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The impact of wind energy on plant 
biomass production in China
Li Gao 1,6, Qingyang Wu 2,6, Jixiang Qiu 1, Yingdan Mei 3*, Yiran Yao 1, Lina Meng 4 & 
Pengfei Liu 5

Global wind power expansion raises concerns about its potential impact on plant biomass production 
(PBP). Using a high-dimensional fixed effects model, this study reveals significant PBP reduction 
due to wind farm construction based on 2404 wind farms, 108,361 wind turbines, and 7,904,352 
PBP observations during 2000–2022 in China. Within a 1–10 km buffer, the normalized differential 
vegetation and enhanced vegetation indices decrease from 0.0097 to 0.0045 and 0.0075 to 0.0028, 
respectively. Similarly, absorbed photosynthetically active radiation and gross primary productivity 
decline from 0.0094 to 0.0034% and 0.0003–0.0002 g*C/m2 within a 1–7 km buffer. Adverse effects 
last over three years, magnified in summer and autumn, and are more pronounced at lower altitudes 
and in plains. Forest carbon sinks decrease by 12,034 tons within a 0–20 km radius, causing an average 
economic loss of $1.81 million per wind farm. Our findings underscore the balanced mitigation 
strategies for renewable energy transition when transiting from fossil fuels.

Environmental degradations and extreme weather driven by climate change are significant threats to biodiversity 
and  ecosystems1. Fossil fuel consumption has been a major contributor to this problem, leading to various forms 
of pollution and greenhouse gas emissions. The Paris Agreement encourages legally binding international trea-
ties on climate change and sustainable development by enhancing the implementation of nationally determined 
contributions. The Agreement also emphasizes the critical role of renewable energy in these  efforts2.

Traditional fossil fuel-based power generation, especially coal-fired power plants, has significantly affected 
the health of vegetation. The emissions of sulfur oxides and nitrogen oxides from plants not only lead to acid rain 
but also lower the pH value of the atmosphere, subsequently damaging soil structure and biological  activity3. 
Such acidic conditions inhibit the uptake of vital nutrients in many plants, including calcium, magnesium, and 
potassium, hindering their  growth4. Moreover, heavy metals like mercury, cadmium, and lead, released from 
coal-burning, accumulate in soils, could enter the food chain and pose threats to higher-order  organisms5. In 
addition to these direct impacts, emissions of particulates and other gases may alter local microclimates, affecting 
temperature and  humidity6. The particulate matter from coal combustion can also impede sunlight penetration, 
resulting in reduced light intensity or shifts in light quality, which, in turn, affects photosynthesis and other 
physiological processes in certain  plants7. Owing to these multifaceted factors, regions under long-term influ-
ence of coal-fired power plants might experience a decline in biodiversity. Such pollution could render certain 
plant species less viable, leading to shifts in ecosystem structure and functionality.

Wind energy is one of the fastest-growing energy sources, playing a vital role in global efforts to mitigate 
climate change. Wind energy is often favored over photovoltaic solar energy for its superior grid-balancing 
 capabilities8,9. However, wind farms might threaten carbon sink and plant biomass production (PBP), a vital 
component of carbon storage and uptake in  ecosystems10–12. Wind farm construction may also affect biodiversity 
by reshaping of trophic  cascades13,14, introducing new species into given ecological  systems15,16, altering species 
migration  patterns17, killing birds through collision with  turbines18, habitat degradation or  provision18–22, chemi-
cal element  deposition23, changing local  microclimates24–26, and others. Even though these negative impacts 
may not deter the shift from fossil fuel reliance to cleaner energy sources, policymakers and institutions often 
prioritize renewable energy transition without considering potential ecological impacts such as PBP conserva-
tion, leading to unsustainable resource use and increasing biodiversity destruction.
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Plants play a critical role in ecosystem functioning and global biodiversity, and are highly vulnerable to dam-
ages caused by climate  change1,28. Climate change, largely accelerated by fossil fuel use, is making them increas-
ingly vulnerable. Wind farms also have mixed effects on ecosystems, they can alter local surface temperature, 
humidity, and  precipitation19,22,29. They may extend regional vegetation growing seasons and increase grassland 
 productivity27,30, and turbine bases may provide favorable habitats for some terrestrial  species31. Previous studies 
found the spatial impact of wind farms on vegetation ecosystem may extend for 10 km beyond the base of the 
wind turbines and the  tower32. Plants in developing countries are particularly  vulnerable33,34. Existing literature 
focuses on the effects of wind farm construction on animal diversity, and the potential impacts on vegetation 
dynamics are understudied. Therefore, a nuanced understanding of the ecological implications of both renew-
able and non-renewable energy is vital.

In the context of the pressing need to transition away from fossil fuels, China has the largest installed wind 
energy capacity in the world, following rapid growth in new wind facilities since the first wind farm in  198635,36. 
As of the end of 2020, the country had, cumulatively, 281 gigawatt (GW) installed wind power capacity, having 
added 71.6 GW of new capacity that same year; in contrast the United States had installed capacity of 118 GW, 
with 14 GW of new capacity added in  202037. China also operates almost half of the world’s installed offshore 
wind power, amounting to 170 GW as of  20218,38,39. This reliance on wind power is likely to grow, as the govern-
ment announced ambitious carbon emissions goals at the 75th session of the United Nations General Assembly 
in 2020, pledging to peak before 2030 and achieve carbon neutrality before 2060 (UNGA 75). Leaders further 
announced the goal of a non-fossil energy share of 25% in primary energy consumption by 2030 and 80% by 2060. 
China’s 14th 5-Year Plan (2021–2025) aims to reduce the number of wind farm units and investment costs by 
constructing wind farms with larger capacity turbines, swept areas, and higher hub heights and rotor diameters 
to maintain low wind power prices. China is one of the wealthiest countries in PBP globally and a signatory to 
the UN Convention on Biological  Diversity40. While the emphasis on wind power is in line with global sustain-
ability goals, it’s crucial that these efforts are executed with care for local ecosystems. Balancing renewable energy 
production with biodiversity conservation remains a challenge and necessary issue to address.

