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AI‑based diagnosis of nuclear 
cataract from slit‑lamp videos
Eisuke Shimizu 1,2,3*, Makoto Tanji 1,2, Shintato Nakayama 1,2, Toshiki Ishikawa 1,2, 
Naomichi Agata 1, Ryota Yokoiwa 1, Hiroki Nishimura 1,2,3, Rohan Jeetendra Khemlani 1,3, 
Shinri Sato 2,3, Akiko Hanyuda 2 & Yasunori Sato 4

In ophthalmology, the availability of many fundus photographs and optical coherence tomography 
images has spurred consideration of using artificial intelligence (AI) for diagnosing retinal and optic 
nerve disorders. However, AI application for diagnosing anterior segment eye conditions remains 
unfeasible due to limited standardized images and analysis models. We addressed this limitation by 
augmenting the quantity of standardized optical images using a video‑recordable slit‑lamp device. 
We then investigated whether our proposed machine learning (ML) AI algorithm could accurately 
diagnose cataracts from videos recorded with this device. We collected 206,574 cataract frames from 
1812 cataract eye videos. Ophthalmologists graded the nuclear cataracts (NUCs) using the cataract 
grading scale of the World Health Organization. These gradings were used to train and validate an 
ML algorithm. A validation dataset was used to compare the NUC diagnosis and grading of AI and 
ophthalmologists. The results of individual cataract gradings were: NUC 0: area under the curve 
(AUC) = 0.967; NUC 1: AUC = 0.928; NUC 2: AUC = 0.923; and NUC 3: AUC = 0.949. Our ML‑based 
cataract diagnostic model achieved performance comparable to a conventional device, presenting a 
promising and accurate auto diagnostic AI tool.

Blindness and visual impairment are increasingly being reported worldwide, with estimates suggesting that 
cases of visual impairment will increase to 115 million by  20501. Cataracts are the leading cause of blindness, 
particularly in developing  countries2, and contribute to 52.63 disability-adjusted life years (DALYs) per million 
 indivduals3. Moreover, the DALYs due to cataracts in individuals over 65 years of age is estimated to match or 
surpass those of tuberculosis and acquired immune deficiency  syndrome4,5.

Cataracts are the most common age-related disease, typically treated through lens-replacement  surgery6. 
Slit-lamp microscopy serves as the primary method for diagnosing  cataracts7. However, because of the high 
prevalence of the disease and inadequate medical resources, especially in underdeveloped countries, cases of 
blindness caused by cataracts continue to  rise2,6,8.

The feasibility of using artificial intelligence (AI) developed using machine learning (ML) algorithms has been 
studied extensively for screening and diagnosing retinal and optic nerve disorders. These algorithms primarily 
rely on widely accessible fundus photographs and optical coherence tomography  images9–14.

However, only few studies have focused on the anterior segment of  eyes15–17. Although an AI algorithm to 
diagnose anterior segment diseases using slit-lamp photographs and topography images has been proposed, 
inadequate big data and analytical strategies limit the development of diagnostic AI tools for assessing the ante-
rior segment, including cataract  diagnosis18. Consequently, anterior segment screening and diagnosis using AI 
remains underdeveloped.

Therefore, we proposed a novel solution by incorporating video recording during slit-lamp examinations to 
facilitate assessment through an ML algorithm. Videos are advantageous because: (1) they are an aggregation 
of multiple images; therefore, multiple images can be extracted for analysis, increasing the ease of the collec-
tion of large quantities of data, and (2) a video mimics clinical ophthalmology setting where an ophthalmolo-
gist performs diagnosis using consecutive images obtained using a slit-lamp microscope. Therefore, we used a 
recordable slit-lamp device to film cataract  videos19. This study investigated whether the proposed ML method 
could diagnose nuclear cataracts (NUCs) by using a video filmed using a slit-lamp device. Furthermore, a grad-
ing system was used to classify NUCs.
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Results
Dataset size
A total of 38,320 frames from 1042 videos were used for training, validation, and testing of ML models. Conse-
quently, 11,243 frames from 444 videos with grade NUC 0, 12,241 frames from 289 videos with grade NUC 1, 
12,637 frames from 280 videos with grade NUC 2, and 2199 frames from 54 videos with grade NUC 3 were used.

