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Point convolutional neural network 
algorithm for Ising model ground 
state research based on spring 
vibration
Zhelong Jiang 1,2, Gang Chen 1*, Ruixiu Qiao 1, Pengcheng Feng 1,2, Yihao Chen 1,2, Junjia Su 1,2, 
Zhiyuan Zhao 1,3, Min Jin 1, Xu Chen 1, Zhigang Li 1 & Huaxiang Lu 1,2,4,5

The ground state search of the Ising model can be used to solve many combinatorial optimization 
problems. Under the current computer architecture, an Ising ground state search algorithm suitable 
for hardware computing is necessary for solving practical problems. Inspired by the potential 
energy conversion of the springs, we propose the Spring-Ising Algorithm, a point convolutional 
neural network algorithm for ground state search based on the spring vibration model. Spring-Ising 
Algorithm regards the spin as a moving mass point connected to a spring and establishes the equation 
of motion for all spins. Spring-Ising Algorithm can be mapped on AI chips through the basic structure 
of the neural network for fast and efficient parallel computing. The algorithm has shown promising 
results in solving the Ising model and has been tested in the recognized test benchmark K2000. The 
optimal results of this algorithm after 10,000 steps of iteration are 2.9% of all results. The algorithm 
introduces the concept of dynamic equilibrium to achieve a more detailed local search by dynamically 
adjusting the weight of the Ising model in the spring oscillation model. Spring-Ising Algorithm offers 
the possibility to calculate the Ising model on a chip which focuses on accelerating neural network 
calculations.

Combinatorial optimization problems, a subfield of optimization with discrete variables, are ubiquitous in many 
fields of research. In many cases, we can find a mapping to the decision form of the Ising model with a polynomial 
number of steps for the NPC (Non-deterministic Polynomial Complete)  problem1–4. Therefore, many optimiza-
tion problems can be formulated as Ising models to find the ground state, or the lowest energy configuration. As 
a result, solving the Ising model has become a general method for solving many NP problems, like partitioning 
 problems2, linear  programming1,3,5, inequality  problems6, coloring  problems2,7and so on. However, it is known 
that the Ising model is an NP-hard (Non-deterministic Polynomial Hard)  problem8. So, it is difficult but impor-
tant to find the ground state of the Ising model quickly and accurately.

The Ising model is mainly used in statistical physics and scientific computing. In statistical physics, the 
Ising model is widely used to study the phase transition  phenomenon9–11. In scientific computing, the actual 
combinatorial optimization problem is mapped to the Ising model for finding the ground state in the N spins 
state  space12–14. With N spins, there are  2N spin states to search the global minimum energy state, which poses a 
significant challenge for using conventional  computing15. Special-purpose hardware devices for the ground state 
search, known as Ising machines, have recently attracted attention because of their potential to substantially speed 
up the solution of optimization  problems16. Various schemes have been proposed and demonstrated for the Ising 
model, including quantum  annealers17–21, coherent Ising  machine22–31, and so on. Limited by current technology, 
the above methods have difficulties such as large-scale expansion and complicated parameter configuration. 
Quantum computer may help with these challenges, but related work is still in its  infancy2,32.

The CMOS  implementations16,33–37 are easy to integrate and expand, making them a more suitable strategy for 
mapping and solving large-scale practical Ising model problems. In practice, CMOS Ising machines have advan-
tages such as small size, flexible expansion, high integration, low system power consumption, etc.36 Most CMOS 
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chips are based on non-fully connected structures, including lattice  graphs15,33,35,36, king  graphs34,38–41, hexagonal 
 graphs42, Chimera  graphs43 and other specific  structures32. All-to-all connected Ising models have more practi-
cal value than sparse ones, but communication and synchronization between the spins can degrade the speed 
performance in  CMOS16. As a result, the spin scale of a CMOS chip based on an all-to-all connected topology 
design is very limited. Non-uniform design limits the widespread adoption of CMOS chips and increases the 
design cost of ASICs for the Ising model.

