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The biomarkers’ landscape 
of post‑COVID‑19 patients 
can suggest selective clinical 
interventions
Debora Paris 1, Letizia Palomba 2, Maria Cristina Albertini 2, Annabella Tramice 1, 
Lorenzo Motta 3,7, Eleonora Giammattei 2, Pasquale Ambrosino 4, Mauro Maniscalco 5,6* & 
Andrea Motta 1*

In COVID‑19 clinical symptoms can persist even after negativization also in individuals who have 
had mild or moderate disease. We here investigated the biomarkers that define the post‑COVID‑19 
clinical state analyzing the exhaled breath condensate (EBC) of 38 post COVID‑19 patients and 38 
sex and age‑matched healthy controls via nuclear magnetic resonance (NMR)‑based metabolomics. 
Predicted gene‑modulated microRNAs (miRNAs) related to COVID‑19 were quantified from EBC of 10 
patients and 10 controls. Finally, clinical parameters from all post‑COVID‑19 patients were correlated 
with metabolomic data. Post‑COVID‑19 patients and controls showed different metabolic phenotype 
(“metabotype”). From the metabolites, by using enrichment analysis we identified miRNAs that 
resulted up‑regulated (hsa‑miR146a‑5p) and down‑regulated (hsa‑miR‑126‑3p and hsa‑miR‑223‑3p) 
in post‑COVID‑19. Taken together, our multiomics data indicate that post‑COVID‑19 patients before 
rehabilitation are characterized by persistent inflammation, dysregulation of liver, endovascular 
thrombotic and pulmonary processes, and physical impairment, which should be the primary clinical 
targets to contrast the post‑acute sequelae of COVID‑19.

Nearly 772 million people have been infected by the severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) as of November 8, 2023, including ca. 7 million deaths (https:// covid 19. who. int/), with more than 13.5 
billion vaccine doses administered (as of November 5, 2023). SARS-CoV-2 induces a condition known as coro-
navirus disease 2019 (COVID-19), characterized by a wide range of clinical presentations and possible life-
threatening  complications1.

According to the National Institute for Health and Care Excellence (NICE) guidelines, different time phases 
of COVID-19 might be identified: “acute COVID-19 (signs and symptoms of COVID-19 for up to 4 weeks); 
ongoing symptomatic COVID-19 infection (signs and symptoms of COVID-19 from 4 to 12 weeks); and post-
COVID-19 syndrome (signs and symptoms that develop during or after an infection consistent with COVID-19, 
continue for more than 12 weeks, and are not explained by an alternative diagnosis)”2. Overall, it is now clear 
that the convalescent phase of COVID-19 can present a number of clinical  manifestations3 even in individuals 
who have had mild or moderate  disease4,5.

Patients after COVID-19 may develop to so-called Long COVID, also referred to as “post-acute sequelae 
of COVID-19” (PASC)6. At least 70 million people around the world present long  COVID7–9. They experience 
several symptoms, including cardiovascular, thrombotic and cerebrovascular disease, limited lung function with 
reduced lung capacities and volumes, respiratory muscle weakness, changes in radiographic and tomographic 
findings, type 2 diabetes, chronic fatigue syndrome, limitation in exercising, decreased functional capacity, 
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and an overall reduced quality of  life9,10. Symptoms can last for  years11, with increasing public health costs and 
increasing economical  burdening12,13.

For the pathogenesis of long COVID, several hypotheses have been put forward, including the persisting 
presence of SARS-CoV-2 in tissues, immune dysregulation with or without reactivation of underlying pathogens, 
alteration of the microbiota, microvascular blood clotting with endothelial dysfunction, among  others14. The 
heterogeneity and complexity of post COVID-19 should be dealt with by specifically defining the targets for 
clinical interventions, with the aim of defining a multidisciplinary model of care to avoid burdening the patients 
and the health care systems with useless and costly over-investigation15,16. Physiological parameters obtained 
from a multiomics strategy can carefully define the patients’ status during the COVID-19 phases, recognizing 
and defining biological features related to and most likely predicting long-COVID  manifestations14.

In this paper, we investigated the biomarkers’ landscape of long-COVID patients with several omics 
approaches to uncover molecular parameters that could suggest specific clinical management. We first defined 
the phenotype difference between patients and healthy controls by using nuclear magnetic resonance (NMR)-
based metabolomics of their exhaled breath condensate (EBC)17 before entering a pulmonary rehabilitation 
(PR) that has been shown to be highly effective in improving the post-acute  symptoms18. Such difference was 
also highlighted by assessing alterations in EBC-derived microRNAs (miRNAs) related to COVID-19. Finally, 
joining metabolomics data and clinical parameters collected during the rehabilitation program, we obtained a 
clear description of the pathophysiological condition of patients, highlighting the presence of persistent inflam-
mation, dysregulation of liver, endovascular thrombotic and pulmonary processes, and physical impairment, 
which should be the primary targets in a management protocol of the post-acute sequelae of COVID-19.

Results
Patients
The study design is presented in Fig. 1. We screened 60 convalescent COVID-19 patients, all negativized from 
the wild-type SARS-CoV-2, which was the predominant form in South Italy at the time, although the presence 
of the D614G variant was also reported, but only 40 (92% males, mean age 58.8 years) were enrolled. Two out of 
40 patients were excluded because of the low-quality NMR spectra. Samples and clinical data of 38 age- and sex-
matched non-COVID-19 subjects (92% males, mean age 57.9 years) were also used as controls. They belonged 
to an irreversible deidentified Maugeri historical cohort of healthy volunteers selected from the hospital staff, 
whose samples (including EBC) and clinical data were previously collected and stored. The absence of significant 
respiratory, cardiac and/or metabolic diseases were anamnestic.

Their major demographic and clinical characteristics are reported in Table 1 as mean ± standard deviation 
(SD). All patients presented a long-COVID condition, with lingering, recurrent symptoms after recovering from 
the severe/critical condition. EBC samples and all clinical and instrumental data were collected from the 38 
post-COVID patients before entering the rehabilitation cycle, and, in parallel, from the 38 control subjects. For 
the 38 patients, clinical and instrumental data were also collected after the rehabilitation cycle.

