c has lower sensitivity at a designated cut point, it may not be available in 
certain regions of the developing world, it is costly, its measurement can be interfered by hemoglobin  variants12. 
HbA1c results might be impacted by any form of anaemia or hemoglobinopathy and a poor correlation between 
HBA1c and glucose parameters is very common, which can cause confusion with the  diagnosis13.

Considering the above backdrop, exploring alternative affordable and with easy access methods to diagnose 
diabetes (especially in middle- and low-income nations) with high accuracy is needed. There exist multiple stud-
ies that have used alternative ways to diagnose diabetes using electrocardiography (ECG)14, retinal  images15,16 
and breath  test17; other methods that have also been explored include using saliva, sweat and  tears18. Previously, 
we developed the very first deep learning model DiaNet for diabetes detection using retinal images  only15. The 
proposed model, based on retinal images of 500 participants from QBB, achieved an accuracy of 84% in distin-
guishing diabetic from healthy individuals.

Recently retinal image has gained a lot of attention in the scientific community for the detection of cardio-
vascular  disease19, diabetic retinopathy (DR)20,21 and other  diseases22. In this article, we incorporated the largest 
cohort from Qatar Biobank (QBB) and Hamad Medical Corporation (HMC) to improve the prediction model 
for diabetes diagnosis. The contribution of this work can be summarized as follows: 

1. We have used the largest collection of retinal images from more than 5000 patients/participants to build a 
diabetes diagnosis model DiaNet v2 based on retinal images only. The proposed VGG-11-based DiaNet v2 
model outperformed the previous model and achieved over 92% accuracy in distinguishing diabetic patients 
from the control group.

2. We validated the proposed model retrospectively using a retinal image dataset from HMC, the largest health-
care provider in Qatar, and it shows that retinal images can be considered as an excellent source for the 
diagnosis of diabetes.

Results
In this section, we present the results obtained on multiple experiments that we conducted using multiple DL 
models on the retinal images for diabetes classification. Given the change and expansion of our image dataset, 
there is a possibility that the deep learning architecture we used in DiaNet v1 is not optimal for these new images. 
As a result, we tested a transfer learning approach with five common deep learning architectures in order to find 
the one that performs the best on our new dataset.

Performance of the proposed models for diabetes diagnosis based on retinal images
Table 1 presents the average performance metrics obtained from a 5-fold cross-validation analysis for diabetes 
prediction using five deep learning models: DenseNet-121, ResNet-50, EfficientNet, VGG-11, and MobileNe_v2. 
The table shows the results from backbone model as well as modified network that we propose as part of DiaNet 
v2. The performance metrics evaluated for each model include accuracy, sensitivity, specificity, precision, F1-score 

Table 1.  Ablation study showing performance of different DL models before and after modification of 
network backbone. Highest values are in [bold].