Diagnostic performance according to the frames
The diagnostic performance of our model was compared with that of ophthalmologists using a validation 
dataset. The diagnostic performance of the model against the ophthalmologist accompanying each frame is 
as follows: Mydriasis + Non mydriasis frames: Accuracy: 0.941 (95% CI, 0.935–0.946); Sensitivity: 0.928 (95% 
CI, 0.918–0.938); Specificity: 0.945 (95% CI, 0.941–0.949); PPV: 0.872 (95% CI, 0.862–0.880); NPV: 0.971 
(95% CI, 0.967–0.975); AUC: 0.921 (95% CI, 0.912–0.931). Mydriasis frames only: Accuracy: 0.969 (95% CI, 
0.935–0.946); Sensitivity: 0.800 (95% CI, 0.763–0.831); Specificity: 0.985 (95% CI, 0.982–0.988); PPV: 0.835 
(95% CI, 0.796–0.867); NPV: 0.981 (95% CI, 0.978–0.984); AUC: 0.908 (95% CI, 0.881–0.935). Non mydriasis 
frames only: Accuracy: 0.912 (95% CI, 0.903–0.921); Sensitivity: 0.951 (95% CI, 0.941–0.960); Specificity: 0.876 
(95% CI, 0.867–0.884); PPV: 0.877 (95% CI, 0.868–0.885); NPV: 0.951 (95% CI, 0.941–0.959); AUC: 0.914 (95% 
CI, 0.903–0.925) (Fig. 1).

Diagnostic performance according to videos
The diagnostic performance of the model against the ophthalmologist accompanying each video was as fol-
lows: Mydriasis + Non mydriasis videos: Accuracy: 0.942 (95% CI, 0.911–0.959); Sensitivity: 0.962 (95% CI, 
0.920–0.984); Specificity: 0.931 (95% CI, 0.905–0.944); PPV: 0.894 (95% CI, 0.855–0.914); NPV: 0.976 (95% 
CI, 0.949–0.990); AUC: 0.934 (95% CI, 0.897–0.970). Mydriasis videos only: Accuracy: 0.963 (95% CI, 
0.917–0.978); Sensitivity: 0.909 (95% CI, 0.681–0.983); Specificity: 0.969 (95% CI, 0.943–0.977); PPV: 0.769 
(95% CI, 0.576–0.832); NPV: 0.989 (95% CI, 0.963–0.998); AUC: 0.857 (95% CI, 0.712–1.000). Non mydriasis 
videos only: Accuracy: 0.929 (95% CI, 0.882–0.956); Sensitivity: 0.958 (95% CI, 0.915–0.981); Specificity: 0.893 
(95% CI, 0.839–0.923); PPV: 0.919 (95% CI, 0.878–0.942); NPV: 0.944 (95% CI, 0.887–0.975); AUC: 0.934 (95% 
CI, 0.891–0.976) (Fig. 2).

