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A universal variational quantum 
eigensolver for non‑Hermitian 
systems
Huanfeng Zhao 1, Peng Zhang 1* & Tzu‑Chieh Wei 2

Many quantum algorithms are developed to evaluate eigenvalues for Hermitian matrices. However, 
few practical approach exists for the eigenanalysis of non-Hermintian ones, such as arising from 
modern power systems. The main difficulty lies in the fact that, as the eigenvector matrix of a 
general matrix can be non-unitary, solving a general eigenvalue problem is inherently incompatible 
with existing unitary-gate-based quantum methods. To fill this gap, this paper introduces a 
Variational Quantum Universal Eigensolver (VQUE), which is deployable on noisy intermediate 
scale quantum computers. Our new contributions include: (1) The first universal variational quantum 
algorithm capable of evaluating the eigenvalues of non-Hermitian matrices—Inspired by Schur’s 
triangularization theory, VQUE unitarizes the eigenvalue problem to a procedure of searching unitary 
transformation matrices via quantum devices; (2) A Quantum Process Snapshot technique is devised 
to make VQUE maintain the potential quantum advantage inherited from the original variational 
quantum eigensolver—With additional O(log

2
N) quantum gates, this method efficiently identifies 

whether a unitary operator is triangular with respect to a given basis; (3) Successful deployment and 
validation of VQUE on a real noisy quantum computer, which demonstrates the algorithm’s feasibility. 
We also undertake a comprehensive parametric study to validate VQUE’s scalability, generality, and 
performance in realistic applications.

Eigenvalue calculation forms the backbone of a multitude of scientific and engineering disciplines, many of which 
necessitate the evaluation of eigenvalues for non-Hermitian matrices. Particularly, in power systems’ dynamic 
analysis, the eigenvalues of non-Hermitian matrices are critical for determining the system’s small signal stability 
and oscillation modes1–3. As the grid-connected renewable energy resources swiftly increase and reach a total 
capacity of over 3.4 TeraWatts globally4, most of which being wind farms and photovoltaic solar arrays, these 
intermittent, inertia-less renewable electricity injections, in addition to the weather and climate impacts as well as 
unforeseeable faults, are exposing unprecedented challenges on the stability and resilience of power grids world-
wide. Consequently, there is an urgent need to evaluate eigenvalues for extremely large non-Hermitian matrices 
arising from power systems so as to enable fast assessment and assurance of power system stability and resilience.

The QR algorithm, underpinned by Schur’s decomposition, is the most commonly employed method for 
calculating eigenvalues5. However, it demands a computational complexity of O(N3) , posing a significant chal-
lenge for analyzing large networks due to its scalability limitations. In pursuit of greater scalability, extensive 
efforts have been devoted to the development of iterative Krylov subspace eigenvalue algorithms, such as the 
Arnoldi algorithm6. By leveraging the sparsity property, these methods can efficiently compute a limited subset 
of eigenvalues, making them particularly the method of choice for large network analysis.

The fast development of quantum computation technologies carries a ray of light to forward this field further. 
For the eigenvalue evaluation problem of Hermitian matrice, the quantum phase estimation (QPE) method, for 
example, can find eigenvalues exponentially faster than the classical methods7,8; however, the probability distri-
butions of eigenvalues it depends on the respective overlap of the initial states with eigenvectors. Recently, by 
generalizing the classical power method and employing techniques in the famous quantum linear system (known 
as HHL9), Nghiem and Wei10 introduce a quantum algorithm to estimate the largest eigenvalues of a Hermitian 
matrix, which also inherits the advantage of the HHL algorithm. Significant efforts have been expended in the 
last decade to extend the QPE method to the non-Hermitian matrix11–13. As shown in a recent research14, QPE 
is extended to evaluate the eigenvalues of a non-Hermitian but diagonalizable matrix, which either only has real 
eigenvalues or the corresponding input state could be prepared naturally. Furthermore, these methods all require 
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an excessive long qubit decoherence time, which is unachievable on today’s noisy intermediate-scale quantum 
(NISQ) devices. The aforementioned problems are partially overcome by the variational quantum eigensolver 
(VQE) method proposed by Peruzzo et al.15. By enabling the quantum computer to work in concert with classical 
computer resources (e.g. optimizer), the long quantum process of finding eigenvalues can be broken up into a 
combination of multiple parameterized quantum programs (usually called ansatz). These ansatzes are shallow 
quantum circuits that only require a manageable coherent time. A classical optimizer assembles them globally to 
accomplish the eigenvalue evaluation. Such hybrid quantum-classical strategies are known as variational quantum 
algorithm (VQA) and have emerged as the leading technique to obtain a quantum advantage in the current and 
near future of NISQ era16. Such variational approaches work particularly well for obtaining the largest or smallest 
eigenvalues of a Hermitian matrix. Tremendous efforts are still being made to improve the VQE algorithms and 
ascertain their advantage. For instance, a large class of quantum algorithms are developed to enable VQE to search 
for excited states17–21. By exploiting the relation of diagonalization and majorization, Cerezo et al.22 introduces 
a more amenable method for estimating the largest eigenvalues. To improve the convergence and evaluation 
accuracy, Harwood et al.23 introduces a hybrid homotopy continuation algorithm. A more detailed VQE method 
evolution history can be found in the review papers by Cerezo et al. and Tilly et al.16,24. The eigenvalue algorithm 
is also extended to find the singular value of an arbitrary matrix25,26, as the singular value decomposition is real-
ized by two unitary transformation matrices. Very recently, a variational method has been proposed27 to evaluate 
a specific eigenvalue of a non-Hermitian system (This paper appeared around the same time as our manuscript 
was submitted. We acknowledge a reviewer for bringing it to our attention.). This method requires simultaneous 
optimization of both the eigenvalue and the ansatz to yield an eigenvalue estimation near a pre-specified value. 
However, to estimate each unique eigenvalue, the entire optimization must be performed anew, rendering the 
process inefficient for determining multiple eigenvalues of a large matrix.