Model Result type Accuracy Sensitivity Specificity Precision F1-score MCC

DenseNet-121

Modified (DiaNet v2) 0.9048 0.8925 0.9172 0.9134 0.9021 0.8108

Backbone 0.8108 0.8181 0.8036 0.8068 0.8123 0.6218

p value 5.669E−154 5.888E−183 9.462E−147 7.443E−136 7.571E−173 2.677E−136

ResNet-50

Modified (DiaNet v2) 0.9213 0.9184 0.9241 0.9231 0.9205 0.843

Backbone 0.9059 0.9065 0.9053 0.9068 0.9058 0.8132

p value 1.666E−144 7.275E−139 2.175E−113 7.199E−117 3.827E−142 1.332E−144

EfficientNet

Modified (DiaNet v2) 0.8812 0.8556 0.9069 0.9011 0.8776 0.7637

Backbone 0.874 0.8735 0.8746 0.8765 0.874 0.7497

p value 3.625E−153 1.764E−106 7.987E−149 1.053E−160 1.027E−155 2.261E−152

VGG-11

Modified (DiaNet v2) 0.9263 0.9393 0.9132 0.9176 0.9281 0.8532

Backbone 0.8914 0.9446 0.838 0.8781 0.9041 0.7978

p value 2.375E−232 1.574E−235 9.616E−17 9.175E−29 2.505E−206 3.565E−187

MobileNet_v2

Modified (DiaNet v2) 0.8842 0.8918 0.8765 0.8784 0.8849 0.7687

Backbone Network 0.8822 0.8814 0.8829 0.883 0.8821 0.7646

p value 4.069E−159 6.224E−158 4.146E−74 8.861E−80 7.673E−150 9.739E−160
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and Matthew’s correlation coefficient (MCC). These metrics provide insights into the models’ effectiveness in 
distinguishing between individuals with diabetes and those without diabetes. The result also shows the p value 
to measure statistical significance for each model’s performance metric before and after the modification of 
network. The results indicate that all the modified models achieved higher level of accuracy, ranging from 88.12 
to 92.63%, when compared to the backbone models which achieved accuracy ranging from 81.08 to 90.59%. 
This suggests that superiority of the modified network compared to the backbone models in classifying a larger 
portion of the diabetes and control samples. The modified VGG-11 model achieved the highest accuracy with 
92.63%. In terms of sensitivity, which measures the ability to correctly identify individuals with diabetes, the 
modified network achieved values between 85.56 and 93.93% compared to values between 81.81 and 94.46% for 
the backbone models. On the other hand, specificity, which measures the ability to correctly identify individuals 
without diabetes, ranged from 90.69 to 91.31% for the modified network compared to values ranging from 80.36 
to 90.53% for the backbone models. Summarily, these results demonstrate that the modified network performed 
well and generally better than the backbone models in both identifying individuals with diabetes and without the 
condition. The F1-score, which combines precision and sensitivity, ranged from 87.76 to 92.81% for the modified 
models compared to values ranged from 81.23 to 90.58% for the backbone models. This metric provides a bal-
anced assessment of the models’ performance, considering both the ability to correctly identify positive samples 
and minimize false positives. The modified VGG-11 achieved the highest F1-score of 92.81%. The Matthews 
correlation coefficient (MCC), which takes into account true and false positives and negatives, ranged from 76.37 
to 85.32% for the modified models compared to values from 62.18 to 81.32% for the backbone models. A higher 
MCC value indicates a better overall performance of the model. With regard to the statistical significance testing, 
there was a statistical difference for each pair of models for performance metrics with p values (< 0.001). Figure 1 
shows the area under the curve (AUC) of receiver operating characteristics (ROC) curve for the models before 
and after the modification. The modified models’ AUC values ranged from 95.52 to 98.04%, where the backbone 
models’ AUC ranged from 89.19 to 97.07%. A higher AUC value suggests a better discriminative ability of the 
model. The modified VGG-11 achieved the highest AUC with 98.04%.

Performance of the models based on gender‑stratified samples
We experimented with the DL models’ performance considering age- and gender-stratification samples. VGG-11 
model achieved the highest accuracy, F1 Score and MCC with 96.49%, 97.69% and 90.49% respectively on female 
participants (Fig. 2). VGG-11 achieved the highest accuracy, F1 Score and MCC as well on male participants 
with 91.62%, 88.66%, and 82.33%, respectively. Generally, all models achieved better performance on female 
participants compared to male participants, considering the gender-stratified sample.

Performance of the models based on age‑stratified samples
Considering the age-stratified sample, VGG-11 performed better than other models in terms of accuracy in 
different age groups, with 93.13% in the (18–39) age group, 92.22% in the (40–59) age group, and 92.12% in the 
(60–90) age group (Fig. 3). In terms of F1-Score, the DL models achieved consistent values for the (40–59) age 
group (between 90.67% with MobileNet_v2 and 94.76% with VGG-11) (Fig. 3). The performance for the (60–90) 
age group achieved the lowest MCC values (i.e below 50%) compared to other age groups. This is due to the few 
control cases in this group, where there were only 116 control compared to 1812 diabetes cases (Fig. 3). Based 
on these results, we may conclude that the DL models were able to detect diabetes in the (18–39) and (40–59) 
age groups compared to the (60–90) age group (Fig. 3). Furthermore, a statistical significance testing across all 
age groups shows that most of the results were statistically significant as shown in Table 2.