Figure 1.  Diagnostic performance according to frames. Diagnostic performance of our machine learning 
model against ophthalmologist diagnosis according to frame. (A) Mydriasis + Non mydriasis: Accuracy: 0.941 
(95% confidence interval [CI], 0.935–0.946); Sensitivity: 0.928 (95% CI, 0.918–0.938); Specificity: 0.945 (95% CI, 
0.941–0.949); Positive predictive value (PPV): 0.872 (95% CI, 0.862–0.880); Negative predictive value (NPV): 
0.971 (95% CI, 0.967–0.975); the area under the curve (AUC) for the receiver operating characteristic: 0.921 
(95% CI, 0.912–0.931). (B) Mydriasis only: Accuracy: 0.969 (95% CI, 0.935–0.946); Sensitivity: 0.800 (95% CI, 
0.763–0.831); Specificity: 0.985 (95% CI, 0.982–0.988); PPV: 0.835 (95% CI, 0.796–0.867); NPV: 0.981 (95% CI, 
0.978–0.984); AUC: 0.908 (95% CI, 0.881–0.935). (C) Non mydriasis only: Accuracy: 0.912 (95% CI, 0.903–
0.921); Sensitivity: 0.951 (95% CI, 0.941–0.960); Specificity: 0.876 (95% CI, 0.867–0.884); PPV: 0.877 (95% CI, 
0.868–0.885); NPV: 0.951 (95% CI, 0.941–0.959); AUC: 0.914 (95% CI, 0.903–0.925). (D) Confusion matrices of 
mydriasis + Non mydriasis, mydriasis only, and Non mydriasis only.
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Diagnostic performance by each severity grade
We analyzed the performance of each NUC grading estimation of our model versus the diagnosis by ophthal-
mologists using the validation dataset. The NUC grading estimated by the model according to each frame was 
as follows: NUC grade 0: AUC, 0.961 (95% CI, 0.955–0.968); NUC grade 1: AUC, 0.910 (95% CI, 0.899–0.920); 
NUC grade 2: AUC, 0.903 (95% CI, 0.894–0.912); NUC grade 3: AUC, 0.901 (95% CI, 0.882–0.920) (Fig. 3).The 
estimation of NUC grading against the ophthalmologist accompanying each video was as follows: NUC grade 0: 
AUC, 0.967 (95% CI, 0.943–0.990); NUC grade 1: AUC, 0.928 (95% CI, 0.886–0.970); NUC grade 2: AUC, 0.923 
(95% CI, 0.880–0.966); NUC grade 3: AUC, 0.949 (95% CI, 0.868–1.000) (Fig. 3). To visualize class activation 
mapping, the heatmap sufficiently overlayed the position of the crystalline lens (Fig. 4).

Discussion
This study investigated whether the proposed ML model could diagnose NUC from videos recorded using a slit-
lamp device. The diagnostic utility of the device has been demonstrated for  NUC19. The objective was to validate 
the performance of the NUC diagnostic model compared with that of ophthalmologists in clinical  settings19.

We used the following novel strategies to achieve high performance (high accuracy, sensitivity, specificity, 
PPV, NPV, and AUC).

• Unique data collection method: We used a portable Smart Eye Camera (SEC) as the data-collecting device 
because the device can record videos during the slit-lamp examination and help diagnose cataracts.

• Preprocessing before ML: The elimination of unnecessary frames, followed by an ML process to estimate the 
cataract grading using the extracted optimized frames.

• Rule for displaying the final result: The model estimates the NUC grading of every diagnosable frame from 
a single video, and the final diagnosis is determined by the majority vote for each frame.

The findings reveal that our AI algorithm exhibits excellent performance in diagnosing NUC and estimating 
NUC severity; the performance of the proposed model is comparable to that of ophthalmologists. To apply the 
model in practice, a cataract video was obtained using SEC and the data was sent to our AI model. Therefore, 
the final value of the model is the outcome of “mydriasis + Non mydriasis” videos.