AI (Artificial Intelligence) chips have numerous computing resources, which are used for training and infer-
ence of various AI algorithms. and serve as valuable resources for solving large-scale problems. Currently, AI 
chips have solved many problems such as classification, detection, and tracking by virtue of their powerful com-
puting  power44,45. Commercial AI chips have the characteristics of high energy efficiency, high parallelism, and 
high scalability. These chips, which are optimized for communication and synchronization, have been used in 
many large-scale neural network models. The computational architecture of AI chips enables parallel computing, 
reduced computation time and off-chip storage access through efficient  scheduling46. Using these computing 
hardware resources to solve the Ising model with numerous parameters is an extremely effective method.

The paper is organized as follows. In this paper, we propose a new algorithm, Spring-Ising Algorithm, that 
can solve the all-to-all connected Ising model directly on the AI chip. First, we introduce how Spring-Ising 
Algorithm inspired by spring vibrations can be used to find the ground state of the Ising model. Then, we design 
the algorithm as a network structure based on point convolution and residual modules, which implements the 
solution iteration of the Ising model through point convolution and residual modules. Our method transforms 
the optimization problem by constructing the Ising model paradigm into the general formula of AI chips calcula-
tion and AI chips accelerate Spring-Ising Algorithm for the ground state search. Finally, the network structure 
is demonstrated on AI chip architecture from Ref.47 to solve the Max-cut problem and both numerical and 
analytical investigation are conducted.

Modeling
In this chapter, we propose the physical prototype of Spring-Ising Algorithm and how to apply Lagrange’s equa-
tions to iterate spin states by symplectic method. Spring-Ising Algorithm is inspired by physical phenomena, 
spring vibrations. The detail of physical prototype is introduced as follows.

1. Spring vibration model.

The Ising model is defined as follows:

The discrete variable σi is the i th Ising spin state such that σi ∈ {−1, + 1} . In Pauli matrices, the variable σi 
assigns values {−1, + 1} to spin states {↓, ↑}17. Jij denotes a coupling coefficient between the i th and j th spins 
and hi is an external magnetic coefficient for the i th spin. Hising is the total energy of the Ising model and finding 
the lowest energy of Hising is the target of Ising machines.

Inspired by the steady-state analysis of multiple mass-spring system in analytical mechanics, the ground state 
search method of the Ising model in this paper is designed. Although a spin in the high-dimensional Ising model 
is affected by multiple spins, there are only two trends in the spin state {−1, + 1} . Therefore, in the modeling, 
each spin is considered as the mass point moving on a separate one-dimensional system. In Ising model, the state 
of the i th spin ↑ (↓) is encoded as a discrete variable corresponding to a value of +1(−1) . We regard the discrete 
variable as the continuous change of the mass point in the macroscopic position, which is defined as the general-
ized coordinate qi ∈ [−1, 1] . On this basis, the spring model is designed by considering a mass point connected 
at an ideal spring with no initial length and the spring force on the mass point is always pointing to one point, 
called the origin point. As shown in Fig. 1a, the spring is fixed at the origin point, and the other end is the mass 
point representing the state of spin. Since the initial length of the spring is zero, when the mass point moves away 
from the origin, it is pulled by the spring. In this model, the mass point is above(below) the origin to represent 
the spin ↑ (↓) , and the distance from the origin point to the mass point is represented as a degree of confidence. 
According to the coupling coefficient and spin state, the Ising model produces a number of forces along a line 
along the qi axis. Therefore, the direction of the resultant force is also on the qi axis, as shown in Fig. 1b.

In the model, while a spin considered as a mass point is called the target spin, the other spins are called 
the source spins providing external force to the target spins. The magnitude and direction of Fi depend on the 
combined effect of multiple source spins but have nothing to do with the state of the target spin. Figure 2a gives 
a specific example, when the state of source spin is +1 , if the coupling coefficient is positive, an upward force 
will be generated. The greater the coupling coefficient, the greater the force generated. In the same way, if the 
coupling coefficient is negative, a downward force will be generated. When the coupling coefficient is zero, the 
source spin provides no force. The superposition of all the forces provided by the source spin is the force of the 
Ising model coupling relationship for the mass point i . When the state of origin spin is −1 , the direction of the 
force is opposite, as shown in Fig. 2b.

