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Prediction of dyskinesia 
in Parkinson’s disease patients 
using machine learning algorithms
Denisson Augusto Bastos Leal 1, Carla Michele Vieira Dias 2, Rodrigo Pereira Ramos 1 & 
Ivani Brys 1,2*

Dyskinesias are non preventable abnormal involuntary movements that represent the main challenge 
of the long term treatment of Parkinson’s disease (PD) with the gold standard dopamine precursor 
levodopa. Applying machine learning techniques on the data extracted from the Parkinson’s 
Progression Marker Initiative (PPMI, Michael J. Fox Foundation), this study was aimed to identify 
PD patients who are at high risk of developing dyskinesias. Data regarding clinical, behavioral and 
neurological features from 697 PD patients were included in our study. Our results show that the 
Random Forest was the classifier with the best and most consistent performance, reaching an area 
under the receiver operating characteristic (ROC) curve of up to 91.8% with only seven features. 
Information regarding the severity of the symptoms, the semantic verbal fluency, and the levodopa 
treatment were the most important for the prediction, and were further used to create a Decision 
Tree, whose rules may guide the pharmacological management of PD symptoms. Our results 
contribute to the identification of PD patients who are prone to develop dyskinesia, and may be 
considered in future clinical trials aiming at developing new therapeutic approaches for PD.

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, 
affecting 1% of the world population over the age of 60 years, and 3% over the age of 80  years1. According  to2, 
it is estimated that currently 10 million people in the world live with PD. The United States has approximately a 
million PD patients and by 2030 it is expected to reach 1.2 million.

Currently there is no cure for PD, and the gold standard treatment aims to relieve the PD symptoms through 
the drug levodopa, which is a dopaminergic  precursor3. Levodopa is effective in relieving PD symptoms in the 
short term, but in the long term it is associated with the development of motor complications known as dyski-
nesias, which compromise the pharmacological management of parkinsonian symptoms and affect the life of 
the patients. After five years of levodopa treatment, it is estimated that 50% of patients develop dyskinesia, and 
after ten years, 80%4,5.

Recent studies have shown that the levodopa dosage, the female gender, high levels of anxiety and severe 
motor impairments are risk factors for the development of  dyskinesias6–8. However, dyskinesias are considered 
not preventable and there is no differentiation between patients who are prone to develop dyskinesia and those 
who are not in the clinical practice or in clinical trials aiming at developing new treatments for PD.

While hard to detect in the clinical and individual practice by health professionals, predictors of dyskinesia 
might be identified by machine learning techniques in vast amounts of data from PD patients. Machine learning 
algorithms have already been used for similar purposes, such as improving PD  diagnosis9,10, and quantifying the 
severity of PD symptoms based on smartphone  assessments11.

The Parkinson’s Progression Marker Initiative (PPMI) is a longitudinal study conducted by the Michael 
J. Fox Foundation aimed to identify PD biomarkers and provide therapeutic trials with collaborative  tools12. 
In this study, hundreds of PD patients were followed for several years during which neurological and clinical 
assessments, imaging examinations, and biological sample collections were systematically performed. The PPMI 
database represents therefore a unique set of data regarding the longitudinal follow-up of PD patients, through 
which it is possible to identify in a universe of several features, markers that precede the onset of dyskinesias in 
patients undergoing levodopa treatment.

Applying machine learning techniques to the PPMI dataset, the objective of this study was to identify PD 
patients who are at high risk of developing dyskinesia and the most important features for this prediction. We 
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further created a decision tree aimed at providing explainability to our method, and show how each feature 
influenced the classification. The rules of this decision tree may be applied to differentiate patients in future 
clinical trials aiming at developing new therapeutic or preventive approaches for dyskinesia, and may also help 
to guide the dopaminergic therapy of PD in the clinical practice.