However, the gap remains between the developed quantum eigenvalue algorithms and real-world power 
system (and most other engineering systems) problems as all power systems, no matter direct current (DC), 
alternating current (AC) or hybrid, have non-Hermitian systems matrices. The primary challenge is that the 
eigenvectors of a non-Hermitian matrix can be non-unitary, leading to instances where the use of unitary gate-
based quantum methods fails to identify the eigenvector matrix required for matrix diagonalization. Further, 
power system small signal analysis requires identifying all the complex eigenvalues to determine the oscillation 
modes of the power network. Therefore, few deployable quantum algorithm has been established thus far to 
perform eigenanalysis for an arbitrary matrix.

It is also worth noting that, by using the method presented in the HHL paper9, a non-Hermitian matrix 
can be converted to a Hermitian matrix for eigenvalue evaluation. However, the eigenvalues of this Hermitian 
matrix are related to the non-Hermitian matrix’s singular values. Since generally no relationship exists between 
eigenvalues and singular values, the eigenvalues of the non-Hermitian matrix are still unknown and cannot be 
obtained by methods designed for the latter.

It is also worth noting that a non-Hermitian matrix can be converted to a Hermitian matrix for enabling 
quantum computation, as introduced in the classic HHL work9. However, the eigenvalues of this resultant Her-
mitian matrix are related to the non-Hermitian matrix’s singular values. Since there is generally no relationship 
between eigenvalues and singular values, the eigenvalues of the non-Hermitian matrix are still unknown and 
cannot be obtained by methods designed for the latter.

In addition, classical VQE methods only give estimated eigenvalues, while no accuracy information is directly 
available. However, it is desirable to quantify the estimation errors for practical applications.

To address the aforementioned challenges, we devise a novel variational quantum universal eigensolver 
(VQUE) which empowers eigenanalysis of a generic matrix. Specifically, our contributions are threefold:

•	 By reexamining Schur’s theory, we unitarize the eigenvalue problem into a process of searching a unitary 
transformation matrix. This forms a cornerstone of a practical variational quantum algorithm capable of 
finding eigenvalues for non-Hermitian systems.

•	 We devise a quantum process snapshot method to determine if an N-dimensional matrix is triangular. 
Compared with the brute-force approach, it reduces the computational complexity from O(N2) to O(log2N) 
gates. Thus the quantum advantage of VQUE is maintained. We also propose a novel approach to implement 
the non-unitary operator directly within the quantum process snapshot, thereby enabling VQUE to examine 
any arbitrary matrix.

•	 We define our cost function as the distance between the transformed matrix and a triangular matrix. This 
can be conveniently determined using the newly proposed quantum process snapshot technique. In contrast 
to the traditional VQE method, this cost function also doubles as a gauge for accuracy. Therefore, it enables 
the use of a shallower tentative ansatz in a trial-and-error process, which substantially enhances VQUE’s 
performance in real-world applications.

VQUE’s scalability, universality, and efficacy are validated on noise-free simulators and NISQ devices.

Preliminaries
Variational quantum eigensolver
To establish a link between the Variational Quantum Eigensolver (VQE) algorithm and the mathematical process 
of identifying the smallest eigenvalue of a Hermitian matrix, this subsection succinctly revisits the VQE method. 
We will employ matrix and vector notation for this recapitulation, as demonstrated below.

For a Hermitian matrix H (e.g., hamiltonian matrix), its Rayleigh quotient is defined as :
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where the superscript † denotes complex conjugate and, without loss of generality, and when �x is taken as a vector 
with unit magnitude then the denominator can be omitted.

It can be shown that the Rayleigh quotient reaches its minimum value R(H , �x)min = �min , when �x is the 
eigenvector corresponding to the eigenvalue �min

5,28.
Based on the mathematical theory above, the VQE method decomposes the Hermitian matrix as a linear 

combination of tensor products of Pauli operators15,29:

where σs denotes the s-th unitary matrix which is formed by 
⊗n

k=1 σs,k and cs = 1
2n Tr(σsH) is the s-th coef-

ficient correspondingly; σs,k ∈ {σI = I , σx , σy , σz } is the single-qubit Pauli operator in s-th unitary matrix for 
the k-th qubit.

Therefore, by applying a parameterized circuit U(θ) to a fixed initial state such as |0 · · · 0� , i.e., with the output 
vector �x = U(θ)�x0 , the algorithm obtains an estimate �x†σs�x = �x†0U(θ)†σsU(θ)�x0 . The estimate is iteratively 
optimized by a classical controller, which changes the parameter θ to minimize the expectation value �x†H�x (or 
�x|H|x� in the standard Dirac notation) obtained by measurements, which equals to:

The quantum advantage is then obtained from evaluating each �x0†U(θ)†σsU(θ) �x015 on a quantum computer. In a 
classical computer, calculating such matrix multiplication with N dimension takes O(N2) computation costs. As a 
comparison, a quantum computer has the capability to evaluate such terms (also known as evaluating the expecta-
tion value) by joint local measurement of each qubit, which is exponentially faster than the classical computer8,30.

However, all steps in the above procedure are based on the pre-assumption that the matrix H is Hermitian, 
whose eigenvector matrix is unitary.

Results
Mathematical foundation
The critical aspect of enabling variational quantum algorithms to calculate the eigenvalues of a general matrix 
involves identifying a unitary transformation matrix that can distinctly expose the eigenvalues in a similar man-
ner to the eigenvector matrix. In our devised variational quantum universal eigensolver (VQUE), we utilize the 
mathematical foundation of Schur’s decomposition theory as summarized below to ensure the existence of the 
solution:

An arbitrary square matrix A can be transformed to a triangular matrix T as:

where Q is a unitary matrix. As (4) belongs to the class of similarity transformation, matrix T has the same 
spectrum as matrix A . On the other hand, since T is triangular, its eigenvalues are explicitly listed as its diagonal 
entries5. This forms the mathematical basis for the use of variational quantum algorithms, which iteratively trian-
gularize non-Hermitian matrices with unitary operators. Once a matrix has been triangularized, its eigenvalues 
can be readily determined by measuring the entries along the diagonal of the triangularized matrix.