Figure 2.  Diagnostic performance according to the videos. Diagnostic performance of our machine learning 
model against ophthalmologist diagnoses according to each video. (A) Mydriasis + Non mydriasis: Accuracy: 
0.942 (95% confidence interval [CI], 0.911–0.959); Sensitivity: 0.962 (95% CI, 0.920–0.984); Specificity: 0.931 
(95% CI, 0.905–0.944); PPV: 0.894 (95% CI, 0.855–0.914); NPV: 0.976 (95% CI, 0.949–0.990); the AUC for 
the receiver operating characteristic: 0.934 (95% CI, 0.897–0.970). (B) Mydriasis only: Accuracy: 0.963 (95% 
CI, 0.917–0.978); Sensitivity: 0.909 (95% CI, 0.681–0.983); Specificity: 0.969 (95% CI, 0.943–0.977); PPV: 
0.769 (95% CI, 0.576–0.832); NPV: 0.989 (95% CI, 0.963–0.998); AUC: 0.857 (95% CI, 0.712–1.000). (C) Non 
mydriasis only: Accuracy: 0.929 (95% CI, 0.882–0.956); Sensitivity: 0.958 (95% CI, 0.915–0.981); Specificity: 
0.893 (95% CI, 0.839–0.923); PPV: 0.919 (95% CI, 0.878–0.942); NPV: 0.944 (95% CI, 0.887–0.975); AUC: 
0.934 (95% CI, 0.891–0.976). (D) Confusion matrices of mydriasis + Non mydriasis, mydriasis only, and Non 
mydriasis only.
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The cataract diagnostic performance exhibited accuracy, sensitivity, specificity, and AUC of 0.942 (95%CI 
0.911–0.959), 0.962 (95%CI 0.920–0.984), 0.931 (95%CI 0.905–0.944), and 0.934 (95%CI 0.897–0.970), respec-
tively, with high PPV and NPV (Fig. 2). These values were consistent with those of previous studies demonstrat-
ing AI algorithms in cataract diagnosis (Table 1). Cheung et al., introduced a computer-aided diagnosis system 
utilizing slit-lamp images that achieved over 80% in both sensitivity and  specificity20,21 (Table 1). Wu et al.16 
demonstrated robust performance in cataract diagnostic AI using slit-lamp photographs with equal outcomes 

Figure 3.  Diagnostic performance of our machine learning model by each severity grade against the 
performance of an ophthalmologist. (A) According to each frame: nuclear cataract (NUC) grade 0: AUC, 0.961 
(95% CI, 0.955–0.968); NUC grade 1: AUC, 0.910 (95% CI, 0.899–0.920); NUC grade 2: AUC, 0.903 (95% CI, 
0.894–0.912); NUC grade 3: AUC, 0.901 (95% CI, 0.882–0.920). (B) According to each eye: NUC grade 0: AUC, 
0.967 (95% CI, 0.943–0.990); NUC grade 1: AUC, 0.928 (95% CI, 0.886–0.970); NUC grade 2: AUC, 0.923 (95% 
CI, 0.880–0.966); NUC grade 3: AUC, 0.949 (95% CI, 0.868–1.000).

Figure 4.  Visualization Using Grad-CAM (Gradient-weighted Class Activation Mapping): The cataract 
frames extracted were subjected to a post-hoc visual explanation methodology. The input data, as visualized by 
Grad-CAM activation mapping, produced a heatmap. Overlaying this heatmap on the input image revealed the 
focal region on the crystalline lens. Interestingly, for both cataract and non-cataract eyes, the model directed 
significant attention to the crystalline lens, as indicated by the intense heatmap.
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for ophthalmologists, with a sensitivity and specificity of 92.00% and 83.85%, respectively (Table 1). Jiang et al.22 
introduced a deep learning-based lens partition model, employing multicenter datasets, which yielded accuracy, 
sensitivity, and specificity rates ranging from 92.57 to 97.96%, 91.95–97.04%, and 93.08–98.74%, respectively  
(Table 1). Focusing of different disease, Li et al.15 revealed a high performance in the keratitis diagnostic AI 
model slit-lamp and smartphone photograph (sensitivity: 81.5–98.7%, specificity: 95.0–99.8%, and accuracy: 
95.4–99.3%). Zhang et al.23 indicated a high diagnostic accuracy range of 70.27–83.81% and 0.86–0.98 for several 
types of infectious keratitis (bacterial keratitis, fungal keratitis, herpes simplex keratitis, and Acanthamoeba 
keratitis) using a deep-learning-based diagnostic AI system. We achieved a performance similar to previous 
studies in which the objective findings from slit-lamp images were used.