In brief, convalescent COVID-19 patients were middle-aged male subjects with a recent history of severe 
(44.7%) or critical (55.3%) COVID-19 according to World Health Organization (WHO) criteria (https:// www. 
covid 19tre atmen tguid elines. nih. gov/ overv iew/ clini cal- spect rum). 63.2% of patients was transferred from an 
acute care setting after a hospitalization of 14.3 (7–47) days, while all 38 enrolled patients underwent a rehabilita-
tion program of 24.3 (5–57) days (Table 1). Rehabilitation affected several clinical characteristics of post-COVID 
patients (p-value column in Table 1). Statistically significant variations were observed for the pulmonary param-
eters  (PaO2, and from  SpO2 down to Barthel index in Table 1), and for BMI, weight, diastolic pressure, glycemia, 
urea, uricemia, AST, ALT, CRP and D-dimer values, demonstrating the successful impact of rehabilitation.

NMR‑based metabolomics of patients’ EBC
To define the post-COVID physiological state, we profiled by NMR the EBC from patients, and compared them 
with the corresponding profiles of healthy subjects. Figure S1 compares the NMR spectra of the EBC samples 
from a healthy subject (a) with that of a patient (b), and resonances’ assignments are reported in Table S1. Notably, 
saliva contamination was absent in both samples as the most intense saliva signals, originating from carbohy-
drates and resonating between 3.3 and 6.0 ppm, are absent. PCA was used to explore data trend and possible 
outliers (data not shown). We then carried out supervised OPLS-DA, which yielded a regression model with 
high-quality parameters  (R2 = 0.81,  Q2 = 0.87 and CV ANOVA p = 2.3 ×  10−12), and a clear class discrimination 
(Fig. 2). In the associated loadings plot (not shown), the post-COVID group, with respect to controls, presented 
upregulation of ethanol, lactate and acetoin, and downregulation of acetate, acetone, fatty acids, isocaproate, 
isovalerate, methanol and valerate. Their statistical significance is reported as box and whiskers plots in Sup-
plementary Figs. 1–3. These results indicate that patients present a metabotype completely different from that 
of healthy subjects.

The discriminating biomarkers were used to identify the metabolic networks altered in post-COVID. Applica-
tion of enrichment metabolic analysis indicated the potential biological mechanisms producing the separation 
between post-COVID and controls. With a threshold of p < 0.05, we uncovered synthesis and degradation of 
ketone bodies, pyruvate metabolism, propanoate metabolism, butanoate metabolism, cAMP signaling pathway, 
inflammatory mediator regulation of TRP channels and carbon metabolism as the most probable activated path-
ways. They mark the differences between the post-COVID-19 metabotype with respect to controls. The results 
of the enrichment analysis are reported as Supplementary Table S2.

https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum
https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum
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miRNA analysis
Potential genes related to altered metabolites found in EBC were derived from gene-metabolite interaction net-
work analysis (Supplementary Table S3). Putative miRNAs involved in the modulation of the found genes were 
uncovered by an in silico analysis using the miRNet tool. This approach integrated the metabolomic analysis 
and miRNAs modulation in the same samples. Enrichment analysis based on the hypergeometric test explored 
20 miRNA functions significantly modulated (p < 0.05). Validation of miRNAs through qRT-PCR was obtained 
considering the functions cell cycle (74 hits, Gene ontology (GO) annotations number GO:0007049), regulation 
of stem cell proliferation (74 hits, GO:0072091), cell death (73 hits, GO:0008219), aging (70 hits, GO:0007568), 
hematopoiesis (68 hits, GO:0030097) and angiogenesis (66 hits, GO:0001525) (Supplementary Table S4).

Among the miRNAs associated with the above functions, we identified hsa-miR-145-5p, hsa-miR-221-3p, 
hsa-miR-221-5p, hsa-miR-17-5p, hsa-miR-222-3p and hsa-miR-34a-5p common to all six functions, hsa-miR-
146a-5p common to five functions, and hsa-miR-126-3p and hsa-miR-223-3p common to four functions. A 
PubMed search (“miRNAs name” AND “COVID-19”) indicated that hsa-miR-34a-5p, hsa-miR-146a-5p, hsa-
miR-126-3p and hsa-miR-223-3p are associated with COVID-19 pathogenesis, which we searched for in EBC 
samples of post-COVID-19 patients. Except for hsa-miR-34a-5p, which was below the limit of detection (Cq ≥ 35) 
in more than 80% of samples and therefore was not considered further, different modulation was found for the 
other three miRNAs. Compared with healthy controls, patients presented up-regulation of hsa-miR146a-5p 

Figure 1.  Schematic diagram illustrating the overall study design.
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(Fig. 3b), while hsa-miR-126-3p and hsa-miR-223-3p were down-regulated (Fig. 3a,c, respectively). They are 
involved in inflammatory responses and immune regulations, and their alterations in post-COVID-19 indicate 
the persistence of pathophysiological processes.

Table 1.  Characteristics and clinical parameters of the subjects enrolled in the study. IN and OUT refers 
to post-COVID patients before (IN) and after (OUT) the rehabilitation program. WHO World Health 
Organization class of severity, BMI body-mass index, TC total cholesterol, TGs triglycerides, AST aspartate 
aminotransferase, ALT alanine aminotransferase, CRP C-reactive protein, HCO3 actual bicarbonate, PaO2 
partial pressure of oxygen in arterial blood, PaCO2 partial pressure of carbon dioxide, FEV1 forced expiratory 
volume during the first second of a forced breath, FVC forced vital capacity, FEV1/FVC ratio between the 
forced expiratory volume in the first second  (FEV1) and the forced vital capacity (FVC) of the lungs, DLCO 
carbon monoxide diffusing capacity of the lung, 6MWD six-minute walking distance, CAT  chronic obstructive 
pulmonary disease (COPD) assessment test questionnaire, Barthel index scale used to measure performance in 
activities of daily living. The values are reported as mean ± SD. a IN/OUT clinical parameters tested with paired 
Wilcoxon signed ranks test (ns not significant).