Quantum process snapshot
Given the above mathematical basis, the next question to address is when one can terminate the iterative process. 
We develop a quantum process snapshot technique to effectively measure the proximity of an N-dimensional 
matrix to a triangular matrix, and it only requires a computational cost of O(log2 N) gates. To ascertain if an 
N-dimensional matrix is an upper triangular one, we need to inspect its N(N − 1)/2 entries below the diagonal. 
On a classical computer, this is a simple task, achieved by verifying if these entries are zero. However, in quantum 
computation, the matrix (or operator) elements are not directly observable without measurement. Therefore, a 
thorough check would involve evaluating N(N − 1)/2 entries, necessitating at least O(N2) operations. Such an 
approach would eliminate any quantum advantage we might derive from quantum computing.

Inspired by the quantum process tomography technique31, we develop the quantum process snapshot. It 
captures all N(N − 1)/2 characteristics by one single quantum circuit and thus is denoted as a “snapshot” of 
the quantum process.

For an N-dimensional matrix M to be an upper triangular matrix, its entries below the diagonal should be 
zeroes, i.e., Mij = 0, for j = 1, 2, . . . ,N − 1 and i = j + 1, j + 2, . . . ,N . In quantum computation, it can be 
represented as:

for j = 1, 2, ...N − 1 and i = j + 1, j + 2...N , where |ei� is the ith computational basis.
This implies the possibility of measuring |ei� from the quantum state M|ej� should be zero, 

for j = 1, 2, . . . ,N − 1 and i = j + 1, j + 2, . . . ,N . Naively, to go through all quantum states |ej� , the procedure 
above needs to repeat N-1 times. By leveraging quantum parallelism and quantum interference, quantum states 
M|e1�,M|e2�, . . . ,M|eN � can be simultaneously encoded to one quantum state as shown in Fig. 1.

(1)R(H , �x) = �x†H�x/�x†�x,

(2)H =
∑4n

s=1
csσs =

∑4n

s=1

1

2n
Tr(σsH)

(

⊗n

k=1
σs,k

)

,

(3)�x†H�x =
∑4n

s=1
cs( �x0†U(θ)†σsU(θ) �x0).

(4)A = Q†TQ,

(5)|�ei|M|ej�|2 = 0,
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As this single circuit could capture all characteristics for determining its triangular property, we call it quan-
tum process snapshot (QPS). Performing the M operator to the augmented qubits gives the quantum states (6):

where |ei_j� = |i� ⊗ |j� , which is the (iN + j)th computational basis.
This quantum state corresponds to the vector:

All matrix entry evaluations needed in (5) are then directly accessible from the measurement. For instance, the 
entry M21 corresponding to the quantum measurement |�e2|M|e1�|2 can be evaluated by checking the possibility 
corresponding to the vector in (8). This vector corresponds to the measurement result of quantum state |e0_2� 
as defined in (6):

Therefore, the QPS method could efficiently determine whether the implemented operator M is triangular or 
not. However, in a quantum circuit, only the unitary operator is directly implementable, which only covers a 
small class of matrices (unitary matrix). This issue will be resolved in the next subsection, where we present a 
novel way to implement the non-unitary operator directly into the QPS process.

Non‑unitary gate operation
A novel method is devised for executing non-unitary gate operations within a unitary gate-based quantum 
machine. This innovative approach empowers variational quantum algorithms to compute the eigenvalues of 
any given matrix. In order to incorporate an arbitrary non-unitary operator M into a quantum circuit, we start 
by decomposing it into a linear combination of unitaries, i.e., M = ∑

i ciAi , with real number coefficients ci and 
a set of unitary operators Ai . We note that such decomposition into sum of unitaries was originally proposed 
by Childs and Wiebe in Hamiltonian simulations32. In this paper, (2) is assumed for such decomposition, but 
we note that other efficient decomposition of a matrix to unitaries do exist33. However, exploring other ways of 
decomposition is beyond the scope of this paper.

In the original VQE method, to efficiently evaluate the expectation value of a Hamiltonian by a quantum 
device, the matrix H is decomposed as a linear combination of the simple Pauli operators (which are also unitary). 
The quantum expectation evaluation is then applied to each Pauli operator term U(θ)∗σsU(θ) . However, such 
implementation in QPS is not enough to determine a triangular matrix. This is because an independent imple-
mentation of unitary operators could only provide the value of each (|�el|ciAi|em�|2) . However, the summation of 

(6)
1√
N

N
∑

i=1

I ⊗M|ei_i�,

(7)






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...

M �eN






,
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Figure 1.   Quantum process snapshot.
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these magnitude squared values is mathematically different from the magnitude squared value of the summation 
∑

i�el|ciAi|em� , which is the requirement as shown in (5),i.e.,

As a comparison, in this subsection, we will adapt and modify the method introduced by Berry and Childs34, 
which implements the non-unitary gate operations directly.

Similar ideas to implement a non-unitary operator to a quantum state |ψ� are summarized by Childs et al.35. 
As an example, consider a non-unitary operator (matrix) M = (U1 + U2) . To implement M on a state |ψ� , by 
adding one ancilla qubit, we start with the quantum state |0� ⊗ |ψ� . Applying the Hadamard gate to the first qubit 
gives 1√

2
(|0� + |1�)⊗ |ψ� . We then perform the controlled unitary gate |0��0| ⊗ U1 + |1��1| ⊗ U2 , giving the 

state 1√
2
(|0� ⊗ U1|ψ� + |1� ⊗ U2|ψ�) . In the end, by applying Hadamard gate to the ancilla qubit, we end up 

with the quantum state 12 [(|0� ⊗ (U1 + U2)|ψ�+ |1� ⊗ (U1 − U2)|ψ�] . If we measure the first qubit and obtain 
the |0� outcome, then we successfully prepare the qubit in the state (U1 + U2)|ψ� . Therefore, although all gate 
operations used are unitary, the non-unitary operation can still be implemented to a quantum state with an 
ancilla qubit. The non-unitary operation is essentially coded under a sub-state relating to ancilla qubit.

