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Deep learning driven segmentation 
of maxillary impacted canine 
on cone beam computed 
tomography images
Abdullah Swaity 1,2, Bahaaeldeen M. Elgarba 1,3, Nermin Morgan 1,4, Saleem Ali 1,5, 
Sohaib Shujaat 1,6, Elena Borsci 7, Israel Chilvarquer 8 & Reinhilde Jacobs 1,9*

The process of creating virtual models of dentomaxillofacial structures through three-dimensional 
segmentation is a crucial component of most digital dental workflows. This process is typically 
performed using manual or semi-automated approaches, which can be time-consuming and subject 
to observer bias. The aim of this study was to train and assess the performance of a convolutional 
neural network (CNN)-based online cloud platform for automated segmentation of maxillary impacted 
canine on CBCT image. A total of 100 CBCT images with maxillary canine impactions were randomly 
allocated into two groups: a training set (n = 50) and a testing set (n = 50). The training set was used to 
train the CNN model and the testing set was employed to evaluate the model performance. Both tasks 
were performed on an online cloud-based platform, ‘Virtual patient creator’ (Relu, Leuven, Belgium). 
The performance was assessed using voxel- and surface-based comparison between automated and 
semi-automated ground truth segmentations. In addition, the time required for segmentation was 
also calculated. The automated tool showed high performance for segmenting impacted canines 
with a dice similarity coefficient of 0.99 ± 0.02. Moreover, it was 24 times faster than semi-automated 
approach. The proposed CNN model achieved fast, consistent, and precise segmentation of maxillary 
impacted canines.

The maxillary canine is the second most frequently impacted tooth, characterized by the failure of a canine to 
emerge through the gingiva and assume its correct position following the anticipated eruption time. This is due 
to the fact that it is often the last tooth to erupt and has a long pathway from its developmental position deep 
within the maxilla to its final location in the oral  cavity1. Maxillary canine impaction occurs in approximately 
2% of the population (range from 1.7 to 4.7%), with a higher prevalence in females than  males2. Several etiologi-
cal factors might contribute to its impaction, including genetic factors, lack of space, tooth root developmental 
abnormalities, trauma or injury and presence of oral pathological  lesions3,4.

The proper positioning of maxillary canine in the dental arch is critical for functional  occlusion5 and 
 aesthetics1,6. A delayed diagnosis or lack of treatment can result in complications such as midline shift, tooth 
displacement, arch length defect, ankylosis, follicular cyst development, internal tooth resorption, pain, caries, 
and recurrent  infection7. Hence, early detection and intervention are crucial. The diagnosis of canine impac-
tion and determination of the appropriate treatment plan necessitates the utilization of radiographic imaging 
in conjunction with patient history and clinical examination. In this context, cone beam computed tomography 
(CBCT) is the most optimal radiographic imaging tool due to its ability to accurately determine the tooth’s 
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three-dimensional (3D) position and assess its relationship with the neighboring teeth and other neighboring 
anatomical structures. This enables clinicians to accurately assess potential treatment options and plan the most 
effective course of  action8–11.

Recently, the field of oral healthcare has witnessed a shift towards the utilization of digital workflows for 
diagnostic and treatment planning purposes. These workflows have addressed the shortcomings of conventional 
methods by offering enhanced precision, time-efficiency, and improved patient  care12,13. The implementation 
of such workflows has facilitated patient-specific virtual planning, orthodontic treatment simulation, treatment 
progress monitoring, and 3D printing of orthodontic  appliances14–16. This could prove particularly advantageous 
for complex treatment procedures such as those involving impacted canines.

In digital dental workflows involving impacted canines, CBCT image segmentation is a crucial initial step 
for creating an accurate 3D model of the tooth for either diagnosis, planning or outcome assessment. Any error 
at this stage can adversely affect the final  result17. Both manual and semi-automated segmentation (SS) have 
been applied as clinical standards for creating virtual impacted canine models, where manual segmentation is 
time-consuming and operator  dependent18,19. Meanwhile, SS relies on threshold selection and often requires 
manual adjustments, which also makes it prone to human  error20,21. Recent application of deep convolutional 
neural networks (CNNs) has demonstrated improved performance over conventional segmentation methods 
for modeling of the dentomaxillofacial region, with promising results for automated segmentation (AS) of teeth, 
upper airway, inferior alveolar nerve canal, mandible, and maxillary sinus on CBCT  images22–30. However, there 
is a lack of evidence regarding the application of CNNs for the AS of impacted canines.