Clinical data (units) IN OUT Healthy subjects pIN-OUT  valuea

N 38 – – 38 –

Sex (F/M) 3/35 3/35 –

Age (years) 58.82 ± 10.08 – – 57.93 ± 11.23 –

Rehabilitation period (days) 24.32 ± 10.85 – – – –

Hospitalization for acute cases (days) 14.30 ± 14.52 – – – –

WHO, severe/critical (n) 17/21 – – – –

Albumin (g/dL) 3.62 ± 0.50 3.71 ± 0.32 3.57 ± 0.47 ns

BMI (kg/m2) 29.74 ± 6.47 29.26 ± 5.47 25.33 ± 3.51 ns

Weight (kg) 90.02 ± 20.99 90.12 ± 21.59 85.68 ± 15.36 ns

Systolic pressure (mmHg) 127.57 ± 15.71 125.38 ± 9.48 120.42 ± 17.11 ns

Diastolic pressure (mmHg) 79.19 ± 9.82 75.00 ± 5.83 77.22 ± 11.01 0.031

TC (mg/dL) 191.90 ± 30.89 182.76 ± 33.21 186.61 ± 27.08 ns

TGs (mg/dL) 167.65 ± 70.72 165.76 ± 58.89 134.29 ± 16.04 ns

Glycemia (mg/dL) 95.86 ± 28.40 83.00 ± 17.08 81.19 ± 13.24 0.007

Creatinine (mg/dL) 0.85 ± 0.29 0.86 ± 0.28 0.79 ± 0.17 ns

Urea (mg/dL) 39.00 ± 14.73 33.85 ± 9.38 37.06 ± 6.23 0.009

Uricemia (mg/dL) 5.32 ± 1.82 5.51 ± 1.27 5.20 ± 0.56 ns

AST (U/L) 24.27 ± 14.62 18.42 ± 12.07 20.19 ± 5.81 1.90 ×  10–4

ALT (U/L) 63.05 ± 68.13 43.61 ± 48.50 27.26 ± 12.32 8.83 ×  10–4

CRP (mg/L) 15.05 ± 28.72 3.28 ± 4.78 2.56 ± 1.91 4.22 ×  10–6

D-dimer (ng/mL) 727.78 ± 684.12 483.34 ± 405.31 319.36 ± 85.57 6.22 ×  10–4

Red blood cells  (1012/L) 4.52 ± 0.66 4.43 ± 0.90 4.81 ± 0.36 ns

Hemoglobin (g/dL) 12.78 ± 1.77 12.34 ± 1.97 12.27 ± 2.22 ns

Hematocrit (%) 38.98 ± 4.95 38.07 ± 5.73 37.70 ± 4.29 ns

Platelets  (109/L) 203.40 ± 77.41 190.86 ± 50.89 224.06 ± 24.31 ns

Leucocytes  (109/L) 8.13 ± 3.24 7.91 ± 3.84 5.70 ± 1.61 ns

PaO2 (mmHg) 72.52 ± 13.50 81.11 ± 11.53 – 1.12 ×  10–4

PaCO2 (mmHg) 35.76 ± 3.14 36.67 ± 2.50 – ns

pH 7.44 ± 0.02 7.44 ± 0.05 – ns

HCO3 (mEq/L) 25.02 ± 1.37 25.87 ± 3.60 – ns

SpO2 (%) 93.95 ± 3.45 96.00 ± 2.03 97.03 ± 1.05 2.53 ×  10–4

FEV1 (L) 2.29 ± 0.67 2.62 ± 0.66 – 8.86 ×  10–6

FEV1 (% predicted) 73.11 ± 19.37 82.12 ± 16.88 – 3.85 ×  10–5

FVC (L) 2.78 ± 0.82 3.24 ± 0.77 – 1.86 ×  10–5

FVC (% predicted) 70.73 ± 18.92 81.59 ± 15.64 – 2.90 ×  10–5

FEV1/FVC 82.94 ± 7.09 81.12 ± 6.61 – 0.0026

DLCO (mL/min/mmHg) 16.27 ± 6.02 18.77 ± 6.96 – 0.001

DLCO/VA (mL/min/mmHg) 3.68 ± 0.76 3.90 ± 0.68 – 9.91 ×  10–4

6MWD (m) 200.87 ± 133.34 346.11 ± 119.85 526.25 ± 87.89 7.28 ×  10–11

CAT 26.45 ± 3.52 8.68 ± 4.04 – 7.28 ×  10–12

Barthel index 77.71 ± 22.31 96.82 ± 7.48 – 2.33 ×  10–10
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Correlation of EBC metabolites with clinical parameters
The post-COVID-19 metabolites from EBC were associated with the clinical parameters obtained at the hos-
pitalization before rehabilitation. The heatmap in Fig. 4 shows the significant Pearson correlation coefficients 
(p < 0.05) between the metabolites and at least one clinical parameter. Considering a threshold value of ρ ≥ |0.5|, 
we identified a positive correlation of 0.7 between propionate/isobutyrate (label 2 in Fig. 4) and creatinine (dark 
blue box with a red double asterisk, see the color code in Fig. 4). Positive correlations of 0.5 were observed 
between acetoin (label 1) and propionate/valine (label 3) with creatinine, isobutyrate (label 5) and alanine ami-
notransferase (ALT), lactate (label 10) and pH, glycine (label 21) and leukocytes, 3-hydroxyisobutyrate (label 
22) and leukocytes, and ethanol (label 23) with platelets (blue boxes with a red asterisk).

Negative correlations of − 0.7 were observed between acetoin, propionate/isobutyrate and propionate/
valine with  FEV1/FVC (labels 1, 2 and 3, respectively, pale yellow boxes with a black double asterisk). Negative 

Figure 2.  Orthogonal projections to latent structures discriminant analysis (OPLS-DA) of EBC samples 
from post-COVID patients and controls. Scores plot showing the degree of separation of the model between 
post-COVID (red circles) and controls (blue circles). The model presents strong regression (95%, CV-ANOVA 
p < 2.3 ×  10−12) and high-quality parameters  (R2 = 81% and  Q2 = 87%). The labels t[1] and  to[1] along the axes 
represent the scores (the first 2 partial least-squares components) of the model, which are sufficient to build a 
satisfactory classification model.