To demonstrate the high performance of our model, the following factors were considered. First, we collected 
a sufficiently large amount of data and performed preprocessing on the data. In a previous study, Wu et al.16 
collected 37,638 slit-lamp photographs from 18,819 eyes to develop a cataract diagnostic AI. Li et al.15 acquired 
13,557 anterior segment photographs to develop an AI model for screening keratitis. A small sample size results 
in an unstable performance of the AI models and large differences in their  results24. Therefore, in this study, we 
used 38,320 frames, which was sufficient to develop an AI model as a past reference. Moreover, the rule to deter-
mine the final result as the majority consensus was another reason. Most values were improved from diagnostic 
performance according to the frames to the diagnostic performance according to the videos (Figs. 1 and 2).

Second, image quality issues were not observed. The training, verification, and test sets used in some AI 
studies are associated with image quality  problems25, such as unclear or incomplete images in  datasets26,27. We 
excluded the images of insufficient quality by setting an exclusion criteria. Moreover, we selected only diagnos-
able frames focusing on the crystalline lens during preprocessing. To determine the identity of the input image, 
we applied SEC as a data collection tool to correct the standardized anterior segment images because the angle 
and width of the slit light are  fixed19,28. This standardized data collection may have contributed to the high 
performance of the model (Fig. 1), and the AI focused on the crystalline lens correctly by using visualization 
using Grad-CAM (Fig. 4). Furthermore, our observations suggest that the AI specifically focuses on the essential 
tissue, notably the nucleus of the crystalline lens, in both cataract and non-cataract eyes. This indicates that the 
algorithm does not interpret the patient’s facial aging pattern but rather exclusively targets the crystalline lens, 
as visualized by Grad-CAM (Fig. 4). Exclusion during preprocessing and the use of a standard data-collecting 
device can overcome the problems associated with image quality issues.

Third, we mimicked the cataract diagnostic process performed by an ophthalmologist. In the clinical setting, 
ophthalmologists use a slit-lamp microscope to diagnose  cataracts29. They visually evaluate the optical tissue and 
subjectively define the cataract color as integral numbers. We reproduced these diagnostic processes using  SEC19 
and ML algorithms. Moreover, our model examined each cataract video frame to arrive at a final diagnosis with a 
majority consensus, which may increase diagnostic precision. Generally, the development of AI for image-based 
diagnosis requires numerous standard images for ML. We overcame this challenge by using a diagnosable image 
frame and ML processes to reproduce the rationale of ophthalmologists during evaluation for a final diagnosis 
with a majority consensus. The high accuracy of our model can be attributed to this reason.

Fourth, simple diagnostic criteria were used. The current cataract grading system, that is, the WHO grading 
system, comprises three simple and easily evaluable  stages30. The simple grading system has an excellent interob-
server agreement and is used  worldwide31. Several other cataract diagnostic criteria, such as the Lens Opacities 
Classification System  III32, the Oxford Clinical Cataract  Classification33, and the Wisconsin cataract  grading31, 
are used worldwide. However, these grading systems divide NUC into several levels so that intergrader reliability 
is not very high (0.82–0.79)34. Thus, applying simple and worldwide grading may improve model performance.

This study has several limitations. First, the sample size was small. Although this study was a retrospective 
study in which videos were used to enhance the size of the dataset, larger datasets are required to create versatile 
AI models, particularly for imaging analysis. In this study, 21,306 dataset frames were used; however, the number 
of frames for each grade was not identical. A similar limitation of consecutive case series has been  reported9,14. 
However, we minimized sample collection (only 1812 eyes) and maximized diagnostic accuracy using videos, 
amplifying the datasets (38,320 frames), and imitating a previous  study15.

Second, we included cases of NUC but not of other types such as CC, ASC, and PSC. Both cataract type 
and severity are associated with considerable reductions in the best-corrected visual  acuity35. However, NUCs 
are more common, particularly in older  adults36, and cause visual impairment, poor depth perception, and low 

Table 1.  Comparison of past reference in cataract diagnostic AI.