Patients and methods
This study was conducted in four steps, as illustrated in the flowchart shown in Fig. 1. The first step consisted of 
extracting characteristics of PD patients from the PPMI database; the second consisted of assessing the perfor-
mance of seven classifiers to identify which one would have the best performance classifying the patients with 
and without dyskinesia using all the 53 features extracted in step one. In the third step, we tested the performance 
of the classifier found in step two, with the objective of finding the minimum quantity of features necessary for 
prediction. This step is important considering a clinical scenario where collecting information on more than 50 
variables from patients would be unfeasible. Finally in the fourth and last step, we chose the operating point of 
the classifier and assembled some rules to use the features found in step three with the help of a decision tree. 
The rules of this decision tree provide information on how each variable influenced the classification, and help 
to translate the classification into terms of clinical assessments. The steps are described in detail below.

Compliance with ethical standards: The present study was performed with data from non-identified partici-
pants and, therefore, was not submitted to the appreciation of any local Ethical Committee (Resolution 510/2016 
of the National Health Council, article 1, chapter V). The PPMI dataset is publicly available and the original 
study was performed in accordance with the Declaration of Helsinki. Each PPMI center received approval from 
the respective ethics committee before starting the study. Written consent for research was obtained from all 
participants, as described in the PPMI study protocol, available in https:// www. ppmi- info. org/ study- design/ 
resea rch- docum ents- and- sops/.

PPMI dataset and data extraction
Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative 
(PPMI) database (www. ppmi- info. org/ access- data- speci mens/ downl oad- data, RRID:SCR_006431. For up-to-
date information on the study, visit www. ppmi- info. org).

The PPMI database (Michael J. Fox Foundation) contains longitudinal information of PD patients with no 
genetic mutation or with one of the following mutations: LRRK2, GBA or SNCA. The data consist of genetic, 
socio-demographic, behavioral, and neurological information collected through laboratory tests, imaging tests, 
application of scales and questionnaires that were filled out by the patient, caregiver or a family member. For the 
present study, the dataset was accessed on October 11, 2020, when data from 795 PD patients distributed in 141 
worksheets were downloaded. The main inclusion criteria for PD subjects participating in the PPMI study were: 
presence of at least two cardinal symptoms of PD, or either asymmetric resting tremor or asymmetric bradyki-
nesia; diagnosis of PD for two years or less; and dopamine transporter deficit confirmed by imaging screening.

Given that our objective was to predict dyskinesia, only patients that completed at least one assessment before 
the onset of dyskinesia were included in our study. Patients were considered dyskinetic when they scored ≥ 1 in 
the item “Time spent with dyskinesias” of the Movement Disorder Society Modified Parkinson’s Disease Rating 
Scale. Patients with no dyskinesia and taking amantine were excluded due to the antidyskinetic effects of this 
 drug13. Patients with more than 15% of missing data were also excluded.

As a result of these inclusion and exclusion criteria, data from 697 patients were included in our study. In 
order to maximize the number of patients in our study, we used the data of the last visit preceding the onset of 
dyskinesia for each patient. The mean time interval between the data collection and the onset of dyskinesia was 
9 months with a standard deviation of 6.1 months. Figure 2 shows the distribution of the time interval between 
the patient assessment and the onset of dyskinesia in the group of patients with dyskinesia. For patients with 
no dyskinesia, data from the latest available assessment was used. In our dataset, the data granularity, defined 
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Figure 1.  Sequence of the steps performed in the project. Step one—Data mining and feature extraction: we 
first identified 53 clinical and behavioral features regarding motor, non motor and neurological characteristics 
of the patients in the PPMI dataset. For each of these features, we identified the score of each patient in 
the assessment that preceded the onset of dyskinesia onset or in the latest assessment available for the non 
dyskinesia group. Step two—Identification of the classifier with the best performance: We compared the 
performance of seven different classifiers identifying the patients that were prone to develop dyskinesia. The 
classifier with the best performance and the lowest variability was the one used in the further steps. Step three—
Identification of the features necessary for prediction: A minimum quantity of features was then identified as 
necessary and sufficient for the classification. Step four: Decision tree: a decision tree was created using only the 
features regarded as sufficient for classification.

https://www.ppmi-info.org/study-design/research-documents-and-sops/
https://www.ppmi-info.org/study-design/research-documents-and-sops/
http://www.ppmi-info.org/access-data-specimens/download-data
http://www.ppmi-info.org
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as the size in which data fields are subdivided, consisted of motor, non-motor, and neurological features of each 
patient (Table 1).