Therefore, the aim of the present study was to train and assess the performance of a CNN-based tool for AS 
of maxillary impacted canine on CBCT images.

Material and methods
This retrospective study was conducted in compliance with the World Medical Association Declaration of Hel-
sinki on medical research. Ethical approval was obtained from the Ethical Review Board of the University 
Hospitals Leuven (reference number: B322201525552).

Dataset
A total of 200 CBCT scans (46 males and 54 females; age range: 8–54 years) having uni- or bilateral maxillary 
impacted canine cases were collected during the period 2015–2022, from the radiological database of UZ Leuven 
Hospital, Leuven, Belgium. Inclusion criteria consisted of previously clinically and radiologically diagnosed 
unilateral/bilateral, horizontal/oblique/vertical and complete/partial maxillary canine impactions. Teeth with 
both complete and partially formed roots were included. The majority of cases in these datasets had orthodon-
tic brackets. Exclusion criteria involved scans with motion artifacts and poor image quality, where margins of 
canine could not be optimally delineated. The CBCT images were obtained utilizing two devices, NewTom VGi 
Evo (Cefla, Imola, Italy) and 3D Accuitomo 170 (J Morita, Kyoto, Japan) with variable scanning parameters of 
90–110 kV, a voxel size between 0.125 and 0.300  mm3 and a field of view between 8 × 8 and 24 × 19 cm.

All images were exported in Digital Imaging and Communications in Medicine (DICOM) format. Thereafter, 
the DICOM datasets were uploaded to a CNN-based online cloud platform known as the ‘Virtual patient creator’ 
(Relu, Leuven, Belgium), to assess if the tool would be able to segment impacted canines, as it had been previously 
trained for permanent erupted teeth  segmentation24,28. Based on the visual assessment by two observers (A.S, 
B.E), 100 images from the total dataset of 200 images could not be segmented automatically by the platform. 
Hence, these failed cases were randomly divided into two subsets, training set (n = 50), to train and better fit 
the CNN model for impacted canines using semi-automatically segmented ground truth data; and testing set 
(n = 50), to test the model performance for AS compared to the ground truth data. Figure 1 illustrates the data 
distribution for training and testing subsets.

Figure 1.  Dataset used for training and validation.
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Data labelling
The ground truth for the training and testing sets was obtained through SS of impacted canines on the online 
platform using cloud tools such as the contour tool and smart brush  function26. The contour tool interpolates 
the interslice region between selected contours, while the smart brush function groups voxels based on their 
intensities. The operator adjusted the segmentation until satisfied with the result, and all contours were verified 
in axial, coronal, and sagittal planes. The segmentation was performed by one observer (A.S) and subsequently 
reassessed by two additional observers (NM & RJ) with 10 and 25 years of experience, respectively. The canines 
were then exported as standard tessellation language (STL) files for further processing in the CNN pipeline.

AI architecture
The training of the CNN model involved the utilization of two 3D U-Net architectures (Fig. 2), each comprising 
four encoding and three decoding blocks. The architecture included two convolutional layers with a kernel size of 
3 × 3 × 3, ReLU activation function, and group normalization with eight feature maps. Max pooling with a kernel 
size of 2 × 2 × 2 and strides of two was applied to reduce the resolution by a factor of two across all  dimensions25,27.

Binary classifier training (0 or 1) was performed on both networks. All scans were resampled to a uniform 
voxel size. To circumvent GPU memory limitations, the entire scan was down-sampled to a fixed size. A low-
resolution segmentation was achieved using the first 3D U-Net to propose 3D patches. The segments corre-
sponding to the impacted canines were only extracted. A second 3D U-Net was employed to segment and fuse 
the relevant patches, which were subsequently used to construct a full-resolution segmentation map. The binary 
image was binarized, retaining only the largest connected component, and a marching cubes algorithm was 
applied. The resulting mesh was smoothed to generate a 3D model. The optimization of the model parameters 
was performed using a deep learning model optimization technique known as  ADAM31, with an initial learn-
ing rate set to 1.25e4. During the training process, random spatial augmentations such as rotation, scaling, and 
elastic deformation were applied.

Model testing and consistency of refined segmentations
The performance of the CNN model was evaluated using a testing set and compared to the ground truth obtained 
through SS performed by observer B.E. The images were uploaded to the online tool and the resulting AS was 
downloaded in STL file format. Moreover, a visual evaluation of the segmented testing set was performed by 
two observers (A.S, B.E) to determine if any refinements were necessary (Fig. 3). If required, these refinements 
were implemented using the brush function on the online tool to add or remove voxels from the selection. The 
refined segmentation was also downloaded in STL file format. The intra- and inter-observer repeatability of 
refined segmentations was confirmed by both observers performing the refinements twice at a two-week interval.