The generalized coordinate which is introduced by the model is a continuous variable, which means that the 
magnitude of the force is also affected by the absolute value of the generalized coordinate from the source spin. 
So, the source spin is represented by the generalized coordinate: σi ∈ {−1,+1} → qi ∈ [−1, 1] . When the abso-
lute value of the generalized coordinates is greater, the spring potential energy contained in the spring vibration 
model is greater. For the Ising model, the greater source spin has a greater overall influence on the system to 

(1)Hising = −
∑

1≤i<j≤N

Jijσiσj −
∑

1≤i≤N

hiσi
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the target spin and vice versa. Therefore, the discrete Ising model energy in Eq. (1) is set to the continuous Ising 
model energy in the spring vibration model.

2. Ground state search method.

The spring vibration model can be used to find the ground state of Ising model as follows. This method regards 
the potential energy of the Ising model as the ordinary potential energy and converts the potential energy of 
the Ising model into the potential energy of the spring and the kinetic energy of the system. The Ising model 
energy gradually decreases and transforms into the potential energy of the spring. The Lagrangian equation is 
constructed as follows:

Figure 1.  Spring vibration model based on Ising model. The red sphere represents the spin, and the arrow 
in it indicates the spin state. The four bright red spheres on the upper left represent the four spins mapped by 
the high-dimensional Ising model. The green connection line between the red spheres represents the coupling 
relationship. The fuzzy sphere in the gray dashed box represents the opposite spin state of the blue dashed 
box. The two dashed boxes are used to represent the same spin in two spin states, expressing the two particle 
positions of the spring model. Correspondingly, the gray part in the spring model is another spin state. (a) 
In the Ising model, the spin state is mapped to the position of the mass point in the spring vibration model. 
For example, in the blue dashed box, when the spin state is ‘up’, the mass point is positioned above the origin. 
Conversely, in the blue dashed box, when the spin state is ‘down’, the mass point is positioned under the origin, 
which is shown in the gray dashed box. (b) The distance between the mass point and the origin point is affected 
by the coupling relationship and the spring.

Figure 2.  The specific example shows that the coupling relationship between spins affects the external force 
received on the mass point. σi is the i th spin which is regarded as the target spin and σj is the j th spin which 
is regarded as the source spin. A blue line between the spins represents a positive coupling relationship, while 
a green line represents a negative coupling relationship. The force on the mass point is the resultant force 
produced by the sum of all coupling relations. (a) When the source spin σi is +1 , the coupling relationship 
produces multiple forces on the mass point i . (b) When the spin state σi is −1 , the direction of the force is 
opposite.
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where m is the mass coefficient, k is the elastic coefficient, q0 is the generalized coordinate value of the spring 
origin point and ζ is the scaling coefficient of the Ising model energy. The three terms of the mass point in Eq. (2) 
are the kinetic energy term, the spring potential energy term and the continuous Ising model energy term. The 
continuous Ising model energy term is the energy term of the Ising model derived by replacing the spin states 
σi with generalized coordinates qi . This approach expands the solution space and computational complexity but 
is more conducive to finding local optimum due to continuous variation. The kinetic energy term acts as an 
intermediate term in the conversion between the spring potential energy term and the continuous Ising model 
energy term. In the spring vibration model, the generalized coordinates are independent of t  . It can be seen 
from the formula that the movement of the mass points is affected by the potential energy of the spring and the 
energy of the Ising model. The movement of the mass points is manifested as a continuous vibration on the ideal 
springs. From another perspective, it can be considered that when the spring is doing simple harmonic motion, 
a set of external forces are applied from the outside. Affected by the coupling coefficient of the Ising model, the 
oscillations of the mass points are biased towards the lower Ising model energy.

3. Symplectic method.

Since the size of the Ising model depends on the number of spins, the solution scale is quite large. Therefore, 
it is very difficult to solve the Lagrangian equation directly and accurately. In this paper, referring to the Ham-
iltonian and symplectic  method48, the numerical iterative calculation of the spring vibration model is carried 
out. The Hamiltonian describes the total energy of the system and can be used to describe the system’s dynamic 
behavior. Symplectic method is a numerical method used to solve Hamilton’s equations and it preserves energy 
conservation of the system.