Class activation map highlighting the region of interest for DiaNet v2
The provided visual representation, displayed in Fig. 4, illustrates retinal images and superimposed heatmaps 
derived from both the diabetes and control cohorts. The heatmaps, color-coded for distinct degrees of influ-
ence on predictions across the images, highlight areas of significance. The images selected for inclusion in Fig. 4 
indicate strong predictions (probability exceeding 0.80) from the DiaNet v2 model. Within Fig. 4, the upper 
and lower rows showcase retinal images from the diabetes and control groups, respectively. Notably, across all 
these images, the superimposed heatmaps primarily concentrate on critical areas such as the optic disc, macula, 
and intermediate zone–locations prone to exhibiting DR characteristics. Of note, Fig. 4b,d reveal extensive 
microaneurysms, minute bulges originating from smaller vessel walls, representing the earliest clinically detect-
able indications of DR. Additionally, all three images depict intra-retinal hemorrhages and exudation, common 
features in individuals affected by DR.

Furthermore, Fig. 4b presents tortuous retinal blood vessels marked by arteriovenous nicking and venous 
dilation, indicators associated with systemic conditions like hypertension, diabetes, and ischemic heart disease. 
This strengthens our assertion that our model effectively identifies general retinal diabetes-related attributes. 
These signs are in line with medical findings indicating that diabetic eye can suffer from signs like small blood 
vessel damage (microaneurysms), swelling of the retina (edema), white-yellow deposits (exudates), bleeding in 
the retina (hemorrhages), cloudy spots (cottonwool spots), and areas with reduced blood  flow23–25. In contrast, 
the control group images (Fig. 4e–h) lack these distinctive features in the highlighted regions, indicating the 
absence of diabetes-related symptoms in these retinas.

Comparison against other existing results
In 2021, we introduced DiaNet, an initial deep learning model that achieved an AUC of 0.84, according to our 
 publication15. The development of this model involved analyzing data from 500 participants in the QBB dataset. 
Subsequently, we expanded our research by including a significantly larger sample size of 5000 participants 
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from the QBB dataset, a tenfold increase. Additionally, we incorporated data from diabetic patients with various 
pathological characteristics at the HMC Ophthalmology clinic. As a result, we confidently assert that the dataset 
used for our study and the upgraded DiaNet version 2 model described in this current paper are notably more 
robust and accurate. Notably, DiaNet v2 achieves an impressive AUC of 0.98, surpassing the performance of the 
initial DiaNet model. In 2022, Yun et al. undertook a project involving 12,185 participants from the UK Biobank 
to develop a deep learning model for diabetes diagnosis, as documented  in26. Their chosen architecture was a 

Figure 1.  ROC plot for the modified models (a) and backbone models (b).
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Figure 2.  Performance of different deep learning models based on gender-stratified groups.

Figure 3.  Performance of different deep learning models based on age-stratified groups.

Table 2.  Performance of models on age-stratified dataset.

Age group Metric DenseNet_121 ResNet_50 EfficientNet VGG_11 MobileNet_v2

Age (18–39) Accuracy 0.9209 0.9298 0.9452 0.9313 0.9472

Age (40–59) Accuracy 0.9211 0.8786 0.8649 0.9222 0.8624

Age (60–90) Accuracy 0.9342 0.8668 0.9165 0.9212 0.9144

Across age groups p value for Accuracy 6.96E−230 0.386 1.31E−17 1.73E−69 1.418E−89

Age (18–39) F1-score 0.7638 0.7033 0.8096 0.8102 0.8123

Age (40–59) F1-score 0.9435 0.9133 0.9044 0.9476 0.9067

Age (60–90) F1-score 0.9649 0.9181 0.9554 0.957 0.9542

Across age groups p value for F1-score <0.001 1.27E−30 5.76E−99 2.49E−13 1.260E−135