Figure 3.  Relative expression of miRNAs in EBC samples obtained from enrolled subjects. (a) hsa-miR-126-
3p-3p. (b) hsa-miR-146a-5p-5p. (c) hsa-miR-223-3p-3p. Blue bars refer to control subjects, while red bars refer 
to post-COVID patients. Analysis was performed with qRT-PCR. p-values are shown.
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correlations of − 0.5 involved methanol (label 6) with weight and the six-minute walking distance (6MWD), ace-
tone (label 18) and 6MWD, and glycine (label 21) and pH (light green boxes with a black asterisk in Fig. 4). Posi-
tive correlation indicates similar behavior between metabolites and clinical values (increase/increase, decrease/
decrease), while negative correlation refers to opposite behavior (increase/decrease, decrease/increase). Such 
correlations indicate that clinical parameters can be monitored via metabolites, which could become noninvasive 
markers of the clinical status.

Rehabilitation of post‑COVID‑19 patients: analysis of the clinical data between admission and 
discharge
The effects of rehabilitation on patients were evaluated by comparing the clinical/laboratory data of each patient 
at the admission in an average rehabilitation cycle of 24.3 days (in) (Table 1) and at discharge (out). The scores 
multilevel PLS-DA plot of Fig. 5 shows that the discharge status (black dots, out) is different from the one at the 
admission (red dots, in). In particular, at the admission, patients presented higher values of creatine, triglycerides 
(TGs), leukocytes, urea, red blood cell count, systolic blood pressure, total cholesterol (TC), platelets, hemato-
crit, weight, diastolic blood pressure, hemoglobin, glycemia, C-reactive protein (CRP), ALT, D-dimer, aspartate 
aminotransferase (AST),  FEV1/FVC and CAT. At discharge, patients were characterized by higher values of pH, 
total lung capacity (TLC),  HCO3, uricemia, albumin,  PaCO2, DLCO/VA, DLCO,  SpO2, Barthel,  PaO2,  FEV1%, 
FVC, FVC%,  FEV1 and 6MWD. This is depicted in Fig. 6, which reports the contribution plot related to the 

Figure 4.  Heatmap based on Pearson correlation coefficients between EBC metabolites and values obtained 
from clinical test in negativized COVID-19 patients. Rows and columns are rearranged according to the 
centroid-based correlation matrix-based hierarchical clustering (CMBHC). Blue tone indicates positive 
correlations between metabolites and clinical data, whereas light tones indicate negative correlations. 
Correlation values ρ = |0.7| are marked with a double asterisk, while values ρ = |0.5| are labeled with a single 
asterisk. EBC metabolites are: 1, acetoin; 2, propionate/isobutyrate; 3, propionate/valine; 4, pyruvate; 5, 
isobutyrate; 6, methanol; 7, 3-hydroxyisovalerate; 8, isovalerate; 9, fatty acids (FA); 10, lactate; 11, formate; 
12, trimethylamine; 13, 2-hydroxyisovalerate; 14, isocaproate; 15, isovalerate; 16, valerate; 17, acetate; 18, 
acetone; 19, serine; 20, isopropanol; 21, glycine; 22, 3-hydroxybutyrate; 23, ethanol. The arrows on top label 
significant EBC metabolites, whose trend, with respect to healthy subjects, is symbolized by the arrow direction. 
Statistically significant clinical data are underlined.
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above multilevel PLS-DA model, where each bar represents the loadings value for each variable on the principal 
component PC1 at the admission (red bars) and at discharge (black bars).

Statistical significance was found for AST, ALT, D-dimer, CAT, Barthel, DLCO,  SpO2,  PaO2,  FEV1/FVC,  FEV1, 
FVC,  FEV1%, FVC% and 6MWD (Table 1), which are the principal clinical parameters that are carried over 
upon negativization. Therefore, post-COVID-19 patients should be monitored for liver damage (AST and ALT), 
endovascular thrombotic processes (D-dimer), persisting pulmonary symptoms (CAT, Barthel, DLCO,  SpO2, 
 PaO2,  FEV1, FVC,  FEV1/FVC,  FEV1%, FVC%), and physical impairment (6MWD). The relationship between 
the above parameters and the statistically significant EBC metabolites (top arrows in Fig. 4) indicated nega-
tive correlations between increased acetoin (label 1) and decreased  FEV1/FEV (ρ =  − 0.7, underlined in Fig. 4), 
decreased methanol (label 6) and acetone (label 18) with increased 6MWD, increased ethanol (label 23) and 
D-dimer (all presenting ρ =  − 0.5).

Figure 5.  Multilevel PLS-DA scores plot for post-COVID patients. The labels X-variate 1 and X-variate 2 along 
the axes represent the scores (the first 2 partial least-squares components) of the model, which are sufficient to 
build a satisfactory classification model. Admission variables (IN) are shown in red, while discharge variables 
(OUT) are in black.

Figure 6.  Contribution plot of the principal component PC1 of the multilevel PLS-DA model including the 
clinical parameters of the post-COVID patients. Each bar represents the loading value for each variable on PC1. 
Admission variables (IN) are shown in red, while discharge variables (OUT) are in black.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22496  | https://doi.org/10.1038/s41598-023-49601-4

www.nature.com/scientificreports/

Taken together, the metabolomic, the miRNAs and the clinical data point out that post-COVID patients still 
present dysregulation of the liver, endovascular and pulmonary parameters.

Discussion
Our results show that post-COVID-19 patients present several dysfunctions from which post-acute sequelae 
could originate. In particular, the post-COVID-19 group showed persistent lung inflammation as indicated 
by upregulation of ethanol, lactate and acetoin, and downregulation of acetate, methanol, acetone, fatty acids, 
isocaproate, isovalerate and valerate. In fact, increased acetoin level is associated with airway  inflammation19, 
and reduction of methanol was observed in the EBC of lung cancer  patients20. Short-chain fatty acids acetate, 
isovalerate, valerate and isocaproate (SCFAs) are involved in the regulation of several leukocyte functions linked 
to the production of cytokines, eicosanoids and chemokines, and are reported to affect leukocyte migration to 
the inflammation  foci21. Acetone and lactate were detected in the bronchoalveolar lavage fluid of cystic fibrosis 
patients with varying levels of  inflammation22. In addition, lactate excess can bring about a noticeable raise in 
ROS and apoptosis in A549 alveolar  cells23. It was reported that non-survivor COVID-19 patients had higher 
lactate levels with respect to survivors at the intensive-care unit  admission24. Furthermore, lactate is the main 
downgrading product of anaerobic metabolism, and it is well known that COVID-19 patients present hypoxic 
lung damage and respiratory failure, and that hypoxia is an indicator of COVID-19  mortality25. Significantly 
different concentrations between COVID-19 patients within 21 days from clinical diagnosis and post-COVID-19 
groups were observed for acetate, acetone and lactate also in  plasma26.