Previous studies on the impact of wind farms on vegetation dynamics have relied heavily on numerical simu-
lation models due to data limitations. Such studies are often restricted to single geological  types19,20, localized 
 areas41–43, and/or short observation  intervals42. This study uses nationwide data on the installation of 2,404 wind 
farms (Fig. 1) and 108,361 wind turbines in China and monthly remote sensing data on PBP indicators matched 
with 12 distance buffer zones for each wind farm from January 2000 to October 2022, totaling 7,904,352 month-
by-buffer-zone samples (Fig. 2). We assessed the influence of China’s rapidly expanding wind farm initiative 
on vegetation growth while estimating the heterogeneous effects on PBP and carbon sequestration, taking into 
account controls for natural, environmental, and anthropogenic factors. We examine ten PBP indicators: the 
normalized differential vegetation index (NDVI), enhanced vegetation index (EVI), the fraction of absorbed 
photosynthetically active radiation (FPAR), leaf area index (LAI), gross primary productivity (GPP), net pho-
tosynthesis (NP), net primary productivity (NPP), percentage of tree cover (PTC), percentage of non-tree veg-
etation cover (PNTV), and percentage of non-vegetation cover (PNV). We also assess the impact of wind farm 
construction on forest carbon sinks and economic value loss. Using the accumulation volume expansion method, 
we estimate the total carbon sink of forest trees based on the Ninth National Forest Inventory of China. We then 
calculate the forest carbon sink loss within the 20 km range of wind farms and employ the carbon tax method, 
utilizing the widely used Swedish carbon tax price of 150 USD/t of carbon, to evaluate the economic value loss of 
carbon sinks. Our findings highlight that wind power development has had profound ecological consequences.

This paper makes three primary contributions. Firstly, it provides a systematic evaluation of the externalities 
of wind turbines based on the wind power construction dataset and geographic information on PBP. The wind 
power construction China serves as a natural experiment to evaluate potential negative externalities of wind 
power on PBP within a 10 km buffer zone. Secondly, we evaluate the temporal dynamic effects of wind turbine 
construction and captures their heterogeneous effects on season, elevation, land types, and other characteristics. 
Thirdly, we discuss the potential negative contributions of increasing wind power to low-carbon transformation. 
Specifically, we estimate the total carbon sink and economic value loss of forest trees from wind turbine construc-
tion using the cumulative volume expansion and carbon tax method, respectively, which provides a reference 
point for policymakers to consider the sustainability of vegetation protection and the ecological environment 
and achieve low-carbon transformation goals.

Results
Changes in PBP due to wind farm construction
Wind farms could impact 0.08% of China’s terrestrial land area, or approximately 755,216  km2 if the impacts 
extend 10 km from each turbine, which represents an enormous spatial footprint that regional biodiversity threat 
maps and renewable energy plans fail to recognize. Figure 3 and Supplementary Table 4 present the findings on 
the impact of wind farms on PBP, measured by a range of indicators across varying distance buffers from 1 to 
20 km. Estimations from Eq. (1) indicate the relationship between wind farms and PBP is generally U-shaped. 
The NDVI within 1 km of the wind farms exhibits a significant decrease of 0.0097 (P < 0.01; 95% CI − 0.0161 
to − 0.0033), followed by declines of 0.0128 (P < 0.001; 95% CI − 0.0193 to − 0.0063) and 0.0116 (P < 0.001; 95% 
CI − 0.0180 to − 0.0052) when the distances are extended to 2 km and 3 km, respectively. The negative effect 
gradually diminishes and reaches − 0.0089 (P < 0.01; 95% CI − 0.0147 to − 0.0030) at around 4 km and is gone 
by 15 km. The weak U-shaped relationship remains consistent across the set of outcome variables. The negative 
impact of wind farms on EVI is significant within 1 km to 8 km, with a peak at 2 km and a maximum decrease 
of − 0.0088 (P < 0.001; 95% CI − 0.0128 to − 0.0047). Similarly, the impact on the FPAR is significant within 1 km 
to 7 km, peaking at 1 km, with a maximum decrease of − 0.0094 (P < 0.01; 95% CI − 0.0147 to − 0.0040) of a 
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percentage point. The negative impact on the LAI is significant within a range of 1 km to 3 km, peaking at 1 km, 
with a maximum decrease of − 0.042 (P < 0.01; 95% CI − 0.0719 to − 0.0121). Finally, the negative impact on GPP 
is significant within a range of 1 km to 7 km, peaking at 3 km, with a maximum decrease of − 0.0004 kg*C/m2 
(P < 0.01; 95% CI − 0.0006 to − 0.0001). Certain PBP indicators show less consistent and pronounced variation 
after wind farm construction, including NPP, NP, and PTC.

Dynamic effects of wind farms
Figure 4a and Supplementary Table 5 display the changes in PBP before and after the construction of wind farms 
by plotting the event-study coefficients estimated from Eq. (2) in the methods section. Figure 4a indicates that 
the PBP changes within 6–12 months before the wind farm begins operations, likely due to related constructions 
such as preparing the site, installing infrastructure such as roads and transmission lines, and erecting the wind 
turbines. PBP decreases after the installation, consistent with expectations. In the first year after the construction, 
NDVI declined by approximately 0.0105 for proximate wind farms. These results remain consistent outside the 
3-year evaluation period.

Figure 4 indicates that the construction and operation of wind turbines may have long-term, increasing 
impacts on plant biodiversity. A potential cause is the impact of human activities related to road construction, 
building construction, and tourism  development44. Turbines may also affect the distribution and ecological niche 
of plants. The noise and vibration turbines generate may damage vegetation and soil. Changes in air flow caused 
by the rotation of wind turbines may affect the climate and precipitation patterns of nearby areas. In addition to 
noise, light pollution and landscape alterations may negatively affect plants over time.

Heterogeneous effects by season
Figure 4b and Supplementary Table 6 reveal that the negative impact of wind farms on plant communities pre-
dominantly occurs during the summer (June–August) and autumn (September–November) months, compared 
to the baseline. In these periods, the establishment of wind turbines reduces the FPAR component of vegetation 
by an average of 0.9896% (P < 0.05) and 0.7190% (P < 0.01) at 4 km distance, respectively. In contrast, the effect 

Figure 1.  Distribution of wind farms in China. The dots (light to dark) represent wind farms installed in 
different years. The brown curve indicates the city’s administrative boundary. The figure depicts a total of 2,404 
wind farms from the original dataset, with the earliest installation date in 1994 and the latest in 2021. Figure 
produced using ArcGIS Pro 3.2 (https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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is only 0.4457% (P < 0.10) and 0.3429% (P < 0.10) during the spring (March–May) and winter (December–Feb-
ruary) months. Similarly, the seasonal response of GPP to wind turbine construction is statistically significant 
only in the summer and autumn months, whereas the seasonal response of NP is significant only in autumn.

