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Scale‑dependent power law 
properties in hashtag usage time 
series of Weibo
Jiwei J. Jiang 1, Kenta Yamada 2, Hideki Takayasu 1,3 & Misako Takayasu 1*

We analyze the time series of hashtag numbers of social media data. We observe that the usage 
distribution of hashtags is characterized by a fat-tailed distribution with a size-dependent power 
law exponent and we find that there is a clear dependency between the growth rate distributions of 
hashtags and size of hashtags usage. We propose a generalized random multiplicative process model 
with a theory that explains the size dependency of the fat-tailed distribution. Numerical simulations 
show that our model reproduces these size-dependent properties nicely. We expect that our model 
is useful for understanding the mechanism of fat-tailed distributions in various fields of science and 
technology.

Fat-tailed distributions are widely observed in nature and man-made phenomena. As the name implies, they are 
a kind of probability distributions that have a slower decay on the tail than the normal distribution or the expo-
nential distribution. There are many distributions belonging to the class of fat-tailed distributions, among them, 
the power law (or Pareto) distribution is the most easily recalled, and there are others such as the log-normal 
distribution, the stretched exponential distribution, and so on. The power law distribution has been attracted 
the attention of many researchers in various fields, such as the fluctuation of market price in Economics1, phase 
transitions and critical phenomena in Physics2, and scale-free degree distribution3 in network science. The for-
mation mechanism of power-law distributions is explained by various mathematical and physical models1–18 for 
example, the stable distributions theory of sums of random variables8, the maximization of generalized entropy 
in Tsallis statistics4, and the superposition of basic probability distributions, also known as the superstatistics 
theory5–7, and so on.

For time series data, the random multiplicative process model12,19–23 is widely known to explain the mecha-
nism of the formation of power law distributions. It is well-known that a simple multiplicative stochastic process 
causes a non-stationary log-normal distribution with monotonically changing variance, which is traditionally 
known as the Gibrat process24. By adding an additive noise term12,19–21, introducing a reflection wall22 or reset-
ting events23, the random multiplicative process realizes a stationary distribution with asymptotic power law 
tails. In this model, the multiplicative stochastic variable has the meaning of growth rate, and it is known that 
the power law exponent is determined uniquely from the distribution of growth rate by solving the equation 
�bα� = 1 , where b denotes growth rate, �·� represents the average, and α is the power law exponent12. There have 
been many studies on the growth rates of business firms, and a typical growth rate distribution is known as the 
Laplace distribution which is also called the tent-shaped distribution25–30. Similar statistical properties of growth 
rates are also found in other fields of sciences31–36, such as microbial communities, tropical forests, and urban 
populations33, implying that the growth rate statistics show universal properties.

Although the random multiplicative process is plausible from a theoretical viewpoint, there are many cases 
in real-time series data that some observed fat-tailed distributions are not simply characterized by a power law 
distribution. In other words, there are cases in which the slope of the log-log plot of cumulative distribution 
functions is not approximated by a straight line. Thus, it is reasonable to introduce a more general model that 
can explain the whole fat-tailed distribution.

A recent study on hashtags on Twitter reported that the distribution of daily hashtag usage follows a fat-
tailed distribution approximated by a generalized log-normal distribution37. In this paper, we collected hashtag 
usage data on Weibo, which is a mainstream social media in China similar to Twitter, and analyzed the statisti-
cal properties of hashtag usage and its growth rate. We observe a fat-tailed distribution with scale-dependent 
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power law properties and introduce a generalized random multiplicative model with additive noise to explain 
the scale-dependent properties theoretically. In the following, the main results are described in Results, and we 
introduce details of the simulation experiments in Methods.

Results
Time series of hashtag numbers
We analyze the posting behavior of hashtags from Weibo, a mainstream micro-blog social media in China. 
We collect Weibo data through the publicly available API. Due to the huge volume of users and the limitation 
of the API, it is impossible to collect all the data for analysis, so we focus on the hashtag posting behavior of 
approximately about 300,000 users. We collect micro-blogs posted by these users from July 21st to August 18th, 
2021. Finally, we extract the hashtags from these micro-blogs, obtaining the time series of hashtag usage count. 
There are approximately 60,000 different hashtags, the duration of which ranges from 1 to 29 days (the longest 
observation interval). For convenience of the analysis, we choose 5805 hashtags that were used every day during 
the observation interval as the object of analysis. The detailed process of collecting hashtag number series data 
is shown in described in chapter 1 of Supplementary Information.