Age (18–39) MCC 0.7224 0.7039 0.786 0.7776 0.7893

Age (40–59) MCC 0.8129 0.7115 0.6746 0.8019 0.6502

Age (60–90) MCC 0.4333 0.4453 0.2925 0.4968 0.3116

Across age groups p value for MCC 3.65E−234 0.0014 0.0065 4.37E−59 1.173E−112
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ResNet-18-based model, which achieved an AUC of 0.70326. It’s important to highlight that due to limitations 
in data access, we were unable to utilize retinal images from the UK Biobank dataset to evaluate our model. In 
the present study, we overcame this limitation by utilizing an extensive collection of retinal images from a sub-
stantial number of patients in Qatar. Our dataset consists of 5545 participants covering both the diabetic and the 
control group. With this enriched dataset, we constructed the DiaNet v2 model, which demonstrated exceptional 
performance with an AUC of 0.98. This unequivocally demonstrates the superior predictive capability of our 
model within the Qatari population dataset.

Discussion
The global burden of diabetes has been escalating, with alarming projections of rising prevalence rates. Particu-
larly concerning is the trend observed in the Middle East and North Africa (MENA) region. The significance of 
early diabetes detection cannot be overstated, as it allows for timely intervention to prevent further complications. 
However, the challenges associated with current diagnostic methods in clinical setup, such as FPG, OGTT, RP, 
and HbA1c, have led to significant limitations in their  effectiveness6. To address these limitations and explore 
alternative methods, we turned to retinal images as a potential avenue for diabetes diagnosis. The utility of reti-
nal images for detecting various diseases, including diabetes, has garnered substantial attention in recent years. 
Therefore, Building on our prior  work15, where we developed DiaNet, the first deep learning model for diabetes 
detection using retinal images, we expanded our approach in this study to propose DiaNet v2.

In DiaNet v2, we leveraged the largest collection of retinal images from the Qatari population to develop an 
improved model, achieving over 92% accuracy in distinguishing diabetic patients from the control group. This is 
a notable advancement over our previous model, signifying the value of increasing the dataset size and refining 
the model architecture. We also validated the performance of DiaNet v2 using a dataset from the Hamad Medical 
Corporation (HMC), affirming the robustness of retinal images as an excellent source for diabetes diagnosis. The 
dataset utilized in this research possesses a unique attribute, as it encompasses retinal images sourced from both 
a biobank and a hospital setting. Within the context of the QBB, the retinal images lack annotations provided by 
ophthalmologists pertaining to any preexisting pathologies. Consequently, we are devoid of valuable information 
regarding prior ocular pathologies concerning the QBB participants. In order to address this inherent limitation 
of the QBB dataset, we have integrated a dataset from the HMC. This particular dataset has been curated and 
annotated by ophthalmologists affiliated with the HMC, resulting in an enhancement of dataset quality. The 
images within this dataset exhibit a range of existing pathologies linked to diabetes, as well as other pathologies 
evident in retinal images that are unrelated to diabetes. For example, in Fig. 6a, the image belongs to the diabetes 
group and has vitreous hemorrhage, which is a consequence of being  diabetic27. Figure 6b is another example 
of a diabetic eye affected by microaneurysm which is an early sign of  DR28. Figure 6c shows a diabetic eye with 
mild nonproliferative diabetic retinopathy (NPDR), which is an early stage of  DR29 . Figure 6d–f shows examples 
of non-diabetic eyes that have glaucoma in (d), trauma caused by laser in (e), and retinal detachment in (f). All 
these pathologies has helped in building a model that is capable of distinguishing diabetic from non-diabetic 
patients based on retinal images only.