Existing literature indicates that the construction of wind farms alters the growth environment of plant com-
munities by affecting factors such as light, temperature, humidity, and soil conditions. The rotation of wind tur-
bines generates strong winds, resulting in leaf damage and increased evaporation. Additionally, the establishment 
of wind farms can disrupt the surrounding water cycle, potentially leading to soil aridity or excessive moisture. 
The most significant impacts of changes in the water cycle and light conditions occur during the summer and 
autumn seasons, as plants have the highest demand for water and light in these seasons and thus the weakest 
adaptability to these  effects45–47. In comparison, the impact during the spring and winter seasons is relatively 
minor due to lower plant growth and reproductive demands for water and light, and a reduced influence of 

Figure 2.  The illustration of field design of empirical evaluation for wind farms. Notes: Examples of wind 
turbine matrixes in wind farms (a) and satellite imagery of individual wind turbines (b) are provided in images 
(a, b). The red square indicates the area of inference. Images (a, b) were obtained from Google Earth (version 
7.1.5.1557). The experimental design pattern is displayed in the vertical view (c, d). The experimental annuli 
were divided along the radius to the center of a wind turbine using dashed circles and curves. The method used 
to calculate changes in PBP around wind farms is illustrated in images c and d. The mean values of several PBP 
indicators within a radius of 1 km, 1–2 km, …, 9–10 km, 10–15 km, and 15–20 km from the center of the wind 
farm were computed for each wind farm (c). Specifically, the mean value of the PBP indicators was computed 
in an area consisting of 1 km and 2 km from the center of the wind farm, excluding the area within 1 km (the 
shaded region) to illustrate the approach (d). This approach enabled the comparison of the marginal variation of 
indicator values within each distance bin. Figure produced using ArcGIS Pro 3.2 (https:// www. esri. com/ en- us/ 
arcgis/ produ cts/ arcgis- pro/ overv iew).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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wind farms during these  periods24,48. This result has significant implications for the planning and management 
of wind farm construction to minimize the negative externality to the surrounding natural  environment19,30,49.

Heterogeneous effects by elevation
Elevation is a crucial factor influencing the impact of wind farms on  vegetation50, as Fig. 4c and Supplementary 
Table 7 suggest. Compared to the reference baseline regression, the construction of wind farms impacts plant 
communities at elevations lower than 500 m, but not at higher elevations. For plant communities below 500 m, 

Figure 3.  Average impacts of wind farm on PBP by distance. Notes: The graphs depict regression results for 10 
PBP indicators, including the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), 
fraction of photosynthetically active radiation (FPAR), leaf area index (LAI, %), gross primary product (GPP, 
gC/m2), net photosynthesis (NP, gC/m2), net primary productivity (NPP, kg*C/m2), percentage of tree cover 
(PTC, %), percentage of non-tree vegetation (PNTV, %), and percentage of non-vegetation (PNV, %). The red 
points represent point estimators, and the green spikes show the 95% confidence intervals.
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the establishment of wind turbines reduces the FPAR component of vegetation by an average of 1.2792% (P < 0.01) 
at a distance of 4 km. This effect is only 0.1350% and 0.4287% for plant communities at elevations between 500 
and 1,500 m and elevations above 1,500 m, respectively, and is statistically insignificant. Similarly, the installation 
of wind turbines only influences the GPP and NP of plant communities at altitudes lower than 500 m, while this 
effect on communities above 500 m is not significant.

At lower elevations, plant communities are likely to be closer to wind turbines and more exposed to strong 
winds. The rotation of wind turbine blades may generate more disturbances to vegetation, potentially causing 
tree swaying or leaf damage, subsequently adversely affecting vegetation  growth51,52. Moreover, at lower eleva-
tions, higher relative humidity, fog, and clouds are more common, which increase moisture and humidity on 
the plant leaf surfaces, thus elevating the risk of plants swaying in high-speed  winds19,53. In addition to the 
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more dispersed distribution of plant communities at higher elevations, harsher climatic conditions and different 
vegetation types may result in more resilient ecosystems and a more robust response to external disturbances, 
including wind farms.

Heterogeneous effects by land types
In our study, land type strongly influenced the impact of wind turbine installation on vegetation FPAR compo-
nents within a few kilometers, as Fig. 4d and Supplementary Table 8 suggest. The construction of wind farms 
had a stable impact on plant communities in plain land types but not plateaus, hills, low-relief mountains, or 
medium-relief mountains. The establishment of wind turbines led to an average reduction of 1.4859% (P < 0.01) 
in vegetation PAR components at 4 km, and persisted up to 20 km for plain land type. For plateau, the impact 
of wind turbines was only present within areas smaller than 3 km, with a coefficient size of 0.6969% (P < 0.05), 
while the corresponding response in plant communities of plain land type at the same distance was 1.4034% 
(P < 0.01). The effects of wind turbine installation on gross primary production and net photosynthesis of plant 
communities were only significant in plain land type, with effect sizes of 0.8392 gC/m2 and 0.4822 gC/m2 at 4 km, 
respectively. No significant impact was observed in plant communities of other land types.

Differences in species composition and adaptability of plant communities in different land types may explain 
the differing impact of wind farms. Plains often have large areas of farmland and grassland, with a relatively 
simple vegetation structure, making the plant communities more vulnerable to external disturbances and dam-
age. By contrast, plateaus, hills, low and medium-relief mountains have a more complex vegetation structure, 
including a higher diversity of shrubs, herbaceous plants, and trees that are better adapted to the effects of wind 
 farms19,54. Furthermore, plain land types generally have flat terrain and relatively deeper soils, which facilitate the 
interception of water and nutrients by equipment and structures associated with wind farms, potentially caus-
ing damage to the original  vegetation19,55,56. Plateaus, hills, low-relief mountains, and medium-relief mountains 
typically exhibit greater elevation differences and slopes, and the plant communities within these areas tend to 
be more uniform, making it more difficult for wind farm equipment and structures to negatively impact the 
 vegetation57,58. These factors contribute to the increased vulnerability of plant communities in plain land types to 
the adverse effects of wind farm construction, while plant communities in plateaus, hills, low and medium-relief 
mountains are more resilient to such  impacts59–61.

Discussion
Our study focuses on the underrepresented implications of wind energy on vegetation dynamics. Results reveal 
that wind farm construction has a significantly negative effect on PBP, and the extent of these impacts varies 
across indicators. On average, wind farm construction leads to a decrease in NDVI and EVI within a range of 
1–10 km, from 0.0097 to 0.0045 and from 0.0075 to 0.0028, respectively. It also leads to a decrease in FPAR 
and GPP within a range of 1–7 km, from 0.0094% to 0.0034% and from 0.0003 to 0.0002 g*C/m2, respectively. 
The study also shows that wind farm effects follow a weak U-shaped relationship with several indicators, with 
the effects on NDVI and EVI reaching their maximum at 2 km. On average, wind farms result in a decrease in 
non-tree vegetation cover, and an increase in the proportion of non-vegetation cover, with no significant impact 
on tree cover, suggesting that vegetation with lower height, such as grassland and shrubs, is more vulnerable.