By comparing the auto-correlation functions of the original and shuffled time series, we simply divide the 
5,805 series into three types: weak stationary, periodic, and other. Figure 1 presents examples of these time series.

Although the hashtag numbers time series exhibit different patterns, we analyze them as a whole and observe 
macroscopic properties. We label hashtag series from 1 to 5805 and define the usage count of hashtag i on day t 
as xi(t), i = 1, 2, ..., 5805; t = 1, 2, ..., 29.

We observe the cumulative distributions of hashtag numbers, xi(t) , for each day t and find that the distribu-
tions are nearly stationary, following a fat-tailed distribution, as shown in Fig. 2. x(t) follows a typical fat-tailed 
distribution with a decay approximated by a power law. For estimation of the power law exponent, we calculate 
the maximum likelihood estimation to the median line (black line) for x(t) ≥ 102 and find that x(t) is close to 
a power law distribution with an exponent close to 1.12, i.e., P(≥ x(t)) ∝ x−1.12 . This distribution of x(t) looks 
consistent with the result of a former study on hashtag data for the case of Twitter37.
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Figure 1.   Examples of hashtag usage count time series. The horizontal axis is the date, from July 21st to August 
18th (total 29 days), and the vertical axis is the usage count of each hashtag. (a) Series of the hashtag “Sports”, 
which shows a weak stationary pattern; (b) series of the hashtag “Stock”, which shows a periodic pattern; (c) 
series of the hashtag “Tokyo Olympic”, which is neither stationary nor periodic.
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Figure 2.   Cumulative distribution function of the count of hashtag usage x (t). As t ranges from 1 to 29, there 
are 29 cumulative distribution functions plotted as colored solid lines; the median line of these lines is plotted as 
a black solid line. The black dashed line refers to the slope of the power law distribution whose exponent equals 
1.12.
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As we are concerned with the slope of the fat-tailed distribution of x(t), we divide x(t) into seven intervals 
growing in powers of 2 and perform linear regressions on the median line of the cumulative distribution of x(t) 
to calculate the value of the slope, the result is shown in Fig. 3. Between the vertical dashed lines are the intervals 
in which we divide x(t). We find that the absolute value of the slope of the distribution, αi , i = 1, 2, ..., 7 , changes 
in different intervals, which we call scale-dependent power law properties.

Dynamic properties
Next, we investigate the dynamic properties of the hashtag usage x(t) through the growth rate b(t), defined as 
follows for x(t)  = 0:

We pay attention to 5805 hashtags that were non-zero for all observation days. We plot the probability density 
function of log b(t) , p(log b(t)) , in Fig. 4. We find that the probability density in the log scale is fitted well by a 
tent-shaped distribution, i.e. a Laplace distribution with µlog b(t) ≈ 0 , σlog b(t) ≈ 0.31.

where µ and σ are the mean and standard deviation of log b(t) , respectively.
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Figure 3.   Slope of the cumulative distribution function of the count of hashtag usage x (t). Black solid line is 
the median line of the cumulative distributions of x(t) for different days t. x(t) is divided into seven intervals 
growing in powers of 2, i.e., [20, 22), [22, 24), [24, 26), [26, 28), [28, 210), [210, 212), [212,+∞) . The vertical dashed 
lines refer to the boundaries of these intervals. In each interval, the colored dashed lines are straight lines, the 
slopes of which are calculated by linear regression of the distribution of x(t), the absolute values of the slopes are 
shown in the legend.
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Figure 4.   Probability density function of the logarithm of the growth rate of hashtag usage count log b(t) . The 
probability density is plotted in the log scale of the vertical axis with base 10. The squares show the observed 
PDF values of the logarithm growth rate of hashtags, fitted with a theoretical Laplace distribution plotted by the 
straight lines.
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To observe detailed properties of the growth rates, we investigate the size dependency by dividing the size of 
x(t) into seven intervals growing in powers of 2, i.e.,

We observe the conditional distribution of b(t|x(t)), p(b(t|x(t))), as shown in Fig. 5a. From these size-dependent 
growth rate distributions, we find asymmetric behaviors in each interval deviating clearly from the symmetric 
Laplace distribution.