Berry and Childs34 and Childs and Wiebe32 use this idea to simulate hamiltonian dynamics of quantum state 
ψ , where the Hamiltonian is decomposed in the form of M = ∑2n−1

i=0 ciAi , where ci is a positive constant number 
and Ai is a unitary operator. Firstly, a unitary operator B applied to the n ancilla qubits is defined as34:

where s = ∑2n−1
i=0 ci . It is also important to realize that although two possible solutions exist for each √ci  , 

either of them could be selected to prepare the state. They will result in the same final output which is related to 
(
√
ci)

∗ · √ci  , where the superscript * denotes complex conjugation.
Each unitary operator Ai in M = ∑2n−1

i=0 ciAi is then implemented by the controlled operator select(A) defined 
as:

Therefore, applying the unitary operator W = (B† ⊗ I)(select(A))(B⊗ I) to the state |0� ⊗ |ψ� gives34:

where M′ = ∑2n−1
i=0 |ci|Ai and the ancillary state in state |φ� is supported in the subspace orthogonal to |0� . When 

the ancilla qubits are measured in state |0� , the working qubits are in state M′|ψ�.
From (13), it can be seen that the implemented operator M′ only equals the attempted non-unitary operator 

M = ∑2n−1
i=0 ciAi , when all coefficient ci is real and non-negative. However, in general, the unitary decomposition 

in (2) will have negative or even complex ci . To enable negative weights in the decomposition as shown (2), the 
controlled operator W needs to be modified as below:

where the operator Bc is defined as:

where the superscript * denotes complex conjugate.
Apply the modified operator to the quantum state |0� ⊗ |ψ� gives:

where s = ∑2n−1
j=0 |ci| and the ancillary state in state |φ� is supported in the subspace orthogonal to |0� . In such 

implementation, instead of (
√
ci)

∗ · √ci = |ci| , the coefficient corresponding to the unitary matrix Ai will become 
(
√
ci) ·

√
ci = ci . This makes the implemented operator always the same as M = ∑2n−1

i=0 ciAi . The mathematical 
proof of (16) can be seen in section ‘Proof of non-unitary gate operation implementation’ of ‘Methods’.

Variational quantum universal eigensolver
We devise the Variational Quantum Universal Eigensolver (VQUE) to empower the Variational Quantum 
Algorithms (VQA) to evaluate eigenvalues of non-Hermitian matrices. Our approach is underpinned by 
Schur’s decomposition theory, which assures the existence of a unitary matrix capable of triangularizing the 

(9)|�el|T|em�|2 = (|�el |
∑

i

ciAi|em�|2),

(10)(|�el |
∑

i

ciAi|em�|2) �=
∑

i

|ci|2(|�el|Ai|em�|2).

(11)B|0� = 1√
s

2n−1
∑

i=0

√
ci|i�,

(12)select(A)|i� ⊗ |ψ� = |i� ⊗ Aj|ψ�.

(13)W(|0� ⊗ |ψ�) = 1

s
|0� ⊗M′|ψ� +

√

1− 1

s2
|φ�,

(14)Wm = (Bc
† ⊗ I)(select(A))(B⊗ I),

(15)Bc |0� =
1√
s

2n−1
∑

i=0

(
√
ci)

∗|i�,

(16)Wm(|0� ⊗ |ψ�) = 1

s
|0� ⊗M|ψ� +

√

1− 1

s2
|φ�,
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non-Hermitian matrix. This unitary matrix is iteratively located using the VQA. To ensure the efficiency of this 
search, we introduce the Quantum Process Snapshot (QPS) method. Furthermore, we have developed a novel 
cost function to optimize matrix triangularization. This function is efficiently evaluated using the QPS method, 
and it not only enhances the original cost function in the Variational Quantum Eigensolver (VQE) method but 
also provides an additional measure of accuracy.

Figure 2 shows the schematic diagram of the introduced variational quantum universal eigensolver. To cal-
culate the eigenvalue of an arbitrary matrix M , firstly, the classical computer prepares the inputs to the VQUE: 
(1) Decompose the matrix M as a linear combination of unitaries M = ∑

i ciAi ; (2) Initialize the variational 
parameters θ0 for the ansatz circuit Q(θ) . After taking the inputs, VQUE enters an optimization process to train 
the ansatz Q(θ) to triangularize the matrix M , i.e.,

where matrix Ai is unitary and thus can be directly realized by quantum gate operation.
By utilizing the QPS method above, the cost function C(θ) in (18) is designed to quantify the triangulation 

extent:

where each (|�el|T|em�|2) is just the possibility of measuring the quantum state |em_l� (see the definition in (6)). 
Thus the summation is essentially counting the number of measurements NC which fall into the quantum states 
set C = {|em_l�

∣

∣ where l = 2, 3, . . . ,N and m = 1, 2, . . . , l} , compared with the total number of shots Nshots , 
i.e. C(θ) ≡ NC/Nshots.

It is also crucial to take into account that T is implemented probabilistically (see  (16)), thus the number of 
successful implementations Nsi might be significantly less than the number of circuit executions Nshots . However, 
insufficient Nsi may create statistical fluctuation to evaluate C(θ) , which makes it difficult to accurately compute 
its gradient. Fortunately, based on the theory proposed by Cerezo22, this challenge can be overcome by simply 
increasing a reasonable number of circuit executions, as the possibility of occurring large relative errors will 
exponentially reduced with a linearly increased Nsi . Therefore, in practice, we can measure all the qubits and 
repeat the experiment Nshot number of times to numerically check how large Nshot needs to be to achieve the 
required accuracy ε . In Section ‘Influence of Number of Circuit Executions’ of ’Parametric study’, this is dem-
onstrated in the study of evaluating the eigenvalues of a 4 by 4 matrix.