According to the definition, the generalized momentum pi is obtained as ∂L/∂ q̇ = mq̇i . The Hamiltonian of 
the system is obtained by performing the Legendre transformation on the Lagrangian quantity:

where tn is the n th iteration and � is the increment of the time. It can be seen from the above formula that qi(tn) 
and pi(tn) depend on the value of the previous state. With the iteration of the value, the energy is continuously 
converted. As the energy of the Ising model decreases, the solution is gradually approaching the ground state of 
the Ising model. Dimensional issues are not considered in numerical calculations, so parameters can be com-
bined. The Eq. (5) is called the iterative formula of Spring-Ising Algorithm.

The energy contribution of each spin to the overall system in the Ising model energy expression is in a 
bounded manner because each spin in the Ising model is only in the spin state {−1, + 1} to contribute to the 
system energy. In modeling, the generalized coordinate values are with constraints to avoid the appearance that 
the energy of the whole system is concentrated in few mass points. If there is a sufficient range of energy fluctua-
tions, the system can cross local optimum by local oscillations; but at the same time, if the range of fluctuations 
is too large, the system cannot stay at any minimum value. So that, the following constraints are added each 
time qi is updated:

where f (∗) describes the boundary of qi . For the spring to vibrate, the boundary is slightly larger than the original 
setting of Spring vibration model [−1, 1] so that we set qi ∈

[

−
√
2,
√
2

]

 . Similarly, we simultaneously set 
pi ∈ [−2, 2] . After combining the boundary conditions, the equation describes the motion law of the spin.

4. Point convolutional neural network.
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In the iterative calculation of the algorithm, the computation that consumes the most computational resources 
is multiplication of Jij and qi(tn) . A method of iterative calculation using point convolution to replace the product 
of vector and matrix is proposed, so that the algorithm can be used in high-bandwidth computing chips, like 
GPU and AI chip. Point convolution is a point-by-point 2D convolution operation on an image by the 1× 1 
convolution kernel. A pixel point in an image is composed of component or feature information, which means 
that each pixel point can be represented by a vector, this is known as channel information. This type of image is 
also called the feature map. Point convolution is widely used in lightweight neural networks, and many hardware 
architectures have been designed to accelerate computation by designing schemes that optimize the computa-
tional mapping of point  convolution45–47,49. Figure 3 shows the way of turning the iterative equation into the 
neural network architecture computation. If the Ising model has n spins, a single point convolution kernel has n 
channels, corresponding to the coupling coefficients (including self-coupling) of a single spin to the other spins. 
Each of the n spins correspond to n point convolution kernels, forming the 1× 1× n× n weights (convolutional 
kernels size 1× 1 , number of channels n, number of convolutional kernels n ) corresponding to the Ising model 
coupling coefficients J . qi(tn) of a single test is assigned at fixed coordinate of the feature map, meaning that the 
size of the feature map is equal to the number of simultaneous test cases. Choosing a 1× 1 feature map for a single 
Spring-Ising Algorithm test, and a feature map size of 2× 2 as illustrated in Fig. 3, four mutually independent 
tests of the Spring-Ising Algorithm are performed simultaneously. The rest of the architecture is the addition, 
which can be completed through the residual structure in the neural network and is supported in mainstream 
AI chips. The method uses n convolutional kernels that can be computed in parallel at the same time, which 
reflects the parallelism of the chip’s computation.

Result
In this chapter, we show the experimental results based on the spring vibration model. Next, we introduce how 
to implement the above algorithm through point convolution and residual network and implement it on the 
CASSANN-v2 architecture.

To demonstrate the effect of Eq. (1), the algorithm is tested on the K2000 benchmark instance, which is a 
random undirected graph with 2000 vertices and 1,999,000  edges23. The K2000 benchmark instance has been 
widely employed for evaluating the performance of the Ising model in solving maximum-cut problems (MAX-
CUT) in previous  studies23,50,51.

1. Qualitative results.

The mass point vibration result of running the spring vibration model algorithm in 10,000 iterations is shown 
in Fig. 4. The 2000 vertices of K2000 correspond to the 2000 generalized coordinates of the Spring-Ising Algo-
rithm, and for visualization purposes, the first twenty vertices in K2000 are selected in Fig. 4. During the early 
stage of the algorithm, as the mass points are initialized at origin and given only a small disturbance, the energy 
of the Ising model experiences a gradual decline. It can be clearly seen in the figure that, the polylines are very 
dense, which means that the mass points are oscillating violently. In this time, the energy of Ising model is also 
rapidly oscillating and declining. In the middle, many mass points gradually move towards the boundary, having 
reached lower energy points. Finally, only a few mass points continue to oscillate in search of the optimal result. 
The energy of the Ising model has approached the ground state and the details of the energy changes are shown 
in the inset of Fig. 4(a). It is evident that the flips of a few spin states lead to fluctuations in the Ising energy.