To clarify more detailed properties of these conditional growth rate distributions, we divide them into growing 
and shrinking parts, b(t|x(t)) > 1 and b(t|x(t)) < 1 , and plot the cumulative distributions separately to compare 
the shapes of tails of these distributions. Figure 5b,c show the cumulative distributions for both sides. Figure 5b 
is the case of b(t|x(t)) < 1 and we confirm heavy-tails for x(t) > 22 with the larger standard deviation for larger 
x as confirmed in Fig. 5d. The cutoff in the interval [20, 22) is due to the interval range as the smallest growth rate 
b(t) in this interval is 13 . The function form of these distributions is also fitted and is described in chapter 5.1 of 
Supplementary Information. Figure 5e shows that there is a tendency for the estimated power law exponent to 
decrease with x(t). In Fig. 5c the case of b(t|x(t)) > 1 is plotted and we find heavy tails in all intervals, and the 
corresponding standard deviations are smaller for larger x, as shown in Fig. 5f. Figure 5g shows that the trend of 
the power law exponent of the distribution increases with x(t), where the power law exponents are estimated as 
described in chapter 5.2 of Supplementary Information. This asymmetric size dependency of the standard devia-
tion is a unique property of the usage of hashtags. In the case of the growth rate of business firms, the standard 
deviations of growth rate distribution are symmetrically smaller for large firms25,26.

Generalized random multiplicative process model
To take into account the asymmetric size dependence of the growth rate on the usage of hashtags, here, we 
introduce a new model by generalizing the random multiplicative model. The standard random multiplicative 
process model is given by

where b(t) is a growth rate given by an independent and identically distributed (i.i.d.) random variable, and f(t) 
is also an i.i.d non-negative random noise.

It is known that12 under the condition that 〈log b(t)〉 < 0 , the variable x(t) follows a power law distribution 
with exponent α which is determined by solving the equation

where �·� denotes the average.
We generalize the random multiplicative model in the following form:

where b(t|x(t)) is an i.i.d non-negative random variable dependent on the value of x(t), and f(t) is an i.i.d non-
negative random noise.

Let us consider the case of x(t) ≫ 1 , where we can ignore the random noise f(t). Then we can approximate 
Eq. 5 by x(t + 1) ≈ b(t|x(t))x(t) and the master equation is given as

Here, p(·) and u(·) are the probability density functions of x(t) and b(t|x(t)), respectively, and δ(·) is the Dirac 
delta function.

In Dynamic Properties, we observe that b follows different asymmetric distributions with respect to the value of x 
by dividing x into seven non-overlapping intervals, [20, 22), [22, 24), [24, 26), [26, 28), [28, 210), [210, 212), [212,+∞) . 
Denoting the distribution function of b in the ith interval, Ii , as ui(b) , we assume that in Ii , x follows a power law 
distribution with exponent αi , defined as,

Here, 1 represents the indicator function. Substituting ui(b) and pi(x) into Eq. 6 and assuming a stationary solu-
tion, we have

Focusing on the case of x ∈ Ij , the probability density function of pj(x) is given as

By integrating x1 , we have the following equation:

[20, 22), [22, 24), [24, 26), [26, 28), [28, 210), [210, 212), [212,+∞).

(3)x(t + 1) = b(t)x(t)+ f (t),

(4)�b(t)α� = 1,

(5)x(t + 1) = b(t|x(t))x(t)+ f (t),

(6)p(x, t + 1) =
∫ ∞

0
dx1

∫ ∞

0
dbp(x1, t)u(b|x1)δ(bx1 − x).

(7)pi(x) =: p(x)1x∈Ii = cix
−αi−1, i = 1, 2, ..., 6, 7.
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7

∑
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dbcix
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Figure 5.   Distribution of b (t | x (t)) and size-dependent relationship of b (t) on x (t). (a) 
Probability density functions of b(t|x(t)), where x(t) is divided into seven non-overlapping intervals, 
[20, 22), [22, 24), ..., [210, 212), [212,+∞) . Different colors and markers are applied to express different intervals 
of x(t); (b) log-Log plot of cumulative distribution for b < 1 , where the cumulative probability is calculated by 
P(≤ b) =

∫ b
0 p(b′)db′ , the maximum probability is P(b < 1) .; (c) log-Log plot of cumulative distribution for 

b > 1 , where the cumulative probability is calculated by P(≥ b) =
∫∞
b p(b′)db′ , the maximum probability is 