From the measurement results by the quantum computer, the cost function C(θ) can be computed. The 
parameters θ are then adjusted by an optimizer in the classical computer (e.g., gradient descent), which is used 
by the ansatz in the next round of the loop. It is easy to verify that when C(θ) is approaching zero, so is (5), and 
thus the matrix T can be quantified as close to a triangular matrix.

(17)T = Q(θ)†MQ(θ) =
∑

i

ciQ(θ)
†AiQ(θ),

(18)C(θ) =
N
∑

l=2

l
∑

m=1

(|�el|T|em�|2),

Figure 2.   Schematic diagram of Variational quantum universal eigensolver (VQUE).
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In theory, the target of VQUE is to find the parameters θ which minimizes the cost function C(θ) , In practice, 
however, the main interest is usually focused on finding a close enough solution, within a preset error threshold 
based on the application purpose. However, in the traditional VQE method, no quantification index is directly 
available, and the extent of optimization is unknown before finding the global optimum solution. This might 
become the main bottleneck for applying the traditional VQE technique to solve real-world problems, where 
the numerical error is expected to be within a specific range. Besides, even with extensive effort, phenomena 
like the barren plateau36 and noise introduced in NISQ devices might still deeply influence the optimization 
performance, thus the optimized solution might be impossible to find. Efforts are still being paid to mitigate the 
barren plateau issues37.

This challenge is partially overcome by the cost function introduced in (18), whose value is designed as a 
quantification index of a triangular matrix. The more a matrix is triangularized, the closer its diagonal entries 
are to its eigenvalues. Thus a customized error threshold ε can be used as a termination condition for the opti-
mization process, as follows

Once the termination condition is reached with Q(θop) , the diagonal elements of the matrix T = Q(θop)
†MQ(θop) 

are used as the estimate of the eigenvalues of the original matrix. Therefore, performing the Hadamard test to 
each unitary Q(θop)†AiQ(θop) (note M = ∑

i ciAi ) with the intial state |ei� , the real and imagery parts of ith 
eigenvalue can be evaluated.

It is also worth noting that the algorithm designed here is to reach out to all eigenvalues similar to the classical 
eigenvalue algorithm. It might be possible to adapt and modify this method if a specific subset of eigenvalues 
are the main interest.

Resource analysis
In this subsection, we analyze the escalation of computational resources in correlation with the expansion of the 
network size. Consider an N-dimensional matrix that can be decomposed into the sum of n unitaries. Quantum 
hardware possesses the ability to store an N-dimensional vector and perform matrix operations using only 
O(log2N) qubits, requiring exponentially fewer resources compared to classical computers. The computational 
complexity of executing VQUE in each iteration to triangularize the matrix approximates to O(log2N + n2) . This 
complexity encompasses: 1). O(log2N) gates for the execution of the quantum process snapshot 2). O(n2) gates 
for the implementation of the non-unitary gate operation 3). Additional gates required for the ansatz. Conse-
quently, if a matrix can be represented by a limited number of unitaries (i.e., N >> n ), the proposed VQUE 
could potentially offer an exponential quantum advantage in matrix triangularization. However, the quantum 
advantage will diminish to linear to produce all N eigenvalues. It is critical to underscore that, akin to all other 
Variational Quantum Algorithms (VQAs), the extent of quantum advantage conferred by VQUE is largely con-
tingent on the optimization process.

Parametric study
In this section, we showcase the numerical results from our VQUE implementation. First, to validate the devised 
method, we implement the VQUE on IBM’s noise-free quantum simulator to assess the eigenvalues of a non-
Hermitian matrix. Following this validation, we deploy the VQUE on a real IBM quantum computer (ibmq-quito, 
5 qubits, 16 quantum volume). To evaluate scalability and universality, we apply the VQUE to a 1024-dimensional 
matrix and a non-diagonalizable matrix. To primarily emphasize the performance assessment of the algorithm, 
we conduct these tests on the noise-free quantum simulator. Ultimately, we employ our algorithm for the small 
signal analysis of an actual power network.

Verification of VQUE on by a simple illustrative example
We will demonstrate our method with a simple example via a quantum simulator and using a real quantum 
device.

Implementation in noise‑free quantum simulator
The goal is to minimze the cost function in (18) and obtain the optimal parameters,

In this subsection, we use the VQUE approach to evaluate eigenvalues of the matrix M defined as follows,

Applying (2) decomposes matrix M as a linear combination of unitaries M = −2 · (σI ⊗ σI )+ 3 · (σy ⊗ σx) . 
Note there is a negative coefficient -2 in this decomposition, thus the operator M could not be directly imple-
mented by the technique presented in34. To implement the matrix in a quantum circuit, firstly, we perform the 

square root operation on the coefficient vector 
(

−2
3

)

 , giving 
(

1.4142j
−1.7321

)

 , which is then normalized to 
(

0.6325j
−0.7746

)

 

by a constant 2.2361.

(19)C(θop) ≤ ε.

(20)θop = arg min
θ

C(θ).

M =







−2 0 0 − 3
0 − 2 3 0
0 − 3 − 2 0
3 0 0 − 2






,
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To search the unitary matrix Q which triangularizes the matrix (i.e. T = QMQ† ), 5 qubits are used as shown 
in Fig. 3. We use the RZ-SX-RZ gates to form the variational circuit, which results in an ansatz with 4 parameters.

Firstly, the B circuit defined by (11) converts the ancilla qubit to the quantum state:

In the meanwhile, the quantum augmentation circuit efficiently prepares a quantum state:

which corresponds to the vectors: 







�e1
�e2
�e3
�e4






 and �ei is a 4-dimensional unit vector with 1 in its i-th entry.