The data summary and the number of patients in each class with and without dyskinesia are shown in Table 2. 
Note that the proportion of patients with dyskinesia in the subgroups genetic mutation, gender or with a fam-
ily history of PD does not vary more than five percentage points in each class, and thus the patients were not 
distributed in subgroups for further analysis.

Preprocessing
For some features, the absence of a value represents that it has no such value and can therefore be filled out 
with zero. This is the case of the variable LEDD, whose missing values indicate that the patient was not taking 
medication with dopaminergic action. For gender, a similar rule was applied. When the patient did not have a 
value indicating the gender, no technique was used to replace the missing value. In all other cases the missing 
values were identified and filled out using the non parametric imputation method MissForest (829 in total), 
which employs the Random Forest algorithm to make predictions using the existing records in an automatic and 
personalized way for each  case14. The few categorical data were organized in columns using the standard one-hot 
encoding, and the continuous data were normalized between 0 to 1 using the MinMax standard.

The dataset was then randomly subject-wise split into training (60%), validation (20%), and test (20%), 
without repetition and keeping the same proportion of classes with and without dyskinesia in each subdivision.

Classifiers
At this stage we used three simple classifiers: decision tree, multinomial bayesian and logistic regression), two 
classical classifiers: Multilayer Perceptron (MLP) and Support Vector Machines for classification (SVC), and 
classifiers with ensemble: Adaboost and Random Forest. Before training the classifiers, a search for the best 
combination of hyperparameters was performed using the grid search, with all possible combinations allowed 
by the library, except in cases where the combination would be infinite, such as the number of layers and neurons 
of the MLP or the number and depth of the Random Forest trees (Supplementary material 1). The Area Under 
the Curve (AUC) Receiver Operating Characteristics (ROC) was calculated to identify the classifier with the best 
performance. In order to ensure a fair performance presentation of the classifiers, each one was trained and tested 
30 times, with training and validation data randomly changing over turns. The results were used to construct a 
boxplot with the ROC AUC in order to observe the variability of the results. The accuracy, the ROC curve, the 
true and false negative rate were then calculated for the classifier with the best performance.

The ROC curve was used to define an operating point for the classifier with the best performance. The operat-
ing point is a value that divides the results between classes that, in our case, corresponded to patients with or with-
out dyskinesia. This point may be empirically defined with the help of an expert or according to the performance 
of the classifier. In the present study, several operating points were compared in order to find one where the 
largest number of dyskinetic patients were accurately classified. First, we calculated the default operating point, 
using a threshold of 0.5. Next, we calculated the Youden index using the largest distance between the ROC curve 
and the random choice line. Finally, only points with a true positive rate of at least 95% or 100% were selected.

Decision tree
The decision tree uses a tree structure, similar to a binary tree, where an algorithm is used in each node to make 
a decision on how the data may be divided. At the end of the decisions (in each leaf of the tree) the final decision 
on the classification or regression of the target variable is  made15. Unlike the Decision tree shown in Fig. 3 that 
was created with the purpose of achieving the best performance in classification using all the features extracted 
from the PPMI database, this Decision tree aims to be a visual tool and provide an overview of the data for rules 
definition, using only the features regarded as necessary for classification in the previous step.

Figure 2.  Histogram showing the time interval between the patient’s assessment and the onset of dyskinesia for 
patients in the PD with dyskinesia group.
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Table 1.  Clinical, motor, non-motor, and neurological features used in the project with the names and 
acronyms used.