Year
Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

AUC 
(95% CI)

Jiang  et al.22 2021 92.57–97.96%
(–)

91.95–97.04%
(–)

93.08–98.74%
(–) –

Wu et al.16 2019 88.79%
(84.88–91.98%)

92.00%
(87.33–95.36%)

83.85%
(76.37–89.71%)

95.96%
(93.16–98.75%)

Xu et al.21 2013 0.690 – – –

Cheung et al.20 2011 – 81.80%
(79.70–83.70)

80.70%
(79.50–81.90)

0.892
(0.884–0.900)

Current study 2023 0.942
(0.911–0.959)

0.962
(0.920–0.984)

0.931
(0.905–0.944)

0.934
(0.897–0.970)
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contrast  sensitivity29. Further studies are needed to develop diagnostic AI for each cataract subtype, including 
CC, ASC, and PSC, and subsequently integrate them for a comprehensive cataract  diagnosis37.

Finally, our dataset included data from an Asian population. Differences exist in the relative lens position 
and anterior chamber depth of the crystalline lens among ethnicities that exhibit variable risks of angle-closure 
glaucoma and/or cataract  type38. Furthermore, our analysis was confined to test and validation datasets derived 
exclusively from a single medical institute. For broader clinical application, it is imperative that future studies 
employ external datasets to validate coagulation. However, limited studies have been conducted on the color 
differences in NUC among ethnicities. Moreover, our model is eligible for use in various ethnic populations; 
however, further validation is necessary.

Despite these limitations, the proposed ML method successfully constructed a high-performance cataract 
diagnostic model. To the best of our knowledge, this study is the first to investigate cataract diagnostic AI using 
a mobile device. Thus, the combination of a mobile device and our model could be applied to screen patients, 
particularly in rural and isolated areas and in disaster medicine, where ready access to ophthalmology clinics is 
limited. Moreover, the proposed model exhibited high sensitivity in eyes without mydriasis (“Non mydriasis” 
eyes) (Figs. 1 and 2). Therefore, this model can be used for patient screening during health checks and primary 
care.

Materials and methods
Ethics and information governance
This study adhered to the tenets of the Declaration of Helsinki and was conducted in compliance with the pro-
tocols approved by the Institutional Ethics Review Board of the Minamiaoyama Eye Clinic, Tokyo, Japan (IRB 
No. 202101). The requirement for written informed consent was waived because of the retrospective nature of 
the study and use of deidentified data.

Study design
Data were collected from a single ophthalmology institution (the Yokohama Keiai Eye Clinic). Five trained 
ophthalmologists used mobile video-recordable portable slit-lamp devices (details are provided in “Mobile 
recording slit-light device” section) to record anterior segment eye videos. All videos were recorded from July 
2020 to December 2021 and assembled on a cloud server to be organized into the dataset for our study (Fig. 5). 
Experienced ophthalmologists utilized a mobile video-capable portable slit-lamp device to target the crystalline 
lens of patients using a thin slit light emitted from the device. The ophthalmologists captured anterior segment 
videos, consistent with those taken using conventional slit lamp microscopes. Patients were instructed to refrain 
from blinking during the recording, ensuring the videos mirrored those taken in typical clinical settings.

Figure 5.  Study outline. Demographic steps of the study. (A) Explanation of dataset creation. (B) Diagnosable 
frame extraction. We divided all the data into diagnosable (38,320 frames) and nondiagnosable (168,254 
frames). (C) Cataract grade annotation and machine learning. Representative images of the annotated frames. 
The distribution of annotations was as follows: 18.40% were classified as NUC 0, 31.04% as NUC1, 41.84% as 
NUC2, and 8.71% as NUC3. (D) Validation and visualization. Demographic images for validation.
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The following criteria were set for including the videos: (1) NUC videos able to diagnose using a thin slit-light 
beam (0.1–0.3 mm); (2) video focused into crystalline lens; and (3) video containing over 5 s of images. Other 
videos were excluded because they were difficult to include in this study.