Correlation of EBC metabolites with clinical data from patients showed statistically significant relationships 
between increased acetoin and reduced  FEV1/FVC (ρ =  − 0.7), decreased methanol and acetone with increased 
6MWD (ρ =  − 0.5), and increased ethanol and decreased D-dimer (ρ =  − 0.5), which indicate that these metabo-
lite alterations are manifestations of the corresponding physiological functions. As a confirmation, reduction of 
methanol and acetone and the corresponding 6MWD increase was observed in chronic obstructive pulmonary 
disease (COPD) patients after a 5-week rehabilitation  program27, and ethanol can reduce the global fibrinolytic 
capacity of whole blood, measured as D-dimer production during incubation of blood  clots28.

From the above metabolites we identified the most probable dysregulated metabolic pathways, namely syn-
thesis and degradation of ketone bodies, pyruvate metabolism, propanoate metabolism, butanoate metabolism, 
cAMP signaling pathway, and inflammatory mediator regulation of TRP channels. Interestingly, upregulation 
of ketone bodies and pyruvate metabolisms has been observed in previous NMR-based metabolomics studies 
of serum/plasma samples from post-COVID  patients26,29–31.

Ketone bodies (KBs) are produced by hepatocytes’ mitochondria where fatty acids enter upon adipocy-
tokine signaling. Interestingly, two adipocytokines, IL-6 and tumor necrosis factor-alpha (TNFα), are related to 
COVID-19 severity and patients’  death32. Degradation of KBs (ketolysis) implies elevated levels of KBs in the 
blood and urine (ketosis). Ketosis shows an anti-inflammatory activity since β-hydroxybutyrate (β-HB), derived 
from the KB acetoacetate, is a key regulator of inflammation pathways like the NLRP3  inflammasome33. It has 
been suggested that in SARS-CoV-2 infection, treatments increasing β-HB levels could improve host defenses 
against respiratory viral infection while decreasing  inflammation34. Additionally, the high levels of triglycerides 
and triglycerides-rich lipoproteins observed in COVID  plasma26 could be generated by a limited oxidation of 
acetyl-CoA inside the mitochondria, therefore favoring the synthesis of ketone bodies and the high levels of 
β-HB, acetoacetate and acetone in COVID-19  patients35.

cAMP is involved in several inflammatory pathways, being able to inhibit ROS generation and proinflam-
matory cytokine production, primarily IL-6 and TNF-α36. Furthermore, preserving the cAMP concentration 
in the pulmonary tissue can improve lung  functions36, which are essential in COVID-19 patients. Interestingly, 
anosmia and ageusia, which have been observed in COVID-19 patients, have also been related to the intracel-
lular levels of  cAMP37.

The propanoate and butanoate metabolisms describe the metabolism of the SCFAs propionate and butyrate. 
SCFAs mediate the communication between the intestinal microbiome and the immune cells via free fatty acid 
receptors (FFARs), and dysregulation of the FFAR2/3 receptors’ expression favored the insurgence of respira-
tory  diseases38. We have observed that post-COVID 19 patients showed, with respect to controls, alteration 
of acetate, fatty acids, isocaproate, isovalerate, valerate (all SCFAs), and fatty acids, which are involved in the 
production of cytokines, eicosanoids, and chemokines responsible for the lung hyperinflammation in severe 
COVID-19  patients39.

Transient receptor potential (TRP) channels are widely expressed in tissues that are infected by SARS-CoV-2 
and have been proposed as targets for adjuvant therapies against COVID-1940. Most of the clinical manifestations 
of COVID-19 activate different TRP channels. For example, TRPV4 is involved in the recruitment of neutrophils 
and macrophages during lung  injury41 and relates to hearing loss/impairment40. Loss of either TRPM4 or TRPM5 
channels may significantly impair  taste42 and  olfaction43. TRP channels also contribute to several cardiac com-
plications (arrhythmias, cardiac fibrosis and myocyte hypertrophy) observed in COVID-19  patients44.

Using miRNet, from the discriminating metabolites we identified the perturbed genes, which in turn 
prompted the miRNAs altered in EBC. miRNAs have emerged as regulators of COVID-1945,46. In particular, we 
found hsa-miR-126-3p and hsa-miR-223-3p downregulated in post-COVID-19, while hsa-miR-146a-5p was 
upregulated. They are involved in the regulation of ACE2, the binding site of the virus, and in the inflammatory 
responses and immune  regulation47. hsa-miR-126-3p attenuates lung inflammation via different pathways that 
reduce many proinflammatory cytokines including IL-648, which in COVID-19 has been linked to high mortality 
 risk32. In COVID-19 patients, the serum level of hsa-miR-126-3p was considerably reduced with the increase of 
disease  grade49, and this pattern was also observed in patients non-responsive to  therapies50. hsa-miR-126-3p 
downregulation was also detected in plasma samples of COVID-19 patients with respect to a healthy control 
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group, while no downregulation was observed between severe and mild  patients51, which was instead previously 
 reported52. Furthermore, a positive correlation between miR-126-3p and neutrophils levels, and a significant 
negative correlation with IL-6 and D-dimer were  observed53. Interestingly, in vitro hsa-miR-126-3p exhibited 
neutralizing activity against SARS-COV-2  infection49.

We here found that hsa-miR-126-3p does not return to the pre-COVID-19 values, and this is an indication 
of the persistent inflammation status after negativization. hsa-miR-126-3p also shows a pro-angiogenic role by 
stimulating endothelial cell  proliferation54. The post-acute COVID-19 syndrome is associated with a persistent 
endothelial dysfunction, directly correlated with the severity of pulmonary  impairment55, whose recovery is 
normally related to maintaining the physiological endothelial functions. Therefore, in line with the above results, 
the decrease we observed for hsa-miR-126-3p suggests the persistent presence of endothelial damage in patients.

