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Brain age prediction using 
combined deep convolutional 
neural network and multi‑layer 
perceptron algorithms
Yoonji Joo 1,7, Eun Namgung 2,7, Hyeonseok Jeong 3, Ilhyang Kang 1, Jinsol Kim 1, Sohyun Oh 1,4, 
In Kyoon Lyoo 1,4,5, Sujung Yoon 1,4* & Jaeuk Hwang 6*

The clinical applications of brain age prediction have expanded, particularly in anticipating the 
onset and prognosis of various neurodegenerative diseases. In the current study, we proposed 
a deep learning algorithm that leverages brain structural imaging data and enhances prediction 
accuracy by integrating biological sex information. Our model for brain age prediction, built on deep 
neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1‑weighted 
images were minimally preprocessed and analyzed using the convolutional neural network (CNN) 
algorithm. The categorical sex information was then incorporated using the multi‑layer perceptron 
(MLP) algorithm. We trained and validated both a CNN‑only algorithm (utilizing only brain structural 
imaging data), and a combined CNN‑MLP algorithm (using both structural brain imaging data and sex 
information) for age prediction. By integrating sex information with T1‑weighted imaging data, our 
proposed CNN‑MLP algorithm outperformed not only the CNN‑only algorithm but also established 
algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN‑MLP algorithm 
effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by 
identifying variances in brain age gaps between them, highlighting the algorithm’s potential for 
clinical application. Overall, these results underscore the enhanced precision of the CNN‑MLP 
algorithm in brain age prediction, achieved through the integration of sex information.

Chronological aging is intricately linked to several neurodegenerative conditions, including cognitive impair-
ments and  dementia1. During the natural aging process, the human brain experiences gray matter (GM) atrophy 
along with cortical  thinning2,3. Despite these commonalities, the aging process of the human brain exhibits 
significant biological complexity and demonstrates marked inter-individual differences in both its rate and 
 pattern4,5. Furthermore, underlying pathologies may hasten brain aging, and the individual brain aging may be 
differently influenced by both genetic and environmental factors for each  person4–6.

Machine learning techniques that utilize brain magnetic resonance imaging (MRI) data can take these vari-
ations into account, thereby enhancing the accuracy in predicting an individual’s brain age. The estimated brain 
age at an individual level serves as a personalized indicator for potential brain  dysfunction7–9. Additionally, the 
difference between the predicted brain age and the chronological age, referred to as the "brain age gap", has 
emerged as a promising biomarker for detecting inter-individual differences in brain  aging7–9. As the positive or 
negative brain age gap can respectively indicate accelerated or healthy brain aging, individual quantification of 
this gap may aid in both risk screening and the diagnostic process for neurodegenerative  diseases7,9.

As structural MRI of the brain can detect aging-related neuroanatomical changes, such as global GM atrophy, 
it has been established that the chronological ages of healthy individuals can be accurately estimated using data 
from structural brain  MRI3,5,10. These aging-related changes in brain structures differ according to  gender11. Given 
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that individual brain structures reflect both male and female characteristics in complex and dynamic patterns, 
the quantification of these patterns using machine learning should take into consideration these sex-specific 
brain  characteristics12. Despite the understanding of the sex-specific trajectory of brain aging, there is a paucity of 
brain age prediction models that incorporate sex information as a relevant  feature13. Instead, most of the current 
algorithms for brain age prediction utilizing structural brain MRI data tend to consider sex information only in 
the subsequent statistical correction  process14.

In order to accurately predict brain age based on structural brain MRI data, the selection of suitable types of 
input data and algorithms for the optimal learning of normal brain aging patterns is  essential9,14. From an algo-
rithmic perspective, high-dimensional regression models employing deep neural networks have increasingly been 
utilized for brain age  estimation7,8,15,16. Additionally, recent deep learning investigations have employed hybrid 
algorithms, incorporating numerical and/or categorical data to enhance prediction  accuracy17–19. Specifically, 
the convolutional neural network (CNN), widely utilized in brain age prediction, has been recognized as optimal 
for interpreting highly complex brain  structures20,21, and the supplementary use of the multi-layer perceptron 
(MLP) may offer advantages in terms of computing efficiency, depending on the types of input  data17,22.