A total of 1,885 Asian eyes were considered in this study. We excluded the following cases: (1) corneal dis-
eases that adversely affected cataract grade evaluation (e.g., bullous keratopathy, corneal opacity), (2) aphakic 
and pseudophakic eyes, and (3) videos of insufficient quality (i.e., lack of any frame of crystalline lens). Based 
on these criteria, 73 eyes were excluded. In total, 1,812 eyes were included in this study. Videos containing 
20,640 s (average, 19.8 s per video) were sliced at a frame rate of 60 ms and organized into 206,574 frames of 
static images for the dataset.

Next, we manually extracted only diagnosable frames focused on the crystalline lens. The nondiagnosable 
frames did not focus on crystalline lens, and the images were blurred by colored contact lenses or other noise. 
In total, 38,320 frames (mydriasis: 18,015 frames; and Non mydriasis: 20,305 frames) were classified as diagnos-
able and eligible for use.

After preprocessing to standardize the quality of each image and eliminate poor quality images and setup 
the datasets, 3 ophthalmologists annotated all frames at random and classified them according to the simpli-
fied cataract grading system by the World Health Organization (WHO)30. The distribution of annotations was 
as follows: 18.40% were classified as NUC 0, 31.04% as NUC1, 41.84% as NUC2, and 8.71% as NUC3 (Fig. 5). 
The ML process was performed on the training dataset but not on the validation dataset (details are provided 
in “Machine learning” section). After the NUC estimation model was developed, a valuation dataset was used 
to evaluate its performance.

Mobile recording slit‑light device
A Smart Eye Camera (SEC; SLM-i07/SLM-i08SE, OUI Inc., Tokyo, Japan; 13B2X10198030101/13
B2X10198030201) was used to record slit-light videos as a diagnostic instrument. An SEC is a smartphone attach-
ment that has demonstrated sufficient diagnostic function compared with conventional slit-lamp microscopes 
in  animal39 and several clinical  studies19,28,40,41. SEC mimics conventional diagnostic methods, such as slit-lamp 
microscopy, in the diagnosis of  cataracts19. SEC exposes a 0.1–0.3-mm slit light sufficiently thin to observe a 
crystalline lens inside a nondilated and dilated pupil with a fixed angle of 45°19. Moreover, an SEC can record 
the videos of the anterior segment of the eyes; therefore, this instrument was used to record as many videos as 
possible to collect a large amount of cataract image data. An iPhone 7 or iPhone SE2 (Apple Inc., Cupertino, 
CA, USA) was used, with the resolution of the video set at 720 × 1280 to 1080 × 1920 pixels and a frame rate of 
30 or 60 frames per second.

Datasets and annotation
The dataset comprised individuals with an average age of 59.87 ± 20.91 years. Of the 1,885 eyes assessed, 902 were 
from male subjects and 983 from female subjects. Image distribution showed 11,243 (29.39%) were classified as 
no-cataract, while 27,077 (70.61%) were categorized as cataract. The video data were captured using the video 
application on an iPhone and subsequently stored in the MPEG-4 AAC, H.264 format as mp4 files. The analysis 
of these videos, including their conversion to frame images and subsequent data processing, was conducted using 
the OpenCV library in Python (Ver. 3.11). Annotation was performed on all diagnosable frames after preprocess-
ing for ML and validation. Three ophthalmologists (one resident and two specialists) annotated all diagnosable 
frames according to the WHO cataract grading  system30 by annotating only NUC grading to all frames but not 
the anterior subcapsular cataract (ASC), cortical cataract (CC), posterior subcapsular cataract (PSC), or other 
minor cataract types. In this study, NUC was annotated as follows: 0, none; 1, mild; 2, moderate; and 3, advanced. 
Frames that could not be used to diagnose NUC were omitted as noise. All annotation procedures were double 
blinded to avoid bias. Annotation data were averaged if the evaluation differed according to the annotator. The 
annotated data were graded into four levels by multiple ophthalmologists.