Serum hsa-miR-223-3p directly inhibits the viral S protein expression and SARS-CoV-2  replication56, and is 
implicated in the regulation of inflammatory responses by inhibiting the action of the NLRP3 inflammasome and 
modulating the expression of inflammatory chemokines and  cytokines57. In a possible mechanism, decrease of 
the has-miR-223-3p expression should increase NLRP3 expression levels and promote  pyroptosis58,59. Further-
more, serum miR-223-3p Therefore, the reduced level of hsa-miR-223-3p observed in post-COVID-19 patients 
confirms that inflammation is still present after negativization. Interestingly, hsa-miR-223-3p was amplified by 
long-term physical  exercise56, and we here found that 6MWD is the most important factor that characterizes 
the hospital discharge after post-COVID-19 rehabilitation. Taken together, this suggests a beneficial action of 
hsa-miR-223-3p with the consequent reduction of  inflammation56.

Upon a viral infection, has-miR-146a is primarily produced to regulate the innate immune response and 
inflammation by negatively regulating the NF-κB  pathway60,61. Therefore, its expression in COVID-19 decreases 
inflammatory disorders in target organs such as the lungs, heart, brain, skin, and underlying vascular  disease61,62. 
The hsa-miR-146a-5p increase we observed in post-COVID-19 patients is an indication of the path to recov-
ery, as the levels of IL-1, IL-6 and TNF-α cytokines are inversely correlated to has-miR-146a  production63,64. 
In fact, hsa-miR-146a-5p was found ca. threefold higher in a COVID-19 post-acute group than in the acute 
 group65,66, and COVID-19 patients who did not respond to tocilizumab treatment presented a reduction of 
has-miR-146a-5p with respect to responders, and its reduction in non-responders was associated to a higher 
risk of adverse  outcomes53.

The above miRNAs are involved in cell cycle, regulation of stem cell proliferation, cell death, aging, hemat-
opoiesis, and angiogenesis functions. Although nonspecific, cell cycle, regulation of stem cell proliferation and 
cell death could reflect the impact of COVID-19 on several multiorgan cellular processes, in line with the results 
of a proteomic analysis of autoptic samples from seven organs in COVID-19  patients67. Furthermore, the regu-
lation of stem cell proliferation promotes remodeling and lung tissue regeneration after COVID-19-induced 
pneumonia and can help patients’  recovery68. Similarly, for cell death, acutely ill COVID-19 patients revealed 
an upregulation of cell death programs genes, acting in tissue specific  manner69.

More specific are aging, hematopoiesis and angiogenesis. Aging is a main risk factor for severe COVID-19 
and its worst outcomes because it induces immunosenescence, which hampers the response to the  virus70, and 
inflammaging, a low-grade diffused  inflammation71. Hematopoiesis alteration is associated with severe and fatal 
COVID-19 as SARS-CoV-2 alters the bone marrow microenvironment, weakening hematopoiesis and causing 
 hemocytopenia72. Furthermore, IL-6, which increases dramatically in COVID-19, is important for regulation of 
hematopoiesis as it stimulates the production of bone marrow  neutrophils73. Regarding angiogenesis, autoptic 
lungs from patients died from SARS-CoV-2 infection indicated the presence of significant new vessel growth 
and a corresponding differential upregulation of angiogenesis-associated  genes74. Such a compensatory angio-
genesis mechanism was also observed in heart, liver, kidney, brain and lymphoreticular organs in patients who 
died from COVID-1975.

Comparing clinical data from post-COVID-19 patients before and after the admission in a rehabilitation 
cycle, we detected dysregulation of parameters related to liver damage (AST and ALT), endovascular thrombotic 
processes (D-dimer), persisting pulmonary symptoms (CAT, Barthel, DLCO,  SpO2,  PaO2,  FEV1, FVC,  FEV1/FVC, 
 FEV1%, FVC%), and physical impairment (6MWD). SARS-CoV-2-infected subjects present alterations of liver 
 biochemistry76. Since AST and ALT increase is associated with the reduction of peripheral oxygen saturation 
in viral  pneumonias77, it is expected that systemic hypoxia in COVID-19 may also alter AST and ALT levels. 
In fact, a five-fold increase of AST and ALT levels in COVID-19 with respect to normal is associated with an 
increased risk of  death78, causing elevated levels of CRP (which is synthesized by the liver), D-dimer, ferritin 
and IL-676. Therefore, the increased CRP values in patients before rehabilitation again confirms the persistence 
of liver alteration and inflammation.

Both venous and arterial thromboses characterize COVID-19  pathology79. D-dimer is an indirect marker of 
active coagulation and thrombin formation, and represents a mirror of the endovascular thrombotic processes. 
Higher levels of D-dimer are observed in severe patients infected with SARS-CoV-2 compared to nonsevere ones, 
and, significantly, increased D-dimer has been reported in COVID-19 nonsurvivors with respect to survivors, 
and the concentration continues to rise until  death80.

The following limitations of the study should be considered. First, although the number of enrolled patients 
encompasses that indicated by backward analysis, our results depend on a relatively limited number of subjects 
(38 patients and 38 controls). For this reason, we combined different types of biomarkers (EBC, miRNAs and 
clinical parameters), which represent complementary physiological aspects. Second, the patients were not con-
secutively recruited since they were selected from those of the rehabilitation division. As such, parameters like 
hospitalization for acute cases and rehabilitation period were variable, ranging between 7 and 50 days, and 5 
and 57 days, respectively. Furthermore, only 3 females (8%) were comprised in each group because the patients 
admitted were typically males. Also, the possibility that conditions/treatments not recorded because of the flex-
ibility at the hospital admission affects our conclusions cannot be excluded. We are aware that such uncontrolled 
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heterogeneity may contribute to variations in our findings, and therefore they need to be validated in a larger 
cohort of patients with more balanced parameters. However, such a heterogeneity reflected the emergency due 
to the COVID-19 pandemic being a real clinical setting. Third, although metabolomics was untargeted, miR-
NAs were assessed after comparing those derived from an in silico analysis with those related to COVID-19. 
Obviously, other miRNAs may have clinical significance, and their clinical role may have been underestimated. 
However, since individual miRNAs lack specificity and they should be used in combination with other omics 
parameters, we related miRNAs with metabolomics markers of EBC, which, to the best of our knowledge, has 
not been reported thus far.