The current study is designed to introduce a novel algorithm that integrates both CNN and MLP algorithms 
for the prediction of brain age using mixed inputs, including minimally preprocessed T1-weighted images and 
biological sex information. We hypothesized that this combined CNN-MLP approach may demonstrate supe-
rior performance over the CNN-only algorithm, which relies solely on T1-weighted images for predicting brain 
age. The model’s performance was evaluated in the internal validation set (n = 301), and external validation set 
(n = 645). Additionally, the performance of the combined CNN-MLP algorithm will be juxtaposed with that of 
the brainageR and pyment  algorithms15,23, the latter two being the most widely used and extensively validated 
algorithms based on structural brain MRI  data24,25.

Results
Performance of the brain age prediction algorithms in the training and test sets
The predictive accuracy of both the combined CNN-MLP algorithm and the CNN-only algorithm, tested on the 
training set (n = 2703) and the test set (n = 301), is detailed in Table 1 and Fig. 1.

In the training set, a 10-fold cross-validation of the proposed algorithm yielded the following outcomes: 
The combined CNN-MLP algorithm attained a mean MAE of 3.494 years, a mean RMSE of 4.689 years, and a 
mean  R2 of 0.933. Conversely, the CNN-only algorithm reached a mean MAE of 3.563 years, a mean RMSE of 
4.839 years, and a mean  R2 of 0.932.

For the test set, the internal validation performance metrics were as follows: the combined CNN-MLP algo-
rithm recorded an MAE of 3.184 years, an RMSE of 4.687 years, and an  R2 of 0.936 (Fig. 1a), while the CNN-only 
algorithm achieved an MAE of 3.342 years, an RMSE of 4.659 years, and an  R2 of 0.937 (Fig. 1b).

These results suggest that the combined CNN-MLP method, utilizing both minimally preprocessed 
T1-weighted images and sex information, outperformed the CNN-only algorithm that used only the minimally 
preprocessed T1-weighted image.

For further analysis, we assessed the efficiency of a more streamlined model, integrating a linear fully-con-
nected layer at the end of the CNN model, capable of handling sex information. Within the training set, this 
model’s 10-fold cross-validation produced a mean MAE of 3.674 years, a mean RMSE of 5.042 years, and a mean 
 R2 of 0.926. The test set performance metrics for the CNN integrated with a linear fully-connected layer were as 
follows: MAE of 3.592 years, RMSE of 4.989 years, and  R2 of 0.927.

Table 1.  Predictive accuracy of models employing the combined CNN-MLP algorithm and CNN-only 
algorithm. The results were obtained following the application of hyperparameter tuning, utilizing Adam as 
the chosen optimizer. Performance metrics from 10-fold cross-validation are presented as mean ± standard 
deviation. Adam adaptive moment estimation, CamCAN Cambridge Centre for Ageing and Neuroscience, 
CNN convolutional neural network, MAE mean absolute error, MLP multi-layer perceptron, RMSE root mean 
squared error, R2 coefficient of determination.

Algorithm Input

Performance metrics

MAE (years) RMSE (years) R2

10-fold cross validation
(Training set, n = 2,703)

Combined CNN-MLP Minimally preprocessed whole brain 
T1-weighted image + sex information 3.494 ± 0.228 4.689 ± 0.570 0.933 ± 0.012

CNN-only Minimally preprocessed whole brain 
T1-weighted image 3.563 ± 0.193 4.839 ± 0.299 0.932 ± 0.009

Internal validation
(Test set, n = 301)

Combined CNN-MLP
Minimally preprocessed
whole brain T1-weighted image + sex 
information

3.184 4.687 0.936

CNN-only Minimally preprocessed whole brain 
T1-weighted image 3.342 4.659 0.937

External validation
(CamCAN set, n = 645)

Combined CNN-MLP Minimally preprocessed whole brain 
T1-weighted image + sex information 4.910 6.148 0.891

CNN-only Minimally preprocessed whole brain 
T1-weighted image 5.064 6.295 0.885
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Performance of the brain age prediction algorithms using the external validation set
The predictive accuracy of the combined CNN-MLP algorithms in the external validation set is detailed in 
Table 2 and Fig. 2.