P(b > 1) .; (d) estimated size-dependent standard deviations for b < 1 , where σb<1(x) is the standard deviation 
of log b(t) with respect to size of x(t) (e) Estimated power law exponent of b(t|x(t)) for b < 1 , there the 
estimates of the power law exponents are stated in the Supplementary Information, and β is derived from Eq. 
(5) in chapter 5.1 of Supplementary Information; (f) Estimated size-dependent standard deviations for b > 1 ; 
(g) estimated power law exponent of b(t|x(t)) for b > 1 , exponent γ1 is derived from Eq. (6) in chapter 5.2 of 
Supplementary Information.
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From the probability density function of b for different intervals of x(t) in Fig. 5a, we observe that b takes the 
value of 1 with high probability, and we make the following approximation in the above equation:

Thus, Eq. 10 can be approximated as

Finally, integrating b, we have

which means that we can estimate the power law exponent of x in the jth interval, αj , by solving the following 
equation with the corresponding distribution of growth rate b:

This equation for estimating the power law exponent is similar to the Equation of prior study12, where the only 
power law exponent of x was determined by the growth rate distribution of the whole x. Meanwhile, our results 
emphasize that for different intervals of x, a local scale-dependent power law exponent of x is approximately 
determined by the corresponding growth rate distribution. The reason we obtain similar results to the prior 
study is highly dependent on the approximation that ignores the effect between the intervals of x, i.e., Eq. 11.

Numerical simulation results
To test the theory of our model of Eq. 5, we perform simulation experiments to confirm that our model can 
reproduce the cumulative distribution function of x(t). We check the autocorrelation of logb(t), as shown in Sup-
plementary Fig. 9; for the lag of 1 day, there is a significant negative correlation, while for the lag of more than 
2 days, the correlation is almost 0. Numerical simulation is operated with the assumption of our model that the 
autocorrelation for b(t) is always 0, i.e., b(t) is independently distributed in time. The simulation results show 
that neglecting the autocorrelation of b(t) has little effect on the numerical simulations.

As mentioned before, we divide x(t) into seven non-overlapping intervals to represent the dependence of the 
growth rate b(t) on x(t), that is, [20, 22), [22, 24), [24, 26), [26, 28), [28, 210), [210, 212), [212,+∞) . While operating 
simulations, to calculate x(t + 1) with Eq. 5, the random numbers of b(t|x(t)) are needed. We obtain the random 
number by randomly sampling the b(t|x(t)) calculated from the real data. For large enough t, such as 2× 105 , 
we compare the distribution of the simulated x(t) with the real one. The details of the simulation experiments 
are described in Methods.

The results of the simulation are shown in Fig. 6, and we confirm that x(t) obtained from the simulation 
reproduces the real distribution well. According to our theory of Eq. 14, the distribution of b(t) determines the 
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Figure 6.   Comparison of cumulative distribution function of simulated x (t) with the real one. Log-Log plots 
of CDFs are shown. The black solid line refers to the CDF of x(t) of real data, and the blue solid line refers to the 
simulation result of x(t) where the shadow shows the width between the 25th percentile and the 75th percentile 
of the simulation results. The vertical dashed lines indicate the boundaries of the interval that divide x(t); In 
each interval, the black dashed lines show the theoretical estimation result of the power law exponent.
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value of the power law exponent, so different intervals of x(t) correspond to the different power law exponents. 
We verify that Eq. 14 estimates the value of the scale-dependent power law exponent nicely. We plot the theo-
retically estimated αi in slope form in Fig. 6 with the black dashed line. Comparing it to the slope of x(t) of the 
real data, we confirm that the theoretical estimation is close to that of the real one. Table 1 gives the theoretical 
estimation results of αi , finding that αi changes with the size of x(t).

It should be noted that in the interval [20, 22) , the theoretical estimation of the power law exponent is 0; this 
is because the distribution generated in this interval is not stationary. It is known that the stationary condition of 
the random multiplicative process of Eq. 3 is 〈log b(t)〉 < 0 . This is explained in the following way. We can show 
that the function M(α) = �b(t)α� is convex by calculating its second derivative and M(0) = 1 . Thus if 〈log b(t)〉 , 
which is the first-order differential of M(α) at α = 0 , is not smaller than 0, the equation �b(t)α� = 1 does not 
have a solution in the range α > 0.