Figure 3.  The parallel calculation of the spring vibration model algorithm through the form of point 
convolution. The size of the feature map affects the number of parallel tests for the algorithm. Using a 2 × 2 
feature map is four independent iterative calculations. The value of the feature map is the generalized coordinate 
value, and the point convolution kernel is the weight data of the Ising model. The q′ and p′ are the temporary 
variable. On the right is the entire point convolution network architecture.
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2. Quantitative results.

It can be easily predicted that the potential energy of the spring is lost within the limitation of the boundary 
conditions as time progresses. Therefore, in the later stages of evolution, it is necessary to compensate for the 
lost energy. To further search the ground state of Ising model accurately, Spring-Ising Algorithm introduces the 
concept of energy dynamic balance to increase the energy proportion of Ising model and improve the search 
efficiency. To compensate for the energy loss, Spring-Ising Algorithm sets the ζ as a linear variable ζ (tn) . To 
reduce the complexity of the algorithm, this variable is regarded as a constant in the calculation of the Lagrangian 
equation, which means that the time-varying effect in the Lagrange equation is not considered. Through further 
analysis and solution of this equation, the ground state finding of the Ising model system is obtained.

This test is based on the same small disturbance for initializing with different strategies of ζ . As shown in 
Fig. 5, no matter what the value of ζ is fixed, the ground state search of the Ising model is easy to fall into a local 
optimum. Although the larger ζ quickly leads to better local optimum (the blue line), it is difficult to search fur-
ther to get better results. By gradually changing the value of ζ, further searches can be performed after the spring 
model has entered local stability. The red line and the orange line can be clearly seen each time steady state is 
established and further searches. This result is very similar to sufficiently slow cooling in simulated annealing. 

Figure 4.  The spring vibration model algorithm on the K2000 in 10,000 iterations. The parameter configuration 
is as follows: k = 0.5, ζ = 0.8ζ0 →10ζ0, Δ = 0.2, m = 1. (a) The energy change curve of the Ising model. The mass 
point positions in Spring-Ising Algorithm are initialized near the origin, so the energy starts from 0 and 
decreases rapidly. Before Step = 2000, the energy is descending in a violent shock. After that, vibrate slightly 
to search for the energy minimum. (b) Vibration of the mass points (the first twenty). The densely populated 
regions of the graph result from the oscillations of multiple mass points. As the system completes the initial 
search, it tends to be stable. While most of the mass points become stable, only a few of them continue to 
perform local searches (e.g., after Step = 5000).
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When the step length is short enough, better search results can be obtained. We tested the amount of runtime 
increase introduced by the computational volume of the energy dynamic balance. The results of 20 rounds of 
tests with 2000 spins of Ising model, 1000 test cases, and 10,000 iterations are as follows, the average time taken 
without the introduction of energy dynamic balance is 11.95991 s and the average time taken with the introduc-
tion of energy dynamic balance is 12.10152 s. Therefore, the introduction of energy dynamic balance in this 
test increased the computational time consumption by 1.17% on average. To assess the performance of energy 
dynamic balance, we tested different coupling relationships of Ising model in 1000 independent experiments, as 
shown in Table 1. We consider Möbius ladder graph, five different connection graphs from the Gset dataset and 
K2000, all of them with 2000 spins. The statistics are split into two increments based on the coupling sparsity, 
because the energy term of the Ising model in Eq. (3) is not the same as the ratio of the whole energy system at 
different sparsities. So, the increment is set smaller for the K2000 instances where the K2000 Ising model energy 
is more influential. Due to the antiferromagnetic coupling to neighboring spins, Ising model of Möbius ladder 
graph is difficult to find the ground  state28.  Gset52 consists of toroidal, planar, and random graphs with weights 
taking the values 1, or − 1, where G22 and G27 are random graphs, G32 is a toroidal graph, and G35 and G39 
are planar graphs. K2000 is the fully connected random graph mentioned above. The results in Table 1 show that 
the method can be extended and applied to the Ising model under various structures.