Figure 4.  Retinal images with overlaid heatmap. Images a the top (a) to (d) show examples of diabetic images. 
Images at the bottom (e) to (h) show examples of control (non-diabetic) image. Images on the left are the 
original input images while those on the right are the corresponding class activation map (CAM).
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Moreover, the gender-stratified version of DiaNet v2 revealed interesting trends in model performance. Across 
all models, higher accuracy, F1-scores, and MCC values were consistently observed in female participants. This 
gender disparity in model performance warrants further investigation and may be attributed to physiological 
and biological differences between genders. Similarly, the age-stratified analysis demonstrated that VGG-11 
exhibited superior accuracy across age groups, with the highest accuracy achieved in the (18–39) and (40–59) 
age groups. However, the model’s performance in the (60–90) age group was hindered by a smaller control 

Figure 5.  Summary statistics of images used in the study from HMC and QBB.

Figure 6.  Sample of retinal images used in this study. Presented pathologies include: hemorrhage (a), 
microaneurysm (b), mild NPDR (c), glaucoma (d), laser caused trauma (e) and retinal detachment (f).
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group size, indicating the importance of balanced datasets for accurate evaluation. The Class Activation Map 
(CAM) analysis unveiled critical regions within retinal images that significantly influence the DiaNet v2 model’s 
predictions. These regions primarily encompass the optic disc, macula, and intermediate zone-areas vulnerable 
to DR manifestations. This CAM analysis revealed evidence of systemic conditions like hypertension, diabetes, 
and ischemic heart disease, reinforcing the notion that retinal images offer valuable insights into general retinal 
attributes related to diabetes.

This study utilized a dataset gathered from residents of Qatar, predominantly comprising individuals of 
Middle Eastern descent. As a result, the findings might lack generalizability to other populations at the similar 
level of Middle Eastern descent. Nevertheless, the study underscores the considerable promise of early diabetes 
detection using retinal images considering its non-invasive, inexpensive, and fast screening nature. One more 
limitation in our research is the absence of a comparison between the suggested AI model’s performance and 
human-level intelligence in diabetes screening solely based on retinal images. To accomplish this, we will need 
to form a separate group of Ophthalmologists with varying expertise levels from different medical facilities. 
Subsequently, a comparison between the AI model and human performance would be conducted. This aspect 
will be part of our upcoming steps in the near future.

In conclusion, our study contributes significantly to the field of diabetes diagnosis by demonstrating the 
potential of deep learning models in utilizing retinal images as a reliable and non-invasive tool. The high accuracy, 
sensitivity, and specificity achieved across various models highlight the promise of this approach. Gender- and 
age-stratified analyses shed light on performance disparities and demographic influences, prompting further 
research into these factors. With the potential to revolutionize diabetes diagnosis, retinal image-based methods 
offer a pathway to accessible and effective early detection, especially in regions with limited resources. Future 
studies should focus on addressing biases, exploring multi-modal approaches, and conducting prospective clini-
cal validations to establish the real-world utility of these models.

Methods
Dataset collection
For this study, a total number of 15,011 images were collected, where 7515 images were for diabetic and 7496 
images for control (Fig. 5). These images were collected from two sources: (1) Hamad Medical Corporation and 
(2) Qatar Biobank. Further details about both sources are given below.

Retinal images from Hamad Medical Corporation
We collected retinal images from the ophthalmology department at Hamad Medical Corporation (HMC). The 
dataset contains retinal images for 641 HMC diabetic patients (HbA1C ≥ 6.5) as well as non-diabetic patients 
who have visited HMC between January 1st, 2012, and December 31st, 2021. Retina images of patients with 
and without diabetes were collected with some biographical data such as age, country, and HbA1c. Among the 
collected data, there were 442 diabetic patients, covering a total of 883 retinal images, and 199 non-diabetic 
patients, covering a total of 396 retinal images. Only six images were removed from the dataset due to bad qual-
ity after manual inspection or were unusable (i.e., wide-angle view images). Figure 6 shows example of images 
collected from HMC.