For x(t) in different size intervals the function curves of M(α) = �bαx∈Ii � calculated from our data are shown 
in Fig. 7a. We observe that they are convex functions and the shape of the functions changes as the size interval 
of x(t) changes. The intersection of the functions and horizontal line with value 1 is the theoretical value of the 
power law exponent. In the interval of [20, 22) , we observe that the function curve increases from α = 0 , which 
means �log bx∈[20,22)� > 0 and there is no power law solution. The variation of the theoretical value with the size 
of x(t) is shown in Fig. 7b.

Results for different divisions
To illustrate the influence of the size dependency relationship by numerical simulations, we apply seven differ-
ent types of interval division of x(t), as shown in Table 2. For example, devision1 represents the case of x(t) is not 
divided, while in other cases, x(t) is divided into intervals from two to seven. The simulation results are shown in 
Fig. 8, where the black line is the cumulative distribution from the real data x(t), and the other colored lines are 
the distributions obtained from the simulations. We find that all simulated x(t) follow fat-tailed distributions, but 
the slopes are different according to the division of x(t). It is confirmed that the simulation result from division1 , 
which is the case of not dividing x(t), is the farthest from the real distribution. As the number of dividing inter-
vals increases, the simulation results become closer to the real one, and division7 has the best fitting result. This 
experimental result verifies the correctness of reproducing the fat-tailed distribution of x(t) based on our model.

Table 1.   Theoretical estimation of α for different size intervals of x(t).  x(t) is divided for the case of division7 
in Table 2. The estimation is calculated by solving Eq. 14; the positive and negative errors are the estimated 
errors of the different time series obtained by simulation.

Interval of x(t) Estimation of αi(x)

[20, 22) 0 ± 0

[22, 24) 0.310 ± 0.004

[24, 26) 0.760 ± 0.005

[26, 28) 0.972 ± 0.005

[28, 210) 1.210 ± 0.009

[210, 212) 1.229 ± 0.018

[212,+∞) 2.682 ± 0.058
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Figure 7.   Theoretical estimation of power law exponents. (a) For different size intervals of x(t), corresponding 
�b(t|x(t))α� is plotted as a function of α . The intersection of the function and horizontal line with the value of 1 
is the theoretical estimation value of the power law exponent. (b) Variation of the theoretically estimated value 
of α with size interval x(t).
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More simulation results for different interval partitioning methods are presented in Supplementary Chapter 3, 
along with a quantitative evaluation of these results. In Supplementary Chapter 4, the robustness of the simula-
tion results concerning random seeds is described.

Methods
Details of simulation
To test the theory of our generalized random multiplicative process model in Eq. (5), we perform simulation 
experiments to observe the distribution of the generated x(t). Here, we explain more details about the simulation. 
Firstly, three variables in the model are defined as follows:

•	 x(t) : x(t) is set to take values of positive integers, as in the real data of hashtag usage count, which takes posi-
tive integers.

•	 b(t|x(t)) : b(t|x(t)) is an i.i.d. random variable; the distribution of b(t|x(t)) changes depending on the choice 
of the interval of x(t). While operating simulation, b(t|x(t)) is randomly sampled from the real data.

•	 f (t) : Random noise f(t) is set to follow a Poisson distribution with mean � , i.e., f (t) i.i.d.∼ Po(�) . f(t) is only 
added when b(t|x(t))x(t) < 1 ; this means that whenever x decreases close to 0 at time t, we produce a random 
value that follows the Poisson distribution at time t + 1 , which corresponds to a rebirth of a new hashtag.

	   We optimize the parameter � by minimizing the Kolmogorov-Smirnov distance between the distribution 
of x(t) obtained from the simulation and real data, i.e., 

 where Fsimualation(·) and Freal(·) refer to the cumulative distribution functions of simulation and real data, 
respectively. The optimization is done by grid search. The results for each division are shown in Table 2.

We simulate 5805 time series of xi(t), i = 1, . . . , 5805 independently, as many as the hashtag series of the real 
data. The initial values, xi(0) , are random numbers that follow a uniform distribution range from 1 to 100, 000. 
Setting the maximum time t to 200, 000, we perform the simulation. The algorithm for the simulation is shown 
below. The distribution of xi(200, 000), i = 1, . . . , 5805 is compared with that from the real data.

(15)Minimize DKS(�) = supx |Fsimualation(x, �)− Freal(x)|

Table 2.   Interval division methods for x(t) and value of the optimized parameter � of Poisson distribution in 
our model.  The optimization method for � is described in Methods.