Figure 2.  3D U-net  architecture32.
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CNN performance evaluation
The CNN model’s performance was evaluated based on time duration and voxel- and surface-based metrics.

Time analysis
The duration of testing set segmentation with the SS approach was recorded using a digital stopwatch, starting 
from the import of CBCT data until the generation of the canine model. On the other hand, the online platform 
automatically provided the time needed to obtain the final segmentation map.

Performance metrics
The performance of the CNN model was assessed by utilizing confusion matrix for voxel-wise comparison of SS 
ground truth and AS maps according to the following metrics: Dice similarity coefficient (DSC), Intersection over 
union (IoU) and 95% Hausdorff Distance (HD). In addition, the surface-based analysis involved importing super-
imposed STL files of SS and AS to 3-matic software (Materialise NV, Leuven, Belgium), followed by automated 
part comparison analysis to calculate the root mean square (RMS) difference between both segmented models.

Statistical analysis
Data were analyzed using GraphPad Prism, Version 9.0. (GraphPad Software, La Jolla, CA). A paired sample 
t-test was used to compare the time between SS and AS. The performance metrics were represented by mean 
and standard deviation values. An IoU score of < 0.5 or HD value of > 0.2 mm would indicate towards poor 
performance. Inter-class correlation coefficient (r) was applied to assess intra- and inter-observer consistency 
of the refined segmentations. A p value of less than 0.05 was considered significant.

Informed consent
Since data were evaluated retrospectively, pseudonymously and were solely obtained for treatment purposes, a 
requirement of informed consent was waived by the Ethical Review Board of the University Hospitals Leuven 
(reference number: B322201525552).

Results
Upon visual inspection of the testing dataset, it was determined that 20% (n = 10) of the cases required minor 
refinements. The mean values for intra-observer consistency of refinements were 92% for IOU and 96% for DSC. 
Inter-observer consistency yielded IOU and DSC values of 87% and 93%, respectively (Table 1). Intra-observer 
repeatability was determined to be 0.992, while inter-observer repeatability was 0.986.

The CNN model required an average of 21 s to perform the AS of impacted canines, while the SS took 582 s. 
This indicates that the CNN model was approximately 24 times faster than the SS method, with a statistically 
significant difference of (p < 0.0001) (Fig. 4).

Figure 3.  Automated segmentation of maxillary impacted canine and other dentomaxillofacial structures 
(maxillary bone, maxillary sinus and erupted teeth) on virtual patient creator platform (creator.relu.eu, Relu BV, 
Version October 2022).
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The performance metrics of AS demonstrated high values of IoU (0.99 ± 0.04) and DSC (0.99 ± 0.02) when 
compared to SS. A mean HD value of 0.01 ± 0.03 mm was detected with RMS difference of 0.05 ± 0.25 mm 
between SS and AS (Table 2 and Fig. 5), hence indicating towards almost a perfect overlap between semi- and 
fully-automated segmented canine surfaces.

Discussion
A precise 3D segmentation of impacted canine is essential mainly for digital orthodontic treatment planning 
 workflows33–35. Despite being a challenging and time-consuming task through manual and semi-automated 
approaches, CNN-based automation has the ability to produce highly accurate 3D virtual models in a time-
efficient  manner22,24,28. Hence, the goal of this study was to introduce and assess the performance of a CNN 
model for the segmentation of maxillary impacted canines. In this study, we utilized a pre-existing cloud-based 
platform that had been previously trained to segment multiple dentomaxillofacial structures (permanent teeth, 
maxillary sinus, inferior alveolar nerve, and jaw bones) and apply automated CBCT-intraoral scan registration. 
The performance of the model was comparable to that of SS performed by clinical experts. It is noteworthy that 
the model showed 100% consistency without the issue of human variability, where it was able to produce identical 
results when segmenting the same case multiple times. Moreover, only minor refinements were required which 
confirmed high similarity between AS and SS.

Table 1.  Intra and inter-observer consistency of refinements.

Metrics Intra-observer consistency (AS & AS) Inter-observer consistency (AS & BM)

IOU (intersection over union)

 Mean 0.92 0.87

 SD 0.02 0.03

DICE (dice similarity co-efficient)

 Mean 0.96 0.93

 SD 0.01 0.02

HD Hausdroff distance (mm)

 Mean 0.09 0.16

 SD 0.02 0.03

RMS (root mean square) (mm)

 Mean 0.15 0.23

 SD 0.05 0.09

Figure 4.  Time comparison between automated and semi-automated segmentation.