Our dynamic analysis indicates that certain diversity indicators exhibit a significant decrease within six 
months before the wind farm operation, suggesting that the construction process itself has some detrimental 

Figure 4.  Heterogeneous effects of wind farm on PBP as a function of distance. Note: Vertical axis represents 
each distance range in kilometers and the horizontal axis represents each index of PBP. (a) Depicts the 
dynamic effects of wind farm on PBP by distance. For each indicator, estimates of five temporal phases are 
reported by distance: “ − 6 to 0 months” or “ − 1 year,” indicating half a year or one year prior to full wind farm 
installation; “1st,” “2nd,” “3rd,” and “ > 3 year,” representing one, two, three years, or more than three years 
post full installation of the wind farm. (b) Illustrates the seasonal heterogeneous effects of wind farm on PBP. 
For each indicator, estimates for the “post” phase in subsamples of the four seasons are reported by distance: 
“March to May” (Spring), “June to August” (Summer), “September to November” (Autumn), and “December to 
February” (Winter). (c) Represents the heterogeneous effects of wind farm elevation on PBP. For each indicator, 
estimates for the “post” phase in subsamples of three elevation (EL) ranges are reported by distance: “EL less 
than 500 m,” “EL between 500 and 1,500 m,” and “EL greater than 1500 m.” (d) Denotes the heterogeneous 
effects of wind farm land type on PBP. For each indicator, estimates for the “post” phase in subsamples of five 
different land types are reported by distance: “Plain,” “Terrace,” "Hill," "Low relief mountain," and "Intermediate 
relief mountain." Different bubbles represent normalized [0,1] values of estimated coefficients based on different 
plant indicators. The coefficients of all heterogeneity groups and 12 zones for each indicator are normalized as 
one group (and separated by dashed lines), so the size of the coefficients within each group is comparable, while 
bubbles between indicators are not comparable, and negative coefficients will inevitably have smaller bubbles 
than positive ones. Bubble color transitions from dark to light signify varying levels of statistical significance; 
darkest representing significant at 1%, followed by 5%, and 10%; blank indicates non-significance at the 10% 
statistical level. This figure reveals the heterogeneity of the wind farm’s interstitial effects on each indicator, 
the differences in distance, and the relative size variations of the coefficients. All regressions include the same 
explanatory variables, including NDVI, EVI, FPAR, LAI, GPP, NP, NPP, PTC, PNTV, and PNV. Different 
shades from black to light represent different levels of statistical significance, with black representing a 1% 
level of statistical significance. The absolute values of the specific effects can be found in the corresponding 
Supplementary tables.

◂
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effects on vegetation. Furthermore, the negative impacts persist and even increase for more than three years 
after the wind farm become operational. Heterogeneity analysis reveals that the effects of wind farms on plant 
communities varied according to season, altitude, and land type. Negative impacts on vegetation photosynthesis 
and production are more pronounced during the summer and autumn months, at lower altitudes, and in plain 
land types. Different types of plants may exhibit distinct responses under these specific conditions. Regarding 
the underlying reasons, firstly, summer and autumn often experience higher temperatures and lower precipita-
tion levels. Plants during these periods might be in crucial growth stages, such as flowering or fruit matura-
tion, rendering them more sensitive to environmental factors. Furthermore, summer and autumn are likely 
peak operational times for wind farms, as increased electricity generation is required during high-temperature 
weather. Elevated wind turbine activity could lead to more pronounced environmental disturbances. Secondly, 
lower-altitude regions typically feature warm, arid climates and fertile soils, though they might also be more 
susceptible to erosion and nutrient loss. Moreover, the plant communities in these areas might be more prone 
to disturbances due to their adaptation to relatively stable environmental conditions. Lastly, ecosystems in plain 
regions might be comparatively simple, lacking sufficient biodiversity to withstand environmental disruptions. 
They often face greater susceptibility to anthropogenic land use changes, such as agriculture and urbanization, 
which could interact synergistically with wind farm development. These findings highlight the importance of 
considering the heterogeneous effects of wind farm construction on the surrounding natural environment in 
planning and management efforts to minimize negative impacts.

While the longstanding damage caused by coal-fired power plants on vegetation has been extensive and 
alarming, from an economic perspective, the research findings are also valuable to assess the damage to vegeta-
tion productivity and corresponding environmental and economic costs from the construction of wind farms 
in China. According to the United Nations Framework Convention on Climate Change, carbon sinks reduce the 
amount of carbon dioxide in the atmosphere by absorbing and storing carbon dioxide through photosynthesis in 
forest  trees62–65. Forest carbon sequestration is more sustainable and stable than other methods of carbon reduc-
tion, lasting for hundreds of years, and can effectively mitigate global climate  change66. However, Holst found 
that the growing environment of forest trees can influence the capacity of carbon sequestration, and the external 
effects, such as forest management, forest land use, and other human interference can alter the quality and areas 
of forest trees, resulting in variation in forest carbon  sink67. Thus, we calculate the change of forest areas due to 
the construction of wind farms with the estimated coefficients of the PTC and then compute the change of forest 
carbon sink to assess the economic value of lost forest carbon sink due to wind  farms68.

Using the accumulation volume expansion method, we estimate the total carbon sink of forest trees. The 
procedure (shown in Eq. (1) below) involves calculating forest biomass carbon sequestration based on the volume 
expansion coefficient, converting the biomass into biomass dry weight using volume density, and determining 
carbon sequestration by applying the rate of carbon content. The carbon sequestration amounts of understory 
plants and forest land are then computed using the respective carbon conversion coefficients, resulting in the 
total carbon sink of forest trees.

where CF is the total carbon sink of forest trees; S is the forest area in the buffer zone; C is the forest carbon 
density; α is the understory plants carbon conversion coefficient (taking the value of 0.195); β is the forest land 
carbon conversion coefficient (taking the value of 1.244); V  is the per unit area of forest volume (taking the value 
of 79.66m3/hm2); δ is the volume expansion coefficient (taking the value of 1.90); ρ is the volume density (tak-
ing the value of 0.5); γ is the rate of carbon content (taking the value of 0.5). This method utilizes the per unit 
area of forest volume data from the Ninth National Forestry Survey, which reports a standard value of 79.66  m3 
per hectare for China, along with conversion coefficients specified by the Intergovernmental Panel on Climate 
Change (IPCC)69. We obtain the amount of forest carbon sink loss in each buffer zone within the 20 km range 
of the wind farm by calculating the amount of change in the percentage of tree cover, multiplied by unit area 
accumulation in China. Furthermore, we employ the carbon tax method to calculate the economic value loss of 
carbon sinks based on Swedish carbon tax price of 150 USD/t.