Features

Age

Education

Age of PD diagnosis

PD disease duration

Family history of PD

Man

Woman

Movement Disorder Society Unified Parkinson Disease Rating Scale (UPDRS)—part I Patient Questionnaire (PQ)

UPDRS—part I total

UPDRS—part II

UPDRS—part III

UPDRS—part III ON levodopa (A)

UPDRS total

levodopa Equivalent Daily Dose (LEDD) levodopa

Levodopa LEDD time—duration of levodopa treatment

maob inhibitors LEDD

maob inhibitors LEDD time

dopamine agonists LEDD

dopamine agonists LEDD time

comt inhibitors LEDD

comt inhibitors LEDD time

Amantadine LEDD

Amantadine LEDD time

Total LEDD

LEDD time—duration of dopaminergic therapy

Mean Putamen

Asymmetry Putamen

Contralateral Putamen

Mean Caudate

Asymmetry Caudate

Contralateral Caudate

Alpha synuclein (cerebrospinal fluid values)

Semantic Verbal Fluency test (SVF)

Symbol Digit Modalities Test (SDMT)

Hopkins Verbal Learning Test (HVLT)

Physical Activity Scale for the Elderly (PASE)

State-Trait Anxiety Inventory (STAI)

State Anxiety Inventory (STAI—I)

Trait Anxiety Inventory (STAI—II)

Scales for Outcomes in Parkinson’s Disease (SCOPA-AUT)

Epworth Sleepiness Scale (ESS)

Tremor dominant (TD) score

Postural instability and gait disturbance (PIGD) score

PIGD vs TD scores

Number sequencing (Wechsler Memory Scale—WMS-III66)

REM Sleep Disorder Questionnaire (RBDSQ)

Benton Judgment of Line Orientation Test (BJLOT)

University of Pennsylvania Smell Identification Test (UPSIT)

Montreal Cognitive Assessment (MOCA)

Modified schwab and england activities of daily living scale (ADL)

Geriatric Depression Scale (GDS)

Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease Current Short (QUIP)
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For this purpose, the Classification and Regression Trees (CART) algorithm was used to create a decision 
tree and its rules using the whole dataset. The gini index was computed to measure the quality of the nodes divi-
sion, and in order to prevent rules from becoming too specific to the  problem16, a limitation was imposed to not 
generate nodes with less than 10% of the cases.

For each node, the coverage, the confidence and the lift were calculated to assess the quality of the rules. 
The coverage refers to the percentage of entries that passed through a given node. The confidence refers to the 
percentage of data arriving at a given node that belongs to the target class i.e. with dyskinesia. Finally, the lift is 
the ratio between the node confidence and the overall confidence. Thus, a lift score different from one indicates 
that the rule effectively separates the  data17.

Results
The first step of the present study was aimed to identify the classifier with the best performance classifying the 
patients using all the features extracted from the PPMI dataset. In this experiment, the classifiers Adaboost, 
Decision Tree, Logistic Regression, MLP, Multinomial, Random Forest, and SVM were run 30 times (bootstrap), 
using all the 53 features described in Table 1 as data source. Figure 3 shows the boxplots with the AUC ROC 
for each classifier.

Through a visual inspection of Fig. 3, it is possible to notice that the upper limit, the lower limit, the quartiles 
and the median of the Random Forest classifier were higher compared to the others and that its performance 
presented less variability among turns. Therefore, the Random Forest was the classifier used in the further steps 
of our study.

Next, we ranked all the features according to their importance for the classifier, as shown in Fig. 4. The higher 
the score assigned to the feature, the greater the importance it had for the classifier. Part III of the UPDRS was 
the feature with the highest importance, indicating that for the Random Forest classifier the severity of PD 
motor symptoms was the most important feature to differentiate patients who are about to develop dyskinesia 
from those who are not.

Considering the potential applications of our results in a clinical context, we used the order of importance 
of the features to investigate what is the minimum number of features needed for a good prediction using our 
classifier. The Random Forest classifier was then trained and tested for each number of features used from the 
most important to the least, starting with only one feature adding up to all 53 features. Such as in the previous 
experiments, the Random Forest classifier was run 30 times and the resulting boxplots are shown in Fig. 5.

Figure 5 shows that the Random Forest is able to classify the PPMI patients using only seven of the 53 features 
tested, with an AUC ROC varying from 85.4 to 91.8%, and median equal to 88.1%. Adding more features to the 

Table 2.  Proportion of patients with and without dyskinesia, distributed according to the presence of a genetic 
mutation, gender and the family history of PD.