Figure 5.  The effect of different ζ on the average results of K2000. ζ0 is the base value. ζ0 = 0.05. The first and 
second sets of data (green curve and blue curve) indicate that the current ζ is fixed at 0.8ζ0 or 10ζ0, respectively. 
The third (Step = 1000) and fourth (Step = 200) set of data (orange curve and red curve) indicates that the ζ is set 
from 0.8ζ0 to 10ζ0 with different step lengths.

Table 1.  Results of Spring-Ising Algorithm for Ising model with different coupling relationships based on the 
energy dynamic balance approach in 1000 independent experiments. Best known refers to the lowest energy 
yet reported with a conventional algorithm. Best result and Mean result refers to the statistical Ising energy 
results by Spring-Ising Algorithm.

Möebius ladder Gset-G22 Gset-G27 Gset-G32 Gset-G35 Gset-G39 K2000

Spins 2000 2000 2000 2000 2000 2000 2000

Connectivity 3000 19,990 19,990 4000 11,778 11,778 1,999,000

Weight − 1 − 1  + 1, − 1  + 1, − 1 − 1  + 1, − 1  + 1, − 1

sparsity 0.0015 0.0100 0.0100 0.0020 0.0059 0.0059 1.0000

Increment 0.01/200 steps 0.01/200 steps 0.01/200 steps 0.01/200 steps 0.01/200 steps 0.01/200 steps 0.001/200 steps

Best known − 2000 − 6726 − 6724 − 2778 − 3552 − 4771 − 67,714

Best result − 2000 − 6726 − 6724 − 2774 − 3540 − 4748 − 67,714

Mean result − 1979.2 − 6689.26 − 6690.01 − 2741.64 − 3499.48 − 4705.68 − 67,497.52
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The probability density function is an important way to judge the performance of algorithms for solving Ising 
models. Figure 6 shows the cumulative distributions of the cut value of the K2000. The results obtained by the 
proposed algorithm are compared with those obtained by the HdSB and HbSB algorithms which are partially 
similar under different modeling  approaches50. It shows that the spring vibration model algorithm can search 
for better cut value within the specified number of steps. The inset shows that the algorithm can more effectively 
find the optimal value. The number of optimal solutions accounts for 2.9% of all solutions. In contrast, HbSB 
and HdSB only achieve about 1.2%.

3. Hardware implementation.

The test platform of this algorithm is a personal computer (Intel 8700K and NVIDIA GeForce RTX 2080 Ti) 
and the AI architecture (CNN accelerator) developed by Institute of Semiconductors, CAS, named CASSANN-
v247. Using GeForce RTX 2080 Ti in the PyTorch framework, with 2000 spins and 1000 independent tests, the 
calculation time is 9.95 s for 10,000 steps, which means that the sample time of 10,000-step tests is 9.95 ms. But 
when there are 100 independent tests, the sample time is 2.30 ms for 10,000 steps. The GPU exhibits shorter 
average single-sample test time with more independent tests. By the AI architecture, when 2000 spins and 49 
independent tests (7 × 7 feature map) are performed, the calculation time is 381.15 ms for 10,000 steps, which 
means that the sample time of 10,000-step tests is 7.78 ms.

Discussion
We have proposed and implemented an Algorithm, which is suitable for hardware computing to find the ground 
state of the Ising model. In Eq. (6), the introduction of the boundary of qi is something that can significantly 
impact on the energy of the system. Setting the boundary is necessary because unbounded qi would cause the 
continuous Ising model energy term to decrease indefinitely, leading to an infinite increase in the spring term. 
This is simply confirmed by calculations and experiments. When the boundary is set, each constraint update to 
the generalized coordinates qi is a nonlinear operation. The non-linear operation is essential for encoding the 
quantized Ising spins using continuous variables, similar to techniques like the phase-sensitive  amplifier23, the 
Kerr-nonlinear parametric oscillators in simulated  bifurcation48. The non-linear operation involving restricted 
boundaries ensures an accurate representation of the Ising model energy by the continuous Ising model energy 
term. This nonlinear operation described in the paper is both straightforward and efficient. However, there are 
better nonlinear methods to achieve the corresponding effect among neural networks. Future work will involve 
testing these methods and integrating them into the Spring-Ising Algorithm. Since the activation function is one 
of the fundamental components of an AI chip.