Methods of dividing intervals of x(t) �

Division1 [20,+∞) 1.3

Division2 [20, 22), [22,+∞) 2.4

Division3 [20, 22), [22, 24), [24,+∞) 8.2

Division4 [20, 22), [22, 24), [24, 26), [26,+∞) 14.6

Division5 [20, 22), [22, 24), [24, 26), [26, 28), [28,+∞) 15.0

Division6 [20, 22), [22, 24), [24, 26), [26, 28), [28, 210), [210,+∞) 15.3

Division7 [20, 22), [22, 24), [24, 26), [26, 28), [28, 210), [210, 212), [212,+∞) 14.9
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Figure 8.   Comparison of the cumulative distribution function for different dividing sizes. The ways of divisions 
are shown in Table 2. The black line shows the CDF of x(t) from real data, as in Fig. 2; the other lines refer to the 
simulation results. The vertical dashed lines indicate the boundaries of the interval that divide the size of x(t).
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Conclusion and discussion
In this paper, we analyzed a fat-tailed distribution in the time series data of hashtag usage count on Weibo by 
analyzing the growth rate of these series, and we observed that there is a clear size dependence between the 
growth rate of hashtag usage and usage count. As a model of hashtag usage count, we introduced a new model 
of a size-dependent random multiplicative process and theoretically and numerically proved that a fat-tailed 
distribution with a size-dependent power law exponent is generated. We derived Eq. (14) which enables us to 
estimate the size-dependent power law exponents from the growth rates in the same interval. By conducting 
numerical simulations, we confirmed that our model reproduces the whole shape of the fat-tailed distribution 
of hashtag usage count nicely.

From a physical perspective, the dynamics of the usage count for a single hashtag x(t) follows a discrete 
Langevin equation described by Eq. 3, capturing the randomness of growth rate of hashtag usage count. The 
multiplicative noise term, b(t), represents the growth rate. It is caused by factors such as user posting activities, 
interactions between hashtags, and other potential influences. Taking into account the size dependence of b(t) 
and x(t) observed from the data, we refined the model to Eq. 5. From the statistical properties of b(t|x(t)) in 
Fig. 5, it can be discerned that as x(t) increases, the diffusion or spread of x(t) becomes more restricted. This 
highlights the distinct behavior of popular hashtags, and we’ve incorporated these characteristics into our model.

Few studies have investigated the modeling of the appearance frequency of hashtags from the perspective 
of complex systems, so we believe that there is great potential for the development of an analysis of the appear-
ance frequency of hashtags based on our model. We give three possible developments of our study. Firstly, in 
this paper, we focused on the hashtags which were used every day during the observation period and therefore, 
we need other models to illustrate the properties of hashtags that are not used every day. Secondly, we assume 
that there is no auto-correlation in growth rates in our proposed model, so the model should be extended if the 
appearance frequency of hashtags has auto-correlation. Thirdly, our model is primarily an approximation of the 
mesoscopic dynamics encompassing hashtag features, we are in the process of leveraging this foundational model 
to bridge the gap with a micro-level perspective, potentially leading to the development of an agent-based model.

Fat-tailed distributions are widely observed in natural and social phenomena. When we observed it, we tend 
to characterize the distribution with a power law distribution with just one power law exponent as shown in 
Fig. 2. However, by the analyses of the generalized random multiplicative process, it is numerically and theoreti-
cally clarified that the distribution is fat-tailed with the size-dependent power law exponent if the growth rate 
of the variable has size dependency. Note that not only our model can explain the observed fat-tailed distribu-
tion, other theories such as maximization of Tsallis entropy4 or superstatistical model5–7 which works well with 
turbulent time series can also be applicable. We show that a q-exponential distribution fits well with our data in 
chapter 2 of Supplementary Information.

Recently we applied our model to the sales of firms and bacterial count of each species in the intestine eco-
systems and observed that size changes over time without auto-correlation and follows a fat-tailed distribution 
from both data sets. We believe our research can be applied to various phenomena of nature and social systems.

Data availability
The datasets used in the current study are not accessible to the public because of Weibo’s open API policy, which 
prioritizes the confidentiality of personal data. However, aggregated and anonymized versions of the data can 
be obtained by contacting the corresponding author and making a reasonable request. If you are interested in 
acquiring similar data, you can utilize the Weibo API (https://​open.​weibo.​com/​wiki/​API). More information 
and specifics can be found in chapter 1 of Supplementary Information.
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