Notwithstanding the above limitations, we were able to build a satisfactory description of the metabolic 
processes going on in post-COVID-19 patients, characterized by persistent inflammation, dysregulation of 
liver, endovascular thrombotic and pulmonary processes, and physical activities. A clear correlation was found 
between the metabolic response of patients and the clinical outcomes, which suggested selective interventions 
to face the pathophysiological status of patients and possibly contrast the post-acute sequelae of COVID-19. In 
addition, information on the rehabilitation could be obtained according to the biomarkers that characterize the 
post-COVID-19 metabotype.

All considered, the results shown here provide sufficient evidence that joining together breath metabolomics, 
miRNAs and clinical parameters can generate a reasonable understanding of the complex pathophysiological 
status of negativized SARS-CoV-2 patients. Our approach is basically noninvasive and could suggest an unbiased 
personalized approach to achieve an optimal use of healthcare resources.

Methods
Patients
Convalescent COVID-19 patients referring to the Pulmonary Rehabilitation Unit of Istituti Clinici Scientifici 
Maugeri IRCCS, Telese Terme, Italy, were screened from October 2020 to February 2021 for enrollment within 
2 months of swab test negativization from the wild-type SARS-CoV-2, which was the predominant form in 
South Italy at the time, although the presence of the D614G variant was also reported. Inclusion criteria were: 
age ≥ 18 years; recent SARS-CoV-2 infection with severe-to-critical COVID-19 according to the NIH classifica-
tion (https:// www. covid 19tre atmen tguid elines. nih. gov/ overv iew/ clini cal- spect rum/); patients presenting a long-
COVID condition, with lingering, recurrent symptoms after recovering from the severe/critical condition after 
a negative swab test; indication for a multidisciplinary rehabilitation program. Exclusion criteria were: recent 
(< 6 months) major surgery or any previous lung surgery; current malignancy; any history of chronic respira-
tory disease (e.g., asthma, COPD) other than COVID-19; inability to understand or sign the informed consent. 
Clinical data and EBC samples from age- and sex-matched healthy volunteers were also included in the study 
as controls. They belonged to an irreversible deidentified set of electronic Maugeri database containing records 
of people selected from the hospital staff, whose samples (including EBC) were previously collected and stored 
at − 80 °C. The absence of significant respiratory, cardiac and/or metabolic diseases were anamnestic.

Participants with missing data for the outcome of interest were excluded from the study.
We followed the STROBE reporting  guidelines81, in line with the 1975 Declaration of Helsinki. The Ethic 

Committee of Istituto Nazionale Tumori, Fondazione Pascale, Naples, Italy approved the study (n. ICS 3/20).

Study procedures
After signing the informed consent, all convalescent COVID-19 patients underwent a detailed collection of 
key demographic and clinical information related to the acute phase of COVID-19, lung function, physical 
performance, comorbidities and treatment(s). Following the same exclusion criteria as convalescent COVID-19 
patients, data were extracted from an irreversibly de-identified electronic dataset for control subjects. Venous 
blood samples were used for the common hemato-chemical parameters. Arterial blood samples were collected to 
measure oxygen  (PaO2) and carbon dioxide tension  (PaCO2) using a blood gas analyzer (ABL 825® FLEX BGA, 
Radiometer Medical Aps, Copenhagen, Denmark). According to the protocols of the Spirometry parameters 
and diffusion lung capacity for carbon monoxide (DLCO) were also evaluated with an automated equipment 
(Vmax® Encore, Vyasis Healthcare, Milan, Italy) as  reported82,83. Forced expiratory volume in 1 s  (FEV1), forced 
vital capacity (FVC) and DLCO were expressed both as numerical values and percentages of predicted values 
 (FEV1%, FVC% and DLCO%, respectively). The COPD Assessment Test (CAT)84 and the Barthel index were 
also administered to patients to evaluate the impact of the disease on daily living. Exercise capacity was tested 
by measuring the  6MWD85. All the clinical and the instrumental analyses were carried out at the admission (in) 
and at the discharge (out) after rehabilitation.

Rehabilitation
The rehabilitation (a 5-week exercise-based program of 6 sessions/week (30 sessions)) protocol followed the 
official ATS/ERS guidelines (Supplementary Information)86. In brief, patients undertook a 5-week exercise-based 
program of 6 sessions/week (30 sessions). Physical exercise was the cornerstone of the program, which also 
included dietary and psychosocial counselling, based on treadmill walking, stationary cycling, arm ergometry, 
flexibility, stretching and strengthening exercises with body and fixed weights. The participation was monitored 
and supervised by a physiotherapist.

EBC collection, NMR sample preparation and spectra acquisition
EBC samples were collected from negativized patients (post-COVID) before entering the rehabilitation pro-
gram. Control samples were from a cohort of healthy volunteers belonging to an irreversible deidentified set of 
electronic Maugeri database containing records of people selected from the hospital staff, whose EBC samples 

https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
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were previously collected and stored at − 80 °C. The absence of significant respiratory, cardiac and/or metabolic 
diseases were anamnestic. Sample preparation and NMR spectra acquisition were carried out as described (Sup-
plementary Information)87,88.

Power analysis
In metabolomics, a priori power analysis is not feasible because concentration variations of biomarkers are 
unknown before  analysis89. It was estimated by varying the 1 − α and 1 − β parameters from 95 to 99.9% and 
from 80 to 99.9%, respectively. Using the accuracy percentages obtained in our validation  tests89, for 1 − α = 95% 
and 1 − β = 80% we derived 24 ± 3 post-COVID-19 patients for all classes, while for 1 − α = 1 − β = 99.9% we 
obtained 28 ± 3 patients. To account for possible drop-outs or protocol adherence problems, we screened 60 
post-COVID-19 patients, with the final number of enrolled patients greater than those indicated by the backward 
analysis (40 vs. 24/28). However, 1 − α = 95% and 1 − β = 80%, and 99.9% is an extreme setting.