However, during the experiments, there is still a problem that the result keeps converging to a local optimum. 
In the algorithm, the oscillatory search for the Ising model ground state is the original design intention to further 
obtain more optimal solutions. Simulated bifurcation introduces the thermal  fluctuation50 to escape from local 
optimum, which is an effective method. Similarly, in this paper, an external method is introduced to improve 
the search efficiency, referred to as the concept of energy dynamic balance. The method increases the scaling 

Figure 6.  The spring vibration model algorithm cumulative distribution of cut values C of the K2000 compared 
to HdSB and HbSB. The red curve is the result of the Spring-Ising Algorithm. The inset is the magnification 
around the best-known cut value. The red curve illustrates that the Spring-Ising Algorithm has better 
suboptimal distribution results and more optimal values than HdSB and HbSB for the overall search results.
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coefficient of the Ising model energy ζ, thus compensating for the energy loss due to the boundary conditions. 
The most important benefit of introducing this method is that it doesn’t add too much computational effort for 
the hardware computing. By using weight coupling, it is still feasible to compute in the form of pointwise con-
volution by AI chips. This also implies that it is indeed possible to preprocess Ising models with different graph 
structures making it possible to search for energy minima more efficiently using this algorithm. This will be one 
of the directions for future work.

Methods
In this paper, we introduce a novel spring-vibration model and propose the Spring-Ising algorithm, designed 
for the efficient ground state search of Ising models through the utilization of a point convolutional neural 
network. The Spring-Ising algorithm can be mapped to a GPU or AI chip to accelerate the ground state search 
of the Ising model by the fundamental structural framework of the neural network. The Spring-Ising algorithm 
has better suboptimal distribution results and more optimal values than HdSB and HbSB for the overall search 
results when tested on the K2000 dataset.

1. Numerical iteration.

The Spring-Ising Algorithm is to regard the spin of the Ising model as q and the coupling coefficient weight 
as J . The ground state search process of the Ising model is conducted in conjunction with the oscillation of mass 
points. Utilizing the spring vibration model as a foundation, we construct an equation that combines vibrations 
with the Ising model. In Algorithm 1, the pseudo-code illustrates the iterative computational procedure of the 
algorithm from initialization to sampling.

Algorithm 1.    The iterative computational procedure of the Spring-Ising Algorithm.

The initial step involves setting q to 0 and p to a value in the vicinity of 0 . The p values are generated as random 
numbers ranging from − 0.0005 to 0.0005, and they do not undergo any manual processing. Nstep represents the 
desired number of iteration rounds, which is related to the number of iterations in the Ising model. Increasing 
the number of iterations during testing results in obtaining more optimal values and improved averages. The 
‘Boundary’ function performs the nonlinear operation that constrains the range of generalized coordinates, 
ensuring that qi ∈

[

−
√
2,
√
2

]

, pi ∈ [−2, 2] . � , k and ζ are independent adjustable variables. ζ
(

tstep
)

 is a function 
that is linearly related to the number of iterations. For simplicity in calculation, ζ

(

tstep
)

 is set as a piecewise 
constant function. The final step involves sampling q to obtain the spin states of the Ising model. The ‘Sign’ func-
tion is used to obtain the sign value of q , corresponding to the spin state {−1, + 1}.

2. Hardware implementation.

In the case of an Ising model with n spins, the generalized coordinates q are mapped to feature maps. The 
number of pixels in feature map corresponds to the number of simultaneous iterations. The coupling coefficient 
matrix of the Ising model is mapped to the point convolution kernel. Divide the J into n 1 × 1 convolution ker-
nels with n channels by row. Through the residual structure, the addition operation required in the algorithm is 
completed. By continuously calling this network structure (Fig. 3), the numerical calculation of q and p in the 
Eq. (8) is updated. After an artificially set time step or calculation time, the q is sampled, which is the current 
low energy state of the Ising model. In the CASSANN-v2 deployment, an 8-bit quantization scheme was used, 
including q , p , J.
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The data that support the findings of this study are available from the corresponding author upon reasonable 
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Code availability
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