Dyskinesia No dyskinesia Total

Patients in the study 238 34.1% 459 65.9% 697

With genetic mutation 84 30.3% 193 69.7% 277

Male gender 143 34.7% 269 65.3% 412

Female gender 95 33.8% 186 66.2% 281

Family history of PD 83 31.2% 183 68.8% 266

AU
C

0.90

0.85

0.80

0.75

0.70

Adaboost Decision tree Logis�c 
regression

Mul�layer 
perceptron 

Mul�nomial Random 
Forest 

Support 
vector 

machine 
Classifiers

Figure 3.  Random Forest was the classifier with the best performance and the lowest variability. Boxplots 
represent the lower limit with the minimum value, first quartile with 25% of the data, the median with 50% of 
the data, the third quartile with 75% and finally the upper limit with the maximum value. The circles represent 
outliers.
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Figure 4.  Features importance according to the Random Forest classifier. Bars represent the importance given 
by the classifier, i.e., the higher the bar, the more important the feature.
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Figure 5.  Random Forest classification performance varies when increasing the number of features. From left 
to right, starting with one feature and adding up to all 53 features, the boxplots show the performance of the 
classifier over 30 turns. The gray line shows when the performance becomes stable.
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classifier did not increase the classification performance and may therefore be considered unnecessary to the 
present problem.

The seven necessary features for the classifier were: the UPDRS III score, the Semantic Verbal Fluency test 
score, the duration of the dopaminergic treatment, the UPDRS III part A score i.e. ON levodopa, the duration 
of the levodopa treatment, the total UPDRS score, and the levodopa LEDD. In order to design a more realistic 
scenario considering the clinical context, we plotted in Fig. 6 the ROC curve for the Random Forest median 
performance, with the ROC AUC of 88.1%, using only the seven features regarded as necessary and sufficient for 
the classification. We further assessed some operation points considering that, for a potential preventive strategy, 
it would be preferred to identify the highest possible number of patients at risk of developing dyskinesia, even 
if it leads to the inclusion of some patients who are not at risk, that is, resulting in more false positives. Start-
ing with the most common operation point, threshold of 0.5, the classifier accuracy decreased to 80.7% with a 
true positive rate of 70.8%, slightly below the point chosen by the Youden index, which resulted in an accuracy 
of 81.4% and a 93.8% true positive rate. When we prioritized an operation point where the true positive rate 
was 95% or 100%, the accuracy dropped to 78.6% and 75%, and the false positive rate rose to 30.4% and 38%, 
respectively. Thus, we concluded that the operating point found by the Youden index showed the best balance 
between accuracy and the true positive rate.

The operation point of the Youden index was obtained with a threshold around 0.3334, which means that 
when the classifier says that a record has a probability greater than or equal to this value, it is classified as hav-
ing dyskinesia. Table 3 shows the confusion matrix generated with this classification. It is important to note 
that these results were obtained for only 34.1% of the PPMI patients who showed dyskinesia. According to the 
literature this proportion is expected to increase up to 50% after five years of levodopa treatment, and up to 80% 
after ten  years4. Considering this scenario and if the rate of true positives remains around 93.8%, it is likely that 
the accuracy increases with time.

The last step of our study was aimed to find the main classification rules using a decision tree created with the 
CART algorithm. The training step was performed with the seven features found in the previous experiments 
and with all patients in the dataset. The assembled tree is illustrated in Fig. 7, where the coverage, confidence and 
lift in each node, and the condition applied for the division of the subsequent nodes are shown.

Considering the results of the Decision Tree, the rules 1, 3 and 4, shown in Table 4 had low confidence in 
relation to the target class, which means that they are good to identify patients without dyskinesia. For example, 

Figure 6.  ROC curve for the median performance of the Random Forest using the seven features identified as 
necessary for classification. The intersection of the red dashed lines corresponds to the Youden index. The black 
dashed straight line shows the result of a random classifier, used for comparison. The blue curve shows the true 
and false positive rates when varying the threshold; the steeper the curve, the better the classifier.