In the external validation set (n = 645), which was sourced from the Cambridge Centre for Aging and Neu-
roscience (CamCAN) database (available at http:// www. mrc- cbu. cam. ac. uk/ datas ets/ camcan/), the combined 
CNN-MLP algorithm achieved an MAE of 4.910 years, an RMSE of 6.148 years, and an  R2 of 0.891 (Fig. 2a); the 
CNN-only algorithm achieved an MAE of 5.064 years, an RMSE of 6.295 years, and an  R2 of 0.885 (Fig. 2b). These 
findings consistently demonstrate that the combined CNN-MLP algorithm enhanced the predictive accuracy of 
brain age in the independent dataset.

We further compared the predictive accuracy of our combined CNN-MLP algorithm with the well-validated 
brainageR  algorithm15 using an external validation set (n = 645) (Table 2, Fig. 2). The performance metrics for 
the brainageR algorithm included an MAE of 5.360 years, an RMSE of 6.923 years, and an  R2 of 0.861 (Fig. 2c). 
Concurrently, retraining our combined CNN-MLP algorithm with the same inputs as the brainageR model, 
specifically the normalized gray matter and white matter images, resulted in an MAE of 5.276 years, an RMSE 
of 6.452 years, and an  R2 of 0.879 (Table 2). These outcomes collectively suggest that our CNN-MLP model may 
offer superior predictive accuracy compared to the brainageR algorithm.

In addition, we compared the CNN-MLP algorithm with the pyment  algorithm23, using a newly acquired 
dataset of healthy subjects (n = 200) from the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI1, available 
at https:// adni. loni. usc. edu/ about/ adni1/) and Open Access Series of Imaging Studies 1 (OASIS-1, available at 
http:// www. oasis- brains. org/) databases. This selection of a new validation set was necessitated by the prior 
utilization of the CamCAN dataset, our original external validation set, in the training of the pyment  model23. 
In this comparison, our hybrid CNN-MLP algorithm achieved an MAE of 5.111 years, an RMSE of 6.531 years, 

Figure 1.  Comparison of the performance between the brain age prediction algorithms in internal validation 
set. Scatter plots show the predicted brain age versus chronological age in the internal validation set (test set) 
using the combined CNN-MLP algorithm (a, blue dots) and the CNN-only algorithm (b, gray dots). In all plots, 
the red line indicates a linear regression line and the dashed gray line indicates a y = x line (45-degree line). 
Abbreviations: CNN, convolutional neural network; MAE, mean absolute error; MLP, multi-layer perceptron; 
RMSE, root mean squared error;  R2, coefficient of determination.

Table 2.  Comparative predictive accuracy of our CNN-MLP and brainageR algorithms. The performance of 
each algorithm was evaluated using the external validation dataset from the CamCAN set (n = 645). CamCAN 
Cambridge Centre for Ageing and Neuroscience, CNN convolutional neural network, GM gray matter, GPR 
Gaussian process regression, MAE mean absolute error, MLP multi-layer perceptron, RMSE root mean squared 
error, R2 coefficient of determination, WM white matter.

Algorithm Input

Performance metrics

MAE (years) RMSE (years) R2

Proposed algorithm Combined CNN-MLP
Minimally preprocessed whole brain T1-weighted 
image + sex information 4.910 6.148 0.891

Segmented GM & WM  + sex information 5.276 6.452 0.879

brainageR 15 GPR Segmented GM & WM 5.360 6.923 0.861

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
https://adni.loni.usc.edu/about/adni1/
http://www.oasis-brains.org/
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and an  R2 of 0.919, while the pyment algorithm outperformed the CNN-MLP with an MAE of 4.264 years, an 
RMSE of 5.664 years, and an  R2 of 0.939. The superior performance of the pyment algorithm might be partly 
attributed to its considerably larger training dataset (n = 53,542), compared to our dataset (n = 2703).