According to Supplementary Table 4, within the study area of 0–20 km from the wind farm, the average for-
est carbon sink decreases by 12,034.21 tons after construction, and the average economic loss per wind farm of 
carbon sink reaches $1.81 million. The largest decrease in tree cover is observed in the 9–10 km buffer, with an 
average decrease of 0.27%, and the average carbon sink loss reaches $225,715. However, the average tree cover 
increases by 0.05% in the 3–4 km buffer, and the average carbon sink economic value increases by $14,027. 
Overall, except for the average carbon sink increase in the 2–4 km buffer, other buffer zones are showing different 
degrees of carbon sink loss. According to Supplementary Tables 5, 6, 7 and 8, the loss of forest carbon sink in one 
year prior to the construction of wind farms is the smallest, with an average carbon sink reduction of 2109.52 
tons and an average economic loss of $316,427.44. The loss is the largest after three years of construction, with 
an average carbon sink reduction of 18,158.28 tons, and an average economic loss of $2.72 million. The total 
reduction of carbon exceeds 10,000 tons per year, with the largest reduction of 14,284.93 tons and economic 
loss of $2.24 million in spring, and the smallest reduction in autumn. Wind farms at greater elevation areas have 
the largest impact on the carbon sink, with an increase of 11,539.22 tons and an average economic gain of $1.73 
million, while wind farms at intermediate elevation areas have the smallest impact on the carbon sink with a 
reduction of 9,622.30 tons and an average economic loss of $1.44 million. Wind farms in plains, hills, and low 
relief mountains are leading to a loss of forest carbon sinks while wind farms in plateaus and medium-relief 
mountains are not. The greatest loss is in the hilly areas, amounting to 52,657.06 tons and an average economic 
loss of $7.90 million.

(1)
CF = (S × C)+ α(S × C)+ β(S × C)

C = V × δ × ρ × γ
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While coal-fired power plants have historically wreaked havoc on vegetation ecosystems, exacerbating habitat 
loss and degradation, the loss of economic value of carbon sinks reflects the negative spillovers caused by wind 
power, which calls for more attention to the impact of green energy on regional ecology while expanding the wind 
power industry and developing clean energy. To mitigate the potential threats of renewable energy deployment to 
vegetation ecosystems, a comprehensive monitoring system is needed to assess the impacts of wind farms on plant 
communities over time. Regular vegetation surveys, remote sensing, and other monitoring techniques should be 
used to track changes in vegetation succession and distribution. Landscape planning should be conducted before 
wind farm construction to identify areas of particular importance for plant biodiversity and to avoid placing 
wind farms in those areas. Offset measures, such as reforestation, habitat restoration, and the creation of wildlife 
corridors, can be implemented to mitigate the negative externalities of wind farm development. However, it’s 
crucial to contextualize these findings within the broader initiative to transition from fossil fuels to renewable 
energy, a move that comes with its own set of significant environmental benefits. Future research should examine 
the ecological requirements of plant species and develop balanced mitigation strategies for energy transition.

Methods
Data
The data primarily consists of two parts. The first part includes wind power data, collected from the National 
and Provincial Development and Reform Commission, the Energy Bureau, wind power project public bidding 
documents, wind power project completion environmental impact acceptance reports, and the China Clean 
Development Mechanism’s official website. The wind power data includes all completed and operational wind 
farms as of 2022 at the county level, with detailed information on construction completion dates, installed 
capacity, and the longitude and latitude coordinates of the center of each wind farm. We collected data from 
2404 wind farms built between 1994 and 2022, as shown in Fig. 1. Wind farms with incomplete information on 
construction time and installation data were excluded from the final sample.

We utilized the geographic information system (GIS) to determine the land surface area covered by the 
turbines of each wind farm in a two-step process. Firstly, we geocoded the latitude and longitude of each wind 
farm by combining its address with high-resolution remote sensing images. We determined the exact location of 
each wind farm based on the recorded address and the visibility of wind turbines in the remote sensing images. 
Secondly, we divided the national land surface into 2 km × 2 km grids. Because the typical distance between two 
turbines is 0.5 km, and wind turbines are usually equally distributed within a given wind farm, we calculated 
the number of grids occupied by the wind turbines by dividing the total number of turbines in each wind farm 
by 16. The grids closest to the wind farm’s location are designated as the land parcels occupied by the wind farm, 
and we considered the outward boundaries of the grids as the spatial boundaries of each wind farm.

The second dataset includes plant biomass production (PBP) indicators from Google Earth Engine. Ten indi-
ces were used to measure PBP, including NDVI, EVI, FPAR, LAI, GPP, NP, NPP, PTC, PNTV, and PNV. NDVI 
and EVI assess vegetation growth and cover, with values ranging from − 1 to 1. FPAR measures vegetation’s light 
energy efficiency, with values from 0 to 1 (normalized to [0, 100] in analysis). LAI indicates vegetation growth and 
canopy structure, with values from 0 to 1. GPP and NP represent organic carbon fixation and net photosynthesis, 
respectively. NPP measures organic carbon remaining in plants, with GPP and NPP values typically ranging 
from 0 to 0.3. PTC, PNTV, and PNV describe the percentage of tree cover, non-tree vegetation cover, and non-
vegetation cover, respectively, with values from 0 to 100. Supplementary Table 1 provides detailed definitions.

The Terra satellite provides data for the years 2000–2022, using the MODIS (Moderate Resolution Imag-
ing Spectroradiometer) remote sensing data product. We measure NDVI and EVI using the 16-day synthetic 
vegetation index product MOD13Q1.061, while FPAR and LAI use the 8-day synthetic land leaf area index 
product MOD15A2H.061. Similarly, we measure GPP and NP using the 8-day synthetic primary productiv-
ity product MOD17A2H.006, while NPP is measured using the 1-year synthetic primary productivity prod-
uct MOD17A3HGF.006. To determine the coverage rate of planting areas, we use the annual data product 
MOD44B.006 to measure the PTC, PNTV, and PNV indices. Since the initial data covers a global scale, we use 
the Java Script programming platform to spatially locate the longitude and latitude coordinates of the centers 
of the 2,404 wind farms and obtain the monthly vegetation data based on specific wind farm locations within 
each buffer zone.

Empirical strategy
We divide the study area within a 20 km from the center of each wind farm into 12 buffer zones based on distance, 
including 1 km, 1–2 km, 2–3 km, 3–4 km, 4–5 km, 5–6 km, 6–7 km, 7–8 km, 8–9 km, 9–10 km, 10–15 km, and 
15–20 km from the center of the wind farm, resulting in a total of 3288 month-by-buffer-zone observations (i.e. 
274 months from January 2000 to October 2022 multiplied by 12 buffer zones) for a single wind farm. To elimi-
nate the effects of multiple turbine expansions on the analysis, we limit our consideration to 1,936 wind farms 
that were built after 2002 and have only undergone a single installation (Supplementary Table 2). Consequently, 
we have a total of 6,365,568 observations for analysis.