Table 3.  Confusion matrix generated using the Youden index. True negatives are the values without 
dyskinesia correctly classified. True positives are those with dyskinesia correctly classified. False negatives are 
patients with dyskinesia misclassified as without dyskinesia and false positives are the patients who do not have 
dyskinesia, and were misclassified as having dyskinesia.

predicted

Non dyskinesia dyskinesia

current
Non dyskinesia 69 23

dyskinesia 3 45
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approximately 12% of the data matched rule 4 and none of them are part of the target class i.e., none has dyskine-
sia. This does not mean that none, in the entire universe of patients, will have dyskinesia. However, considering 
the representativeness of the PPMI dataset, the chance is very low. The rules 3 and 1, on the other hand, had 
higher coverage, 22.4% and 38.9% and low confidence, 1.3% and 6.3% respectively, which means that they are 
good framing rules for patients without dyskinesia.

Rule 5 also showed low confidence, and it is very similar to rule 3, with a slightly higher confidence and a 
slight decrease in coverage. Thus, it is expected that all cases of rule 5 are also in rule 3, which showed to be a 

coverage: 100%
confidence:
34.1%
li�: 1

UPDRS III

coverage: 38.9%
confidence: 6.3%
li�: 0.184

<= 1.5

coverage: 61.1%
confidence: 51.9%
li�: 1.519

> 1.5

coverage: 16.5%
confidence: 13.0%
li�: 0.382

coverage: 22.4%
confidence:
li�: 0.038

coverage: 12.2%
confidence: 0%
li�: 0

coverage: 10.2%
confidence: 2.8%
li�: 0.082
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<= 67.5 > 67.5

Seman�c fluency

<= 34.5 > 34.5

coverage: 14.1%
confidence: 19.4%
li�: 0.568

coverage: 47.1%
confidence: 61.6%
li�: 1.804

coverage: 34.3%
confidence: 71.1%
li�: 2.083

coverage: 12.8%
confidence: 36.0%
li�: 1.053

coverage: 12.2%
confidence: 84.7%
li�: 2.481

coverage: 22.1%
confidence: 63.6%
li�: 1.864

<= 350 > 350

> 34.5 <= 34.5

coverage: 10.5%
confidence: 72.6%
li�: 2.126

coverage: 11.6%
confidence: 55.6%
li�: 1.627

UPDRS total

<= 37.5 > 37.5

levodopa LEDD �me

<= 27.5 > 27.5

#0

#1 #6

#2 #3

#4 #5

#7 #8

#9#10

#11 #12

#13 #14

Seman�c fluency

levodopa LEDD

Figure 7.  Decision tree using the seven features necessary for classification. Orange color indicates rules that 
are good to identify patients that would develop dyskinesia, and light blue indicates rules that are good to 
identify patients that would not. The paths from the root to any node correspond to the rules and do not have to 
necessarily reach any leaf. The nodes of the tree have a minimum coverage of 10% and the more distant from 1 
the lift is the better the rule.

Table 4.  Decision tree rules that identified mainly patients with low risk of developing dyskinesia.

Rule Coverage (%) Confidence (%) Lift

4 UPDRS III score lower or equal to 1.5, and LEDD time larger than 67.5 months, and semantic fluency index lower or equal to 
34.5 12.2 0.0 0.000

3 UPDRS III score lower or equal to 1.5, and LEDD time larger than 67.5 months 22.4 1.3 0.038

1 UPDRS III score lower or equal to 1.5 38.9 6.3 0.184
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better rule. According to our results, patients who fit rule 4, i.e., who have UPDRS III score lower or equal to 
1.5, LEDD time larger than 67.5 months, and semantic fluency index lower or equal to 34.5, have a very low 
chance of developing dyskinesia. These rules may be used to differentiate PD patients with low risk of developing 
dyskinesia in future clinical studies and in the clinical practice.