The image data of diabetic patients contained retinal pathologies related to diabetes, such as non-proliferative 
diabetic retinopathy, proliferative diabetic retinopathy (PDR), PDR treated by laser therapy, etc. This group also 
consisted of images with no visible pathological signs. The image data of the non-diabetic group consisted of 
images with no visible pathological signs as well as fundus images of different non-diabetic pathologies. These 
different non-diabetic pathologies included macular scar, choroidal neovascular membranes, retinal detachment, 
age-related macular degeneration, choroiditis, and central serous retinopathy. The collection of the images for 
this study was approved by HMC’s Institutional Review Board (IRB) (approval number: MRC-03-22-279). Due 
to the retrospective nature of the study, informed consent was waived.

Retinal images from Qatar Biobank
From Qatar BioBank (QBB), we collected a dataset of 4905 participants covering diabetes (with HbA1C ≥ 6.5) 
and a control group. We had, in total, 2099 diabetic participants and 2806 control participants in this QBB cohort. 
Each participant has at least one retinal image and up to four images. The total number of images was more than 
18,000 images initially; however, after a quality check, we removed around 2000 images due to bad quality. The 
images were collected under the regulation of the Ministry of Public Health, Qatar. The Institutional Review 
Board of Qatar Biobank, Qatar, approved this study, and only a de-identified dataset was collected from QBB. 
Details of data collection can be found  in30,31. Then, we combined datasets from both HMC and QBB covering a 
total of 15,011 retinal images. The dataset used for the analysis consisted of 7496 retinal images from the control 
group and 7515 retinal images from the diabetes group.

Retinal image pre‑processing
Many of the images were large and had an extended black background on the sides, so these were cropped, 
creating squared images with the size of 540 × 540. All retinal images were then processed by subtracting the 
local mean from 4 × 4 neighboring pixels. This is based on the method that was proposed by  Graham32. To 
increase the robustness of our model, Random flipping horizontally and vertically well as random brightness 
and contrast, were applied.
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DiaNet v2: the proposed deep learning model architecture
We developed deep learning models based on a transfer learning approach with five different networks, i.e., 
DenseNet-121, ResNet-50, EfficientNet, VGG-11, and MobileNet_v2. We achieved the best results with VGG-
11  network33, which was trained with ImageNet and has an output of 1000 neurons in its final layer. VGG-11 is 
known for its simplicity and effectiveness in image classification; it uses small convolution filters of 3 × 3, which 
capture local patterns of an image and its  details33. Since our aim here is to distinguish diabetic from non-diabetic 
images, our network’s output should have only two neurons in the output layer. To enhance the outcome of this 
network, replaced the fully connected layers with layers as follows: a global average pooling layer and a global 
max pooling layer were added, and their output was concatenated and then followed by two sequences of batch 
normalization, dropout, linear, and ReLU layers. And finally, a dropout layer was followed by a linear layer with 
two neurons as the output. Figure 7 presents a simple block diagram of the proposed VGG-11  architecture33. We 
utilized the Adam optimizer with a learning rate of 1e−4 to gradually fine-tune the model’s parameters during 
training, promoting effective pattern learning. We used a batch size of 64 for 100 epochs with early stopping 
to prevent overfitting. To conduct all experiments, we used a workstation with 12th Gen Intel(R) Core (TM) 
i7-12700KF, with 128 GB RAM and GeForce RTX 3090 GPU. We used Python version 3.10.4 with  PyTorch34 
version 1.11.0 to implement the deep learning model. Unlike DiaNet v1, DiaNet v2 was trained on only the 
combined dataset from HMC and QBB.  EyePACS35 dataset was used in DiaNet v1 to finetune the network before 
training it with the small QBB dataset that was used in the previous  publication15.

Ethical approval
The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional 
Review Board of Hamad Medical Corporation and Qatar Biobank. Due to the retrospective nature of the study, 
informed consent was waived from HMC.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due non-disclosure 
agreement. But they can be accessed through application to the Qatar Biobank and Hamad Medical Corporation 
through an established ISO-certified process by submitting a request online, subject to institutional review board 
approval by the Qatar Biobank and Hamad Medical Corporation. Users can contact the corresponding author 
or send email to qbbresearch@qf.org.qa to raise request for accessing dataset.
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