Machine learning
After the preprocessing to standardize the quality of each image and eliminate poor quality images (eliminat-
ing 168,254 images), 80% of data were randomly assigned to the training dataset (1449 eyes, 30,228 frames), 
5% of data were assigned to the validation dataset for hyperparameter tuning (85 eyes, 1910 frames), and the 
remaining data were assigned to the test dataset (278 eyes, 6182 frames). To estimate the severity of NUC using 
an ML model, a deep learning model was trained to output four classes using normalized images as the input. 
In the development of our model, we employed the libraries:  PyTorch42, PyTorch Image  Models43, and PyTorch 
 Lightning44 for training purposes. The four classes of the output consisted of the normal eye and the three clas-
sifications of NUC (referred to as NUC 0, NUC 1, NUC 2, and NUC 3). We used a modified EfficientNet v2 
(tf_efficientnetv2_m_in21ft1k) model, but changed only the final layer to a 4-class classification, and fine-tuned 
it using our training  data45. The hyperparameters were set with a learning rate of 0.003, a total of 5 epochs, and a 
batch size of 32. For visualizing class activation mapping, we used a state-of-the-art technique, the post-hoc visual 
explanation method of gradient-weighted class activation mapping (Grad-CAM). Grad-CAM is a technique in 
computer vision to highlight the regions of interest for the prediction of a deep neural network by visualizing 
the gradient of the class score with respect to the  image46.

Statistical analysis
To compare the performance of the ML-based cataract diagnostic model with that of ophthalmologists, the accu-
racy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the 
receiver operating characteristic curve (AUC) were calculated. Cataract “positive” was prescribed as NUC 1, 2, 
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or 3, whereas cataract “negative” was prescribed as NUC 0. These performances were validated on the frame and 
video units because the frame video units are used to evaluate the performance of the model, and the video units 
evaluates the performance on a single video. We applied majority voting to display the final video decision. When 
the proposed ML model validated a cataract video, it sliced the video into several still images. Subsequently, the 
model estimated NUC gradings for each frame. Finally, the final diagnosis was determined by a majority (e.g., 
100 images, NUC 0: 0; NUC 1: 25; NUC 2: 50; NUC 3: 25, classify as “NUC 2” by our model).

To analyze the performance of our model on the dilated and nondilated pupils, we analyzed each parameter 
for “mydriasis” and “Non mydriasis” eyes. Moreover, we analyzed the diagnostic performance of each NUC 
grade (0, 1, 2, and 3). Defining the target sample size is difficult because this study was an initial study of a new 
AI model. Therefore, we only collected data matching the inclusion criteria for a certain period. Significance 
tests were performed using their respective confidence intervals. Statistical analyses were performed using SPSS 
(ver. 25; International Business Machines Corporation, Armonk, NY, USA).

Institutional review board statement
The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional 
Review Board of the Minamiaoyama Eye Clinic, Tokyo, Japan (IRB No. 202101, date of approval: 20 July 2021).

Informed consent statement
Patient consent was waived due to the retrospective nature of the study and because we only used deidentified 
data. Informed consent is waived by Institutional Review Board of Minami-Aoyama eye clinic, Tokyo, Japan. 
Additionally, we provided opt-out documentation to give the participant a chance to refuse.

Conclusions
The proposed cataract diagnostic AI trained using ML algorithms and video recordings acquired using a portable 
and recordable slit-lamp device exhibited high sensitivity and specificity for cataract diagnosis and NUC grade 
estimation. The performance of the proposed model was similar to that of ophthalmologists. Further investiga-
tions are necessary for validating the ability of our model to diagnose cataracts among various ethnicities and 
cataract types.

Patents
OUI Inc. has the patent for the Smart Eye Camera (the publication of Japanese Patent No. 6627071). OUI Inc. 
also has patent pending for the algorithm (patent pending No. 2020-023514). Other relevant patent declarations 
relating to this study.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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