Performance of the brain age prediction algorithms following bias correction
The performance of the combined CNN-MLP algorithm, both before and after the application of bias correction, 
is detailed in Table 3 and Fig. 3. The application of linear bias correction improved the predictive performance 
of the combined CNN-MLP algorithm in both internal validation (n = 301) and external validation (n = 645).

In the internal validation, the performance metrics included an MAE of 3.184 years, an RMSE of 4.687 years, 
and an  R2 of 0.936 prior to bias correction (Fig. 3a) and an MAE of 3.134 years, an RMSE of 4.510 years, and 
an  R2 of 0.941 after bias correction (Fig. 3b). In the external validation, the performance metrics were an MAE 
of 4.910 years, an RMSE of 6.148 years, and an  R2 of 0.891 before bias correction (Fig. 3c) and an MAE of 
4.313 years, an RMSE of 5.546 years, and an  R2 of 0.911 after bias correction (Fig. 3d).

Performance of the brain age prediction algorithms with data augmentation
To evaluate the impact of training set enhancement on brain age prediction accuracy, we conducted supplemen-
tary analyses using an augmented dataset. This dataset was randomly augmented with a 30% probability, resulting 
in the generation of additional synthetic images. The augmentation protocol encompassed 3D rotations within 
a − 10 to 10° range and translations between − 10 and 10 voxels.

The performance of the algorithms on the internal validation set yielded an MAE of 3.283 years, an RMSE of 
4.726 years, and an  R2 of 0.932. For external validation, the results showed an MAE of 4.945 years, an RMSE of 
6.313 years, and an  R2 of 0.885. These findings are detailed in Supplementary Table S3.

Visualization of critical brain regions for age prediction
A global average attention map, obtained from the entire test set (n = 301), revealed pronounced activation in 
the corpus callosum, internal capsule, and brain regions adjacent to the lateral ventricle (Fig. 4a). These find-
ings suggest that these specific areas contribute more significantly to age prediction compared to other regions 
of the brain.

The gender difference attention map (Fig. 4b), generated by subtracting the average attention map of females 
(n = 153) from that of males (n = 148), demonstrated that the regions with the most distinct gender-specific 
contribution to age prediction were congruent with those highly activated in the global average attention map 
derived from the total sample.

Application of brain age prediction algorithm to the MCI and AD groups
Employing our combined CNN-MLP algorithm, we estimated the brain age for patients with mild cognitive 
impairment (MCI, n = 208) and those diagnosed with Alzheimer’s disease (AD, n = 172), as depicted in Table 4. 
The mean (SD) brain age gaps were calculated as 0.413 (3.515) years for the MCI group and 1.393 (3.606) years 
for the AD group, respectively (Fig. 5). A significant difference in brain age gaps between the MCI and AD groups 
(t = − 2.673, P = 0.008) was identified. This finding highlights the ability of our current brain age prediction model 
to efficiently differentiate between the two disease groups, underscoring its clinical relevance.

Discussion
By concatenating sex information with structural brain MRI data, the combined CNN-MLP algorithm exhibited 
higher accuracy in brain age prediction, in contrast to the CNN-only algorithm that relied solely on T1-weighted 
images. Furthermore, the combined CNN-MLP algorithm demonstrated superior predictive performance for 
brain age relative to the previously validated algorithms for brain age prediction, such as the brainageR  model15.

In the present study, the hybrid architecture of the CNN-MLP algorithm was effective in achieving high 
accuracy for brain age prediction, a finding in line with recent research, evidencing enhanced performance 
and broader applicability through the synergistic use of multiple algorithms to proficiently manage diverse 
input  types17–19,26–28. Specifically, the concatenating of the CNN algorithm with the MLP algorithm resulted in 
superior model performance, effectively accommodating factors that influence brain age, such as gender, site 
identification, and scanner  information9,29–31. The hybrid CNN-MLP model, adept at merging x-ray images with 
numerical and categorical medical data, revealed a substantial 5–10% enhancement in discerning COVID