Fixed effects approach
We implement a high-dimensional fixed effects approach to estimate the average effect of wind farm construction 
on PBP under a certain distance buffer zone, specified as follows:

(2)Yk,d
it = θk,dpostit + X

′

itγ
k,d

+ δj × ηy + τm + µg + εit ,
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where Yk,d
it  denotes one of the k PBP indicators of a distance buffer zone d of wind farm i at month t  . postit equals 

1 if it is after the wind farm installation and 0 otherwise. X′

it is a vector of control variables that may affect PBP, 
including the number of wind turbines, wind power capacities of the wind farm, precipitation, temperature at 
two meters above the ground, nighttime light, and elevation. In particular, precipitation and temperature are 
good measures of surrounding natural or climatic conditions to exclude the effects of global warming issues such 
as extreme weather events on the vegetation growth; nighttime light data has garnered considerable attention 
in recent scientific literature as a robust and informative proxy for assessing local economic  development70–72. 
This approach allows researchers to capture the extent of anthropogenic activity and effectively control for its 
associated implications on human–environment  interactions73,74, particularly concerning vegetation around wind 
farms. Supplementary Table 1 provides detailed descriptions of all control variables. θk,d is the main coefficient of 
interest, which measures the difference of mean values of a PBP indicator k before and after wind farm installa-
tion within buffer zone d , and γk,d denotes the vector of coefficients for the control variable X . In the presented 
equation, county-by-year fixed effects ( δj × ηy ) not only represent unobserved attribute changes within the 
counties (j) housing wind farms but also precisely capture and control the economic dynamics of these regions. 
These dynamics encompass, but are not limited to, variations in Gross Domestic Product, industrial output, and 
traffic indicators. The comprehensiveness and granularity of these fixed effects effectively mitigate any natural 
or anthropogenic confounding factors in the estimation of wind farm impacts. Consequently, their incorpora-
tion into the study not only bolsters confidence in the accuracy of the estimated benefits of wind farms but also 
ensures the reliability and precision of the analysis in identifying the impacts of wind farms on local economies 
and environments. τm represents month-of-year fixed effects, capturing any monthly characteristics or seasonal 
effects such as changes in local wind speed and direction. µg represents land type fixed effects, which control for 
unobservables under different topographic features. We considered seven land type categories, including the 
plain, terrace, hill, low relief mountain, intermediate relief mountain, high relief mountain, and extremely high 
relief mountain. εit is the idiosyncratic error term. We repeatedly estimated Eq. (2) in the methods section for 
all distance buffer zones ( d = 1, 2, . . . , 12 ) and for all PBP indicators ( k = 1, 2, . . . , 10 ). All regressions employ 
identical specifications. We also clustered the standard errors at the wind farm level, which accounts for correla-
tions between observations around the same wind farm.

Dynamic treatment effect
To examine the dynamic effects of wind farm construction, based on Eq. (2), we replace the dummy postit with 
a set of dummy variables indicating different time periods to explicitly estimate the impact of wind farms six 
months before, the first year, the second year, the third year, and more than three years after the installation of 
the wind farm. The dynamic model is specified as follows:

where Yk,d
it  denotes one of the k PBP indicators of a distance buffer zone d of wind farm i at month t  . lag1 is a 

dummy that equals 1 if it is at least six months before installation and 0 otherwise; leadq is a dummy indicating 
one year ( q = 1 ), two years ( q = 2 ), three years ( q = 3 ), and more than three years ( q = 4 ) after installation. θk,d

−1  
and θk,d+q  ’s are coefficients measuring the dynamic impacts of wind farm installation. The remaining terms are 
identical to Eq. (2). Since NPP, PTC, PNTV, and PNY are measured by year, lag1 indicates one year, other than 
half a year, before installation for the regressions of these four indicators. For all regressions, “more than half a 
year (or one year) before installation” serves as the reference group.

Heterogeneous effects
We also estimate Eq. (4) below with different groups of subsamples to explore the heterogeneous effects across 
season, elevation, and land type.

where Yk,d,h
it  denotes one of the k PBP indicators within a distance buffer zone d of wind farm i at month t  . h 

denotes one of the three groups of subsamples. For seasonal heterogeneous effects ( h = 1 ), we considered four 
subsamples—spring (March to May), summer (June to August), autumn (September to November), and winter 
(December to February), which results in 480 (10 × 12 × 4) regressions and θk,d,h’s. For heterogeneous effects 
of elevation ( h = 2 ), we considered three subsamples—elevation less than 500 m, elevation between 500 and 
1,500 m, and elevation larger than 1,500 m, which results in 360 (10 × 12 × 3) regressions and θk,d,h’s. For hetero-
geneous effects of land type ( h = 3 ), we considered five subsamples—plain, terrace, hill, low relief mountain, 
intermediate relief mountain, resulting in 600 (10 × 12 × 5) regressions and θk,d,h’s.

We determine which subsample of the elevation group and land type group each wind farm belongs to by the 
mean values of elevation (DEM) and topographic (Geomor) indicators within the 1 km buffer zone for the wind 
farm. For the seasonal subsample, it is determined directly from the specific month recorded for each observa-
tion. In addition, in the land type group, the five available subsamples did not cover the entire sample. Due to 
the small number of wind farms distributed in the two types of land type—high relief mountain and extremely 
high relief mountain—we did not include estimates of these two subsamples.

(3)Yk,d
it = θ

k,d
−1 lag1it +

4∑

q=1

θ
k,d
+q leadqit + X

′

itγ
k,d

+ δj × ηy + τm + µg + εit ,

(4)Yk,d,h
it = θk,d,hpostit + X

′

itγ
k,d,h

+ δj × ηy + τm + µg + εit ,
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reasonable request.

Received: 29 September 2023; Accepted: 11 December 2023

References
 1. Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. 

Science 344(6183), 1247579 (2014).
 2. Fankhauser, S. et al. The meaning of net zero and how to get it right. Nature Clim. Change 12(1), 15–21 (2022).
 3. Schreifels, J. J., Fu, Y. & Wilson, E. J. Sulfur dioxide control in China: policy evolution during the 10th and 11th Five-year Plans 

and lessons for the future. Energy Policy 48, 779–789 (2012).
 4. Driscoll, C. T., Driscoll, K. M., Mitchell, M. J. & Raynal, D. J. Effects of acidic deposition on forest and aquatic ecosystems in New 

York State. Environ. Pollut. 123(3), 327–336 (2003).
 5. Wang, S. X. et al. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys. 10(3), 1183–1192 

(2010).
 6. Smith, P. et al. The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 

50(4), 812–829 (2013).
 7. Rai, P. K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. 