Multivariate data analysis
EBC proton spectra were automatically subdivided into 420 discrete regions (‘buckets’) of equal width (0.02 ppm) 
and integrated (Supplementary Information)87,88. Each integral was normalized to the total spectrum area to 
account for possible dilution effects. NMR data were imported into SIMCA-P + 14 package (Umetrics, Umeå, 
Sweden) for Principal Components Analysis (PCA) and Orthogonal Projections to Latent Structures Discri-
minant Analysis (OPLS-DA) after Pareto scaling. Model quality was evaluated by using the goodness-of-fit 
parameter  (R2) and the goodness-of-prediction parameter  (Q2)90, together with an internal iterative 7-round 
cross-validation and permutation test (800 repeats) and ANalysis Of VAriance testing of Cross-Validated pre-
dictive residuals (CV-ANOVA). Quantification was achieved with OriginPro 9.1 software package (OriginLab 
Corporation, Northampton, USA). Statistical significance for selected metabolites was determined by parametric 
(ANOVA with Bonferroni correction) or non-parametric (Mann–Whitney U) tests according to the results of 
normality test performed to evaluate data distribution (Shapiro–Wilk, Kolgomorov–Smirnov test). p < 0.05 was 
considered statistically significant. To evaluate possible covariates, propensity score matching was used to further 
estimate discriminant metabolites between controls and post-COVID classes before rehabilitation. The propen-
sity scores were estimated in R with the MatchIt  package91 using logistic regression based on weight, systolic and 
diastolic pressure of Table 1, while considering the other variables for correlation purposes. One-to-one nearest 
neighbor matching was used and 37/38 patients were matched to a non-COVID subject in the dataset. Statisti-
cal differences in ethanol (p = 0.006), methanol (p = 0.003), acetone (p = 0.007), acetate (p = 2.05 ×  10−7), acetoin 
(p = 0.01), lactate (p = 0.006),  CH2 portion of fatty acids (p = 1.38 ×  10−7), isovalerate (p = 1.02 ×  10−7), valerate 
(p = 0.005) and isocaproate (p = 3.58 ×  10−6) levels in post-COVID and control class were evaluated through 
multiple linear models and cluster-robust variance was used to estimate the standard error. All models showed 
no statistically significant effect of the considered covariates.

NMR data before rehabilitation were integrated with clinical parameters generating a correlation map with 
hierarchical clustering analysis (HCA) with R  software92. Clinical test values and selected bin integrals of signifi-
cant metabolites were combined using Pearson correlation as the distance metric. The Euclidean distance was 
considered for the metrics and the centroid method for clustering criterion.

Clinical parameters discriminating post-COVID-19 patients at the admission (in) and at discharge (out) after 
rehabilitation were evaluated by analyzing paired data with multilevel PLS-DA93 using the R software and the 
mixOmics  package94. The paired samples Wilcoxon test was used to assess statistical significance.

Network analysis
Enrichment analysis on metabolites from the post-COVID-19 vs. controls model was applied using the diffusion 
method computed with the FELLA package in  R95. The Homo sapiens database in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)96 was used. The resulting network and subnetwork were evaluated with a threshold 
of p < 0.001. The results are reported in Supporting Table S1.

miRNet in silico analysis
With the miRNet  tool97 we predicted gene-modulated miRNAs. Genes were identified by gene-metabolite inter-
action network analysis that uncovered interactions between metabolites and  genes98. Detailed implementation 
resources for miRNA-target data derived from miRTarBase v7.0, TarBase v7.0 and miRecords databases. Putative 
miRNA functions were identified using the hypergeometric test. Network size and complexity were reduced 
using miRNA-Function, the database for functional enrichment analysis. miRNAs functional implications were 
uncovered by using  Tam299. Gene Ontology and GO annotation data were obtained with  QuickGO100.

RNA isolation and quantitative real time PCR (qRT‑PCR) miRNAs validation
After controlling for age (airway miRNAs may be age-dependent101), total RNA was extracted from ca. 1 mL of 
EBC from 20 subjects (10 healthy controls and 10 post-COVID-19 patients), which offered sufficient power to 
assess twofold changes. The purification kit (NorgenBiotek Corporation, Thorold, ON, Canada) was used accord-
ing to the manufacturer’s instructions. Quantity and quality were analyzed by NanoDrop spectrophotometer 
(Thermo Fisher Scientific, Monza, MB, Italy), and subsequently stored at − 80 °C until use. The quantity of total 
RNA in each sample ranged from 3 to 11 ng/μL and was used in agreement with the transcription kit protocol. 
Exogenous spike-in, cel‐has-miR‐39‐3p, was added in a standardized amount to all samples prior to the RNA 
extraction to allow for normalization of technical variability. Furthermore, it was possible to estimate the degree 
of purity of RNA as a function of contamination from complex carbohydrates and proteins. For good RNA 
preparations, the A260/A280 purity ratios must be 1.8–2.0, as observed for all our samples. When this ratio is 
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lower, it indicates the presence of contaminants (phenol or proteins absorbing near 280 nm). But, in this study, 
we specifically selected this procedure phenol‐free and with several filtering steps (removing larger particles) 
to obtain a total RNA pure extract. In addition, the Norgen kit protocol has been created also for biofluids and 
without any need of modifications for our EBC samples. Isolated RNA was used to synthesize cDNA using a 
reverse transcription kit (Applied Biosystems, Foster City, CA, USA).

Selected human miRNA (hsa-miR-34a-5p; hsa-miR-146a-5p; hsa-miR-126-3p; hsa-miR-223-3p; cel-hsa-miR-
39-3p) expressions were quantified using the TaqMan MicroRNA assay (Applied Biosystems, Foster City, CA, 
USA), and qRT-PCR was performed on an ABI Prism 7500 Real Time PCR System (Applied Biosystems, Foster 
City, CA, USA). miRNAs are reported as relative expression normalized to the mean of a synthetic spiked-in non-
human cel-hsa-miR-39-3p (5′-UCA CCG GGU GUA AAU CAG CUUG; Life Technologies Europe BV, Bleiswijk, the 
Netherlands). The relative expression of each miRNA was reported as  2−ΔCt, with ΔCt being the difference between 
the Cts of the specific miRNA and those of the cel-hsa-miR-39-3p. Each reaction was performed in triplicate.

Data availability
All data associated with this study are present in the paper or the Supplementary Information.
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