On the other hand, rules 8, 10, 11 and 13 shown in Table 5, differentiated mainly patients that were about to 
develop dyskinesia. Rules 13 and 11 had lower coverage, slightly higher than 10%, but both had high confidence 
of the target class, 72.6% and 84.7%, respectively, higher than the overall confidence of 34.1%. Rules 8 and 10 
showed higher coverage but lower confidence levels which are still almost twice the overall confidence, meaning 
that patients who fulfill these rules are almost twice as likely to develop dyskinesia. Rule 12 is another example 
of a rule that, even with a high lift, ended up within the rule 10 that had higher coverage and lift.

In the inverse of the low confidence rules, the rule 11 accurately identified 84.7% of patients with UPDRS III 
score higher than 1.5, levodopa LEDD higher than 350, semantic fluency higher than 34.5 and the total UPDRS 
score lower than or equal to 37.5 as dyskinetic. Although presenting lower confidence, rules 8, 10 and 13, had 
similar characteristics, and may also be used in preclinical studies or in a clinical setting to differentiate the PD 
patients that are at high risk of developing dyskinesia.

A more detailed look at the rules of the decision tree revealed that the semantic fluency generated good rules 
in both nodes where it appeared. In both cases a semantic fluency lower than 34.5 led to rules with low lifts. The 
condition where the UPDRS III score is lower or equal to 1.5 is also a quite interesting case. All rules with this 
condition had lift values below 1, showing that this feature was able to adequately divide the data. Levodopa 
LEDD values lower than or equal to 350 mg also resulted in rules with the lift values below one, even when the 
patient had the UPDRS III score greater than 1.5.

Discussion
In this study, we applied several machine learning techniques to the PPMI database in order to identify the most 
important clinical, behavioral and neurological features for the prediction of dyskinesia in PD patients. The 
Random Forest classifier had the most accurate and consistent performance with an AUC ROC of up to 91.8% 
and a median of 88.1% using only seven features.

Our results showed that the score of the patients on part III of the UPDRS had the highest importance for the 
classification, indicating that the severity of PD motor symptoms was the most important feature for the Ran-
dom Forest classifier when differentiating patients who are about to develop dyskinesia from those who are not. 
These findings are in accordance with the literature showing that dyskinesia appears as a result of the interaction 
between chronic dopaminergic therapy and the progression of striatal dopamine  denervation18.

Following the UPDRS III score, other six features showed to be important for dyskinesia prediction in our 
analyses: the Semantic Verbal Fluency test score, the duration of the dopaminergic treatment, the UPDRS III 
part A score i.e. ON levodopa, the duration of the levodopa treatment, the total UPDRS score, and the levodopa 
LEDD. These findings are partially in accordance with the results of Nicoletti et al.19 showing that the disease 
duration, the Hoehn-Yahr stage, the UPDRS score, the female gender and the duration of the dopaminergic 
therapy are associated with the development of dyskinesias. Similar results were presented by Eusebi et al. (2018), 
who also used a Random Survival Forests classifier to determine the risk factors for the development of dyski-
nesias in PD patients. Compared to our findings, the main differences concern the inclusion of the genetic risk 
variable in that study, and the importance of gender. While for Eusebi et al.6 and Nicoletti et al.19 being female 
was considered a risk factor for dyskinesia, in our study, the gender of the patient was one of the least important 
features. These differences may be explained by updates in the database itself, given that our most recent access 
happened in 2020, 2 years after the publication of the cited article. In addition, differences in how the features 
were processed may also explain these discrepancies, as well as the inclusion of the group with genetic mutation 
and the use of a different  classifier6.

Using the median performance of the Random Forest classifier, we found an operating point where the 
accuracy reached 81.4% and a true positive rate of 93.8%. The Youden index resulted in the best classification 
compared with the most commonly used operating point (threshold of 0.5) and with the one obtained with a 
true positive rate of 95% or 100%, but its false positive rate was 25%. In this study, we considered a preventive 
approach and prioritized the identification of patients who were about to develop dyskinesia instead of minimiz-
ing the rate of falses positives, but this is an important limitation that must be taken into consideration in future 
studies, especially when testing pharmaceutical or invasive strategies. When analyzing the rules of the decision 
tree, some features showed to be more important than others for adequately classifying the patients, such as the 
semantic fluency. Verbal fluency has already been investigated in the context of movement disorders, and it has 
been demonstrated to change in response to levodopa  treatment20, with significant differences between the on 

Table 5.  Decision tree rules that identified mainly patients with high risk of developing dyskinesia.