The ansatz Q(θ) is then performed to implement the matrix transformation T = Q(θ)†MQ(θ) . Subsequently, 
we perform the matrix formulation circuit that kickbacks the phase term in (21) to the corresponding operators 
(σI ⊗ σI ) and (σy ⊗ σx) , respectively. In the end, the inverse ansatz circuit ( Q(θ)† ) and the inverse circuit of Bc 
(i.e., Bc

† ) are applied to the augmented qubits and ancilla qubits, respectively, which yields the quantum state:

where the ancillary state |φ� is supported in the subspace orthogonal to |0� and 5 is the coefficient s calculated 
from (16).

Therefore, if the ancilla qubit is measured in state |0� , operator T is successfully applied to working and aug-

mented qubits, which corresponds to the vector 







T �e1
T �e2
T �e3
T �e4






 . Subsequently, by counting the frequency of measuring 

|0001�, |0010�, |0011�, |0110�, |0111�, |1011� in the working and augmented qubits, the cost function C(θ) defined 

(21)|ψ�a = 0.6324j|0� − 0.7746|1�,

(22)|��w&a =
1

2
(|0000� + |0101� + |1010� + |1111�),

(23)1

5
|0�ancilla ⊗ T|��w&a +

√

1− 1

52
|φ�,

Figure 3.   Example 1a: Simple illustrative example in noise-free quantum simulator.
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in (18) is evaluated. For instance, the quantum state |0001� is related to the vector 









�e2
�0
�0
�0









 , thus the frequency of 

getting this result corresponds to the magnitude of entry T21 , i.e.:

where c = s · s · (2)2 = 100.
After the cost function is evaluated, “Constrained Optimization By Linear Approximation optimizer”38 is 

used to update the parameters θ , which will then be used in the ansatz Q(θ) in the next iteration. Figure 3 plots 
the cost function versus the number of iterations. It shows that the cost function is consistent below 0.01 after 
around 140 iterations. Thus the θ after 155 iteration is selected as θop .

The Hadmard test is then applied with the optimized ansatz Q(θop) to evaluate the ith eigenvalue. The evaluated 
eigenvalues are shown in the results part in Fig. 3. Compared with the theoretical eigenvalues, �3 has the largest 
relative error of 0.39% , which is quite close to the theoretical one. Therefore, we conclude that:

•	 In theory, the devised method has the capability to evaluate the eigenvalues of a general matrix with complex 
eigenvalues.

•	 As the absolute error is similar for all eigenvalues, the evaluation of smaller eigenvalues might have larger 
relative errors.

Influence of number of circuit executions
As discussed in section ‘Variational quantum universal eigensolver’ of ‘results’, the number of circuit executions 
Nshots plays a key role in accurately evaluating the eigenvalues. As pointed out by Cerezo22, the possibility of 
resulting large evaluation errors should exponentially decrease with a linear increased Nshots . To confirm this 
theoretical analysis, we make a numerical study in the same quantum circuit as shown in Fig. 3.

In the experiment, we set the accuracy threshold as the maximum error in the eigenvalue evaluations is less 
than 5% . From the experiment, the algorithm starts to make meaningful estimation with Nshots = 300 . Thus we 
increased the number of shots Nshots from 300 to 2800, with a step of 25. For each Nshots , we repeat 100 times 
and count the number of results which gives the eigenvalues inside the accuracy threshold. The experiment 
result is shown in Fig. 4.

It can be observed that with the linearly increased number of Nshots , the possibility for VQUE to make estima-
tions with maximum relative error larger than 5% is close to exponentially decreased. Therefore, it is reasonable 
to expect overcoming the challenge of T is implemented probabilistically by an acceptable increase of Nshots.

Implementation on real quantum machine
In this subsection, we implement example 1 in a real quantum machine to study its performance in the current 
Noisy Intermediate-Scale Quantum (NISQ) environment. We use the IBM quantum computer ibmq_manila, 
which is a 32-quantum volume machine with 5 qubits. Its structure is shown in the quantum machine configu-
ration part in Fig. 5.

As shown in Fig. 5, due to the limited connectivity of the real quantum computer, the quantum entanglement 
between the ancilla qubit and augmented qubits will require a significant number of CNOT gates to realize in 
the quantum computer. Therefore, we made an engineering trick here by removing the ancilla qubit and only 
performing σy ⊗ σx to the augmented qubits as shown in the VQUE circuit in theory in Fig. 5. Such treatment 
is based on the fact that Q†IQ = I for an arbitrary unitary matrix Q . Therefore, searching for the ansatz to 

(24)
|T21|2 =

�

�

�

�

�e2 �0 �0 �0
�







T �e1
T �e2
T �e3
T �e4







�

�

�

2

≡ |�0001|T|��w&a|2 · c,

Figure 4.   VQUE accuracy study.
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triangularize the matrix M = −2 · (σI ⊗ σI )+ 3 · (σy ⊗ σx) is equivalent to finding the ansatz which triangu-
larize the matrix σy ⊗ σx.

The circuit is then compiled to fit the configuration of the quantum machine as shown in Fig. 5. It can be 
observed that the noise introduced by the quantum computer will significantly influence the classical optimizer. 
As a result, the cost function can only converge to a local minimum of around 2, which results in the estimated 
eigenvalues having a relative error from 14.38% to 25.42%.