Table 2.  Performance metrics based on comparison between automated and semi-automated segmentation.

Performance metrics Mean scoring ± standard deviation

Intersection over union 0.99 ± 0.04

Dice similarity coefficient 0.99 ± 0.02

95% Hausdorff distance(mm) 0.04 ± 0.08

Root mean square difference (mm) 0.05 ± 0.25
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The presented CNN model was able to automatically segment impacted canines in 21 s, which was 24 times 
faster than the SS approach. Hence, demonstrating the benefits of incorporating automation into the digital work-
flow to increase clinical efficiency. A comparison with existing studies regarding time-efficiency was challenging 
due to a lack of reported time data. Time is a crucial factor in clinical dentistry and is integral to an optimal digital 
workflow, hence it should be reported in such studies incorporating artificial intelligence (AI) based solutions.

Limited research has been conducted on the application of deep learning-based CNNs for either classifica-
tion or segmentation of impacted teeth. Specifically, no studies have focused on impacted canine segmentation 
on CBCT images. Hence, comparison with existing evidence was deemed difficult. Kuwada et al.36 evaluated 
the performance of three CNN systems (DetectNet, VGG-16, AlexNet) for detecting and classifying maxillary 
impacted supernumerary teeth on panoramic images. They found that DetectNet had the highest detection 
performance with a recall and precision of 1. Celik et al.37 proposed a deep learning-based tool for detecting 
impacted mandibular third molars. They compared a two-stage technique (Faster RCNN with ResNet50, AlexNet, 
and VGG16 as backbones) with a one-stage technique (YOLOv3) and found that YOLOv3 had the highest detec-
tion efficacy with an average precision of 0.96. Imak et al.38 used ResMIBCU-Net to segment impacted teeth 
(including impacted canines) on panoramic images and achieved an accuracy of 99.82%. Orhan et al.39 evaluated 
the diagnostic performance of a U-Net CNN model for detecting impacted third molar teeth on CBCT images 
and showed an accuracy of 86.2%. Meanwhile, the findings of the present suggested a high scoring of 0.99 based 
on both DSC and IoU. It is noteworthy that the use of accuracy as an evaluation metric for 3D AS tasks can 
result in misleading conclusions due to the inclusion of true negatives in the calculation. This phenomenon, 
known as the accuracy paradox, can result in a high accuracy value despite poor model  performance40. This is 
particularly evident in imbalanced datasets where the over-representation of one class can lead to an overestima-
tion of accuracy. Alternative evaluation metrics, such as, DSC, 95% HD and IoU should provide a more optimal 
representation of model performance.

The study’s main strength was its ability to accurately and rapidly segment impacted canines with various 
angulations (horizontal, oblique, vertical) on CBCT images. The inclusion of scans from two CBCT devices 
with different acquisition parameters and metal artifacts from brackets could enhance the tool’s practicality 
and robustness. Moreover, the segmentation and refinements could be performed on an easily accessible online 
platform without the need for third-party software, making it more convenient for clinical use.

The study also had certain limitations. Firstly, the training was limited to only maxillary impacted canines 
without inclusion of any other impactions. Secondly, the online tool only provided the segmentation map as 
an outcome without any additional tools for dimensional and morphometric measurements. Thirdly, the CNN 
training was based on two CBCT devices. Further studies are warranted to train the model based on the datasets 
from multiple CBCT devices with different scanning parameters and qualities, as well as images acquired from 
different institutions, for justifying its applicability for regular clinical tasks.

Figure 5.  Comparison of automated and semi-automated maxillary impacted canine segmentation. (A) three-
dimensional surface model. (B) axial view. (C) sagittal view. Green color corresponds to no difference between 
automated and semi-automated segmentation surfaces, red color corresponds to overestimation of automated 
segmentation and blue color corresponds to underestimation of automated segmentation.
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Conclusion
The proposed CNN model facilitated a rapid, consistent, and precise segmentation of maxillary impacted canines 
on CBCT images, which might aid in diagnosis and the planning of orthodontic and oral surgical interventions. 
The integration of impacted canine segmentation into the online tool could be considered as a significant leap 
towards achieving a fully AI assisted virtual workflow for planning, surgical guide designing, and follow-up 
assessment for various dentomaxillofacial procedures.

Data availability
The data analyzed during the current study available from the corresponding author on reasonable request.

Received: 19 July 2023; Accepted: 10 December 2023
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