Saf. 129, 120–136 (2016).
 8. Dale, S. BP Statistical Review of World Energy. BP Plc, London, United Kingdom 14–16 (2021).
 9. Tracking SDG 7: The Energy Progress Report (IEA, IRENA, UNSD, World Bank & WHO, 2020).
 10. Girardin, C. A. et al. Nature-based solutions can help cool the planet—if we act now. Nature 593(7858), 191–194 (2021).
 11. Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Clim. Change 11(6), 

543–550 (2021).
 12. Rahman, M. M. et al. Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Commu.

ications 12(1), 3875 (2021).
 13. Thaker, M., Zambre, A. & Bhosale, H. Wind farms have cascading impacts on ecosystems across trophic levels. Nature Ecol. Evol.

tion 2(12), 1854–1858 (2018).
 14. Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy?. Trends Ecol. Evol. 32(12), 922–935 (2017).
 15. Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind 

farms. Environ. Sci. Policy 89, 34 (2018).
 16. De Mesel, I., Kerckhof, F., Norro, A., Rumes, B. & Degraer, S. Succession and seasonal dynamics of the epifauna community on 

offshore wind farm foundations and their role as stepping stones for non-indigenous species. Hydrobiologia 756(1), 37–50 (2015).
 17. Sayed, E. T. et al. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, 

biomass and geothermal. Sci. Total Environ. 766, 144505 (2021).
 18. Kumara, H. N. et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 12(1), 1–15 (2022).
 19. Xu, K. et al. Positive ecological effects of wind farms on vegetation in China’s Gobi desert. Sci. Rep. 9(1), 6341 (2019).
 20. Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. 

Sci. Rep. 11(1), 1–18 (2021).
 21. Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodi-

versity. Nature Commun. 11(1), 1–6 (2020).
 22. Spillias, S., Kareiva, P., Ruckelshaus, M. & McDonald-Madden, E. Renewable energy targets may undermine their sustainability. 

Nature Clim. Change 10(11), 974–976 (2020).
 23. Dirnböck, T. et al. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems. PloS one 12(9), e0184194 

(2017).
 24. Vautard, R. et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind 

farms. Nature Commun. 5(1), 1–9 (2014).
 25. Zhou, L. et al. Impacts of wind farms on land surface temperature. Nature Clim. Change 2(7), 539–543 (2012).
 26. Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361(6406), 

1019–1022 (2018).
 27. Kaffine, D. T. Microclimate effects of wind farms on local crop yields. J. Environ. Econ. Manage. 96, 159–173 (2019).
 28. Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PloS one 7(5), e36760 (2012).
 29. Abbasi, S. A. & Abbasi, N. The likely adverse environmental impacts of renewable energy sources. Appl. Energy 65(1–4), 121–144 

(2000).
 30. Liu, Z., Li, G. & Wang, G. Can wind farms change the phenology of grassland in China?. Sci. Total Environ. 832, 155077 (2022).
 31. Nazir, M. S., Ali, N., Bilal, M. & Iqbal, H. M. N. Potential environmental impacts of wind energy development: A global perspec-

tive. Curr. Opin. Environ. Sci. Health 13, 85–90 (2020).
 32. Zhou, L., Tian, Y., Baidya Roy, S., Dai, Y. & Chen, H. Diurnal and seasonal variations of wind farm impacts on land surface tem-

perature over western Texas. Clim. Dyn. 41(2), 307–326 (2013).
 33. Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nature 

Ecol. Evol. 5(6), 845–853 (2021).
 34. Zhang, H., Li, Y. & Zhu, J. K. Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants 4(12), 989–996 

(2018).
 35. McElroy, M. B., Lu, X., Nielsen, C. P. & Wang, Y. Potential for wind-generated electricity in China. Science 325(5946), 1378–1380 

(2009).
 36. Sherman, P., Chen, X. & McElroy, M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy 

economy. Sci. Adv. 6(8), eaax9571 (2020).
 37. Xu, M., David, S. "China doubles new renewable capacity in 2020; still builds thermal plants". Reuters. Retrieved 11 March 2021 

(2021).
 38. Global Offshore Wind Report 2022 (GWECs, 2022); https:// gwec. net/ wp- conte nt/ uploa ds/ 2022/ 06/ GWEC- Global- Offsh ore- 

Wind- Report- 2022. pdf
 39. China Built More Offshore Wind In 2021 Than Every Other Country Built In 5 Years (Forbes, 2022); https:// www. forbes. com/ 

sites/ david rvett er/ 2022/ 01/ 26/ china- built- more- offsh ore- wind- in- 2021- than- every- other- count ry- built- in-5- years/? sh= 15e32 
d3546 34

 40. Hepburn, C. et al. Towards carbon neutrality and China’s 14th Five-Year Plan: Clean energy transition, sustainable urban develop-
ment, and investment priorities. Environ. Sci. Ecotechnol. 8, 100130 (2021).

https://gwec.net/wp-content/uploads/2022/06/GWEC-Global-Offshore-Wind-Report-2022.pdf
https://gwec.net/wp-content/uploads/2022/06/GWEC-Global-Offshore-Wind-Report-2022.pdf
https://www.forbes.com/sites/davidrvetter/2022/01/26/china-built-more-offshore-wind-in-2021-than-every-other-country-built-in-5-years/?sh=15e32d354634
https://www.forbes.com/sites/davidrvetter/2022/01/26/china-built-more-offshore-wind-in-2021-than-every-other-country-built-in-5-years/?sh=15e32d354634
https://www.forbes.com/sites/davidrvetter/2022/01/26/china-built-more-offshore-wind-in-2021-than-every-other-country-built-in-5-years/?sh=15e32d354634


12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22366  | https://doi.org/10.1038/s41598-023-49650-9

www.nature.com/scientificreports/

 41. Li, B. et al. How to strive for balance of coastal wind energy development with waterbird conservation in the important coastal 
wetlands, a case study in the Chongming Islands of East China. J. Clean. Prod. 263, 121547 (2020).