VQUE scalability demontration
In this subsection, the VQUE algorithm estimates the eigenvalues of a 1024-dimensional 
matrix in the noise-free quantum simulator. The matrix is composed of two unitary matrices: 
σI ⊗ σI ⊗ σI ⊗ σI ⊗ σI ⊗ σI ⊗ σI ⊗ σI ⊗ σI ⊗ σz  and σI ⊗ σI ⊗ σz ⊗ σI ⊗ σx ⊗ σI ⊗ σI ⊗ σz ⊗ σI ⊗ σI  , 
with coefficients −1 and 2 respectively. An entangled RX-RY gates ansatz as shown in Fig. 6 is selected as the 
parameterized circuit. As shown in the training process, the cost function is converged to 20, which implies 
the average value below the diagonal elements is around 3.38184 · 10−5 . It has 1024 eigenvalues in the values 
set of {−1+ 2j,−1− 2j, 1+ 2j, 1− 2j} . The estimated eigenvalues are shown in the results part of Fig. 6. It can 
be observed that all the estimated eigenvalues are within the relative error of 2% , which maintains a very high 
estimation accuracy. This indicates that VQUE has outstanding scalability and thus brings a huge potential to 
resolving ultra-large size eigenvalue problems.

Figure 5.   Example 1b: Illustrative example in real quantum machine.

Figure 6.   Example 2: VQUE scalability demonstration.
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Verification of VQUE for non‑diagonalizable matrix
In this subsection, to demonstrate the universality, the VQUE is applied to evaluate the eigenvalue of a non-
diagonalizable matrix N :

It is easy to verify that this matrix only has three linear independent eigenvectors and thus is not similar to 
any diagonal matrices5. Decomposing the matrix by (2) gives the 13 coefficients, which is significantly more 
complicated than the matrix used in the previous sections. As shown in Fig. 7, when the same ansatz as in previ-
ous cases is used, the cost function could only converge around 4, which is too far away from a triangular matrix. 
By this ansatz, the evaluated eigenvalues are shown on the left side of the results in Fig. 7. It can be observed 
that �3 has the largest evaluation error of ǫ = 1.3079− 0.3270 , which is 134.82% of its original eigenvalue. This 
indicates that the original eigenvalue �3 is submerged by the error, which is consistent with the conclusion we 
have drawn from the cost function.

To precisely evaluate the eigenvalues, we slightly modify the ansatz as shown in the “C-Ansatz” of Fig. 7. This 
complicated ansatz enables the VQUE to search for the solution in a much larger subspace. With the empowered 
ansatz, the cost function could then be brought down to 0.001 after 150 iterations. By this optimized ansatz, the 
eigenvalues are listed on the right side of the results in Fig 7. At this time, the largest relative error appears in 
eigenalue �1 , which is 7.37% of original eigenvalue. Compared the results with the one from the simple anstanz 
in the beginning, the eigenvalue evaluation accuracy is dramatically improved from 134.82% error to 7.37% error.

It is essential to realize that it is our devised method that enables such a trial-and-error process. In the 
original version of VQE, only the smallest eigenvalue is available, and there is no indication of how close the 
evaluated eigenvalue is to the theoretical one. This is critical in practical applications, where the numerical error 
is expected to be controlled inside a specific range. However, in today’s NISQ machines, the variational method 
is not necessarily guaranteed to work. For instance, the barren plateau phenomenon will require exponential 
precision to train the ansatz. Besides, a universal parameterized circuit itself requires a very complex structure 
with a tremendousnumer of parameters (e.g.39 introduced a depth 7, 24 parameters universal ansatz for 2 qubits). 
Such complexity will not only be deeply influenced by the implementation noise but also increase the possibility 
of converging to a sub-optimum during non-convex optimization23.

In the standard VQE approach, regardless of the ansatz chosen, the algorithm consistently yields an eigenvalue 
estimate. However, it does not provide insights into the accuracy of the predicted eigenvalue, necessitating the 
use of a sufficiently comprehensive ansatz to guarantee a dependable evaluation. In contrast, the cost function 
within our proposed methodology serves a dual purpose, also acting as an indicator of accuracy. As shown in 
example 3, this feature allows for the exploration of a shallower tentative ansatz through a process of trial and 
error, as it offers immediate feedback on the reliability of the results. Our introduced method thus opens an engi-
neering window to solve the problem without explicitly overcoming all the challenges above. A threshold value 
can be set based on the specific application. We could then start with a simple ansatz and gradually increase its 
complexity to attempt to reduce the C(θ) below the threshold value. If a solution that matches the requirement 

N =







5 4 2 1
0 1 − 1 − 1
−1 − 1 3 0
1 1 − 1 2






,

Figure 7.   Example 3: Eigenvalue evaluation of non-diagonalizable matrix.
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could be found in the subspace spanned by the ansatz, there is no need to search the whole space for a theoretical 
solution. This process can be further improved and automated by the recent developed reinforcement learning-
based methods for quantum architecture search40.

Verification of VQUE for power network stability and oscillation mode analysis
In this subsection, VQUE is used to analyze a real-world small signal stability problem of power network1. As 
shown in Fig. 8, a thermal generating station consisting of four generators is connected to the main power grid 
through the transformer and two transmission lines: T-line 1 and T-line 2. A more detailed introduction of 
system parameters can be found in1 on pages 753 and 754. To analyze the small-signal stability characteristics 
of the system when the T-line 2 is tripped, the system matrix M is formed as shown in Fig. 8. Decomposing the 
matrix by (2) gives 16 unitary matrices, with s = 377.730318 in (16). As shown in the training process in Fig. 8, 
a simple ansatz could easily bring the cost function exactly to zero after 40 interactions, with 1 million shots. 
However, from the eigenvalue evaluation results, it can be seen that only the large imaginary parts in eigenvalues 
�1 and �2 are precisely predicted, which is directly related to the system oscillation modes.

Note the system is considered to be small signal stable, if and only if all of its eigenvalues are on the left-hand 
side. However, the real part of �1 is small and is distorted to be positive by VQSU, the system stability conclusion 
might be misleading.

Challenges for future work
In this paper, we opened the door for the variational quantum algorithm to tackle the eigenvalue estimation of a 
general matrix. Meanwhile, numerical improvement is still required to make this algorithm shinning in practical 
applications. To pave the path for a future robust VQUE algorithm, in this section, we list the main challenges 
that are obstacles to the algorithm for scaling.