Rule Coverage (%) Confidence (%) Lift

8 UPDRS III score higher than 1.5, and levodopa LEDD greater than 350 47.1 61.6 1.804

10 UPDRS III score higher than 1.5, and levodopa LEDD greater than 350, and semantic fluency index higher than 34.5 34.2 71.1 2.083

13 UPDRS III score higher than 1.5, and levodopa LEDD greater than 350, and semantic fluency index higher than 34.5, and 
UPDRS total score higher than 37.5, and levodopa treatment duration shorter than 27.5 months 10.5 72.6 2.126

11 UPDRS III score higher than 1.5, and levodopa LEDD greater than 350, and semantic fluency index higher than 34.5, and 
UPDRS total score lower or equal to 37.5 12.2 84.7 2.481
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and off periods in PD patients.  In21, a significant association between verbal fluency and brain right-sided motor 
symptoms was demonstrated in PD patients. The possible explanation provided by the authors is that semantic 
fluency is weighted on language, which is a predominantly left-side cognitive function. We haven’t investigated 
any association between the most affected side of the body and the development of dyskinesia, but in the study 
of  Eusebi6, no significant differences between sides have been found in patients from the PPMI dataset. Future 
studies are needed to investigate the existence of an association between the side of the body most affected by the 
PD symptoms and the development of dyskinesia, and consequently if dyskinesia may be specifically associated 
with the severity of the degenerative process in one of the brain hemispheres.

The UPDRS III score is also a feature that generated a rule able to adequately classify the patients, and this 
is probably the reason why this feature was regarded as the most important for the Random Forest classifier. 
The severity of the PD motor symptoms has indeed been considered a risk factor of LID in previous  studies6,22, 
and has been demonstrated to be closely related to the levodopa dosage. A total UPDRS score lower than 37.5 
appeared as part of the rules considered good to identify patients with higher probability of developing dyski-
nesia, which was somewhat unexpected. While the literature has shown a positive association between motor 
symptoms and the development of dyskinesia 6,22, the interaction between the severity of non motor symptoms 
and dyskinesia is less clear. The fact that the total score of the UPDRS represents the severity of both motor and 
non motor symptoms could explain this result. In our study, the levodopa LEDD also resulted in rules with lift 
values below one, suggesting that high doses of levodopa may contribute to the development of dyskinesias as 
demonstrated by Eusebi et al.6, Pandey et al.8, Olanow et al. 2013, and Dias et al.23.

In sum, our study adds to the previous literature by comparing the importance of more than 50 features 
regarding neurological, clinical and behavioral characteristics in a single sample of patients, and identifying the 
most important ones for the prediction of dyskinesia. Motor symptoms severity and verbal fluency are individual 
characteristics of the patients that may be used to identify those at risk of developing dyskinesia. Levodopa dos-
age is an external and modifiable feature that might be used not only to identify patients at risk of developing 
dyskinesia, but also be considered in future studies aiming to prevent or delay dyskinesia onset.

Conclusion
Taken together, our findings suggest that PD patients with lower UPDRS—III and semantic fluency scores, as 
well as those who have been on dopaminergic medication for a longer period of time, have low risk of developing 
dyskinesia. On the other hand, patients with higher UPDRS—III and semantic fluency scores, taking levodopa 
for a shorter time and in higher doses are more likely to develop dyskinesia in the near future. These findings 
may be considered in future clinical trials aimed at developing therapeutic strategies for the prevention and 
treatment of levodopa-induced dyskinesia (LID).

Data availability
The data that support the findings of this study are available from PPMI (https:// www. ppmi- info. org/) but restric-
tions apply to the availability of these data, which were used under license for the current study, and so are not 
publicly available. Data are however available from the authors upon reasonable request and with permission 
of PPMI.
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