 42. Tang, B. et al. The observed impacts of wind farms on local vegetation growth in northern China. Remote Sens. 9(4), 332 (2017).
 43. Wu, X.-L. et al. Satellite-based assessment of local environment change by wind farms in China. Earth Space Sci. 6(6), 947–958 

(2019).
 44. Carr-Harris, A. & Lang, C. Sustainability and tourism: The effect of the United States’ first offshore wind farm on the vacation 

rental market. Resource Energy Econ. 57, 51–67 (2019).
 45. Wang, G., Li, G. & Liu, Z. Wind farms dry surface soil in temporal and spatial variation. Sci. Total Environ. 857, 159293 (2023).
 46. Wang, C., Fu, B., Zhang, L. & Xu, Z. Soil moisture–plant interactions: an ecohydrological review. J. Soils Sedim. 19, 1–9 (2019).
 47. Berg, A., Sheffield, J. & Milly, P. C. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 

44(1), 236–244 (2017).
 48. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nature Commun. 5(1), 3654 (2014).
 49. Pryor, S. C., Barthelmie, R. J. & Shepherd, T. J. 20% of US electricity from wind will have limited impacts on system efficiency and 

regional climate. Sci. Rep. 10(1), 541 (2020).
 50. Song, D. et al. Annual energy production estimation for variable-speed wind turbine at high-altitude site. J. Modern Power Syst. 

Clean Energy 9(3), 684–687 (2020).
 51. Pătru-Stupariu, I. et al. Do wind turbines impact plant community properties in mountain region?. Biologia 74, 1613–1619 (2019).
 52. Barry, G., Peter, B. & Bruno, M. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 245, 94–118 (2016).
 53. Moghaddam, S. Z. Generation and transmission expansion planning with high penetration of wind farms considering spatial 

distribution of wind speed. Int. J. Electr. Power Energy Syst. 106, 232–241 (2019).
 54. Bolívar-Cimé, B., Bolívar-Cimé, A., Cabrera-Cruz, S. A., Muñoz-Jiménez, Ó. & Villegas-Patraca, R. Bats in a tropical wind farm: 

species composition and importance of the spatial attributes of vegetation cover on bat fatalities. J. Mammal. 97(4), 1197–1208 
(2016).

 55. Gao, X. et al. Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying 
terrain complexity from LiDAR measurements. Appl. Energy 307, 118182 (2022).

 56. Kozmar, H., Allori, D., Bartoli, G. & Borri, C. Wind characteristics in wind farms situated on a hilly terrain. J. Wind Eng. Ind. 
Aerodyn. 174, 404–410 (2018).

 57. Abdeslame, D., Merzouk, N. K., Mekhtoub, S., Abbas, M. & Dehmas, M. Estimation of power generation capacities of a wind farms 
installed in windy sites in Algerian high plateaus. Renew. energy 103, 630–640 (2017).

 58. Margreth, A. Origins of low-relief plateaus. Nature Geosci. 10(8), 541–542 (2017).
 59. Lira-Martins, D. et al. Soil properties and geomorphic processes influence vegetation composition, structure, and function in the 

Cerrado Domain. Plant Soil 476(1–2), 549–588 (2022).
 60. Li, J. et al. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau. 

Geomorphology 269, 104–111 (2016).
 61. Nicoll, T., Brierley, G. & Yu, G. A. A broad overview of landscape diversity of the Yellow River source zone. J. Geograph. Sci. 23, 

793–816 (2013).
 62. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https:// doi. org/ 10. 1126/ scien ce. 12016 

09 (2011).
 63. Favero, A., Mendelsohn, R. & Sohngen, B. Using forests for climate mitigation: sequester carbon or produce woody biomass?. 

Clim. Change 144, 195–206. https:// doi. org/ 10. 1007/ s10584- 017- 2034-9 (2017).
 64. Nunes, L. J. R., Meireles, C. I. R., Pinto Gomes, C. J. & Almeida Ribeiro, N. Forest contribution to climate change mitigation: 

Management oriented to carbon capture and storage. Climate https:// doi. org/ 10. 3390/ cli80 20021 (2020).
 65. Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352. https:// doi. org/ 10. 3390/ f3020 332 

(2012).
 66. Fang, J. et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and 

forest growth. Glob. Change Biol. 20(6), 2019–2030. https:// doi. org/ 10. 1111/ gcb. 12512 (2014).
 67. Holst, J. et al. Impacts of summer water limitation on the carbon balance of a Scots pine forest in the southern upper Rhine plain. 

Agric. For. Meteorol. 148(11), 1815–1826 (2008).
 68. Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77. https:// doi. org/ 10. 1038/ 

s41586- 020- 2438-y (2020).
 69. Zeng, W., Tang, S. Modeling compatible single-tree aboveground biomass equations of masson pine (Pinus massoniana) in South 

China. Nat Prec (2012). https:// www. nature. com/ artic les/ npre. 2012. 6754.1
 70. Gibson, J., Olivia, S., Boe-Gibson, G. & Li, C. Which night lights data should we use in economics, and where?. J. Dev. Econ. 149, 

102602 (2021).
 71. Levin, N. et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 237, 111443 (2020).
 72. Gibson, J., Olivia, S. & Boe-Gibson, G. Night lights in economics: Sources and uses 1. J. Econ. Surv. 34(5), 955–980 (2020).
 73. Goldblatt, R., Heilmann, K. & Vaizman, Y. Can medium-resolution satellite imagery measure economic activity at small geogra-

phies? Evidence from Landsat in Vietnam. World Bank Econ. Rev. 34(3), 635–653 (2020).
 74. Chen, X. & Nordhaus, W. D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. 108(21), 8589–8594 

(2011).

Acknowledgements
This research was supported by the National Natural Science Foundation of China (No. 72373162 and No. 
72173109).

Author contributions
L.G. and Y.M. conceived the original concept and ideas; J.Q., Y.Y. and L.M. collected and analysed the data; 
Q.W., J.Q. and Y.Y. finished the literature review; L.G. and Y.Y. performed the formal analysis; L.G., Q.W. and 
Y.M. realised the maps and graphs; L.G., Q.W. wrote the first draft; P.L. provided supervision. All authors read 
and approved for submission.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 49650-9.

https://doi.org/10.1126/science.1201609
https://doi.org/10.1126/science.1201609
https://doi.org/10.1007/s10584-017-2034-9
https://doi.org/10.3390/cli8020021
https://doi.org/10.3390/f3020332
https://doi.org/10.1111/gcb.12512
https://doi.org/10.1038/s41586-020-2438-y
https://doi.org/10.1038/s41586-020-2438-y
https://www.nature.com/articles/npre.2012.6754.1
https://doi.org/10.1038/s41598-023-49650-9
https://doi.org/10.1038/s41598-023-49650-9


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22366  | https://doi.org/10.1038/s41598-023-49650-9

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to Y.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The impact of wind energy on plant biomass production in China
	Results
	Changes in PBP due to wind farm construction
	Dynamic effects of wind farms
	Heterogeneous effects by season
	Heterogeneous effects by elevation
	Heterogeneous effects by land types

	Discussion
	Methods
	Data
	Empirical strategy
	Fixed effects approach
	Dynamic treatment effect
	Heterogeneous effects

	References
	Acknowledgements