Excessive number of shots requirement
In the system matrix such as shown in Fig.  8, the smallest magnitude entry is -0.1092, which 
is only 0.1% of its largest entry. However, if we ignore this entry, the eigenvalue will become 
�1 = 1.9486, �2 = −1.1892+ 1.7945j, �3 = −1.1892− 1.7945i, �4 = 0 , which is almost completely different with 
the original eigenvalues. Therefore, extremely high precision is needed in the training process. However, based on 
Hoeffding’s inequality22, this implies an increasing number of shots. Fortunately, as shown in section ’Influence 
of number of circuit executions’ of ’Parametric study’, such a requirement is usually easy to accommodate, as 
the possibility of resulting large relative error will exponentially be reduced with an increasing number of shots.

Besides, when the matrix is decomposed as a linear combination of unitary matrices, the summation of its 
coefficients magnitude s might also be very large. As shown in (16), this will quadratically decrease the pos-
sibility of implementing the non-unitary operator. Modifications like cooperating with the idea of Amplitude 
amplification41 to boost the success rate can be implemented to improve this issue.

Figure 8.   Example 4: Verification of VQUE for power network stability and oscillation mode analysis.
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Unitary decomposition challenge
The system information is usually embedded in the network matrix for many practical applications. To enable 
evaluating its eigenvalues in a quantum computer, it needs to be decomposed as a linear combination of unitary 
matrices. Although (2) provides a systematical way to conduct this decomposition, its computational cost for 
the decomposition itself is very high and usually results in a O(N2) number of coefficients. In this case, even the 
classical VQE needs to implement O(N2) times, which eliminates the quantum advantage. Therefore, it is critical 
to develop an efficient way to implement the unitary decomposition with a minimum number of unitary matrices.

It is also valuable to note that this issue exists for many variational quantum algorithms used for scientific 
computations, where the targeted matrix is not naturally formed as a summation of directly realizable unitary 
operators. As pointed out by Aaronson42, the matrix implementation issue is also considered as one of the main 
caveats for HHL algorithm, which is crucial for practical applications.

Optimization challenge
The introduced quantum eigenvalue algorithm belongs to the class of hybrid quantum-classical algorithms. It 
involves the minimizing cost function procedure, which depends on the optimizer in the classical computer. 
However, the resulting optimization problem is in general nonconvex, it is common that VQUE converges to 
suboptimal parameter values. Besides, if the algorithm is implemented on a real quantum machine as in sec-
tion Implementation on real quantum machine, the noise will also significantly influence its convergence. To 
temporarily overcome this issue on a noise-free quantum simulator, we repeat the optimization procedure many 
times with different initial parameters. Novel techniques to improve the optimization process (e.g.23) as well as 
mitigate errors are critical to enabling the method robustly tackle real-world challenges.

State preparation
This algorithm involves the state-preparing process when implementing the non-unitary operators. It is valuable 
to notice that, the dimension of the quantum state is directly related to the number of unitary matrices (i.e., not 
the dimension of the matrix). In this paper, we use the embedded function in IBM qiskit43 for preparing the 
state, which is currently still computationally expensive42. This area is still an ongoing research topic, and many 
efficient algorithms (e.g. QRAM44) are expected to be available in the short future.

Discussion
This paper introduced the variational quantum universal eigensolver (VQUE) algorithm, which enables the 
quantum computer to estimate the eigenvalues of a general matrix. VQUE method unitarizes the eigenvalue 
problem by Schur decomposition theory and maintains the quantum advantage by the introduced quantum 
process snapshot (QPS) technique. We also devised a novel way to directly implement a non-unitary matrix in 
the QPS quantum circuit, which empowers VQUE to estimate the eigenvalues of a general non-unitary matrix. By 
an illustrative example, VQUE is validated on the noise-free simulator and a real quantum machine. Its scalability 
and universality are tested through a 1024-dimensional matrix and a non-diagonalizable matrix in the noise-free 
simulator, respectively. We also reveal its numerical challenges through a real-world application example. This 
is the first realizable quantum algorithm in today’s NISQ devices to evaluate the eigenvalues of a general matrix. 
It shows outstanding scalability and opens a window to enable quantum computers directly tackle real-world 
ultra-scale problems, thus moving the quantum algorithm frontier one step closer to practical applications.

Methods
Proof of non‑unitary gate operation implementation
In section ’Non-unitary gate operation’ of ’Results’, we devised the non-unitary operation based on the idea 
introduced in34. The mathematical proof of such implementation in (16) is provided below:

Proof  From (13), we have:

As defined in (15) (i.e., Bc|0� = 1√
s

∑2n−1
i=0 (

√
ci)

∗|i� ), the operator Bc can be represented as:

where the superscript * denotes complex conjugate and the magnitude of vector BR|0� is zero. Therefore, its 
complex conjugate transpose Bc

† is:

Substituting (27) to (25) gives:

(25)Wm(|0� ⊗ |ψ�) = Bc
† ⊗ I

( 1√
s

2n−1
∑

i=0

√
ci|i� ⊗ Ai|ψ�

)

.

(26)Bc =
1√
s

2n−1
∑

i=0

(
√
ci)

∗|i��0| + BR

(27)Bc
† = 1√

s

2n−1
∑

i=0

√
ci|0��i| + BR

†
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where 
√

1− 1
s2
|φ� ≡ BR

†( 1√
s

∑2n−1
i=0

√
ci|i� ⊗ Ai|ψ� and the ancillary state in state |φ� is supported in the sub-

space orthogonal to |0� as �0|BR
†|i� ≡ 0,∀i ∈ 0, 1...2n − 1 , which results from the definition in (26) that the 

magnitude of vector BR|0� is zero.
Q.E.D. 	�  �

Data availability
The simulation datasets used during the current study are available from the corresponding author upon rea-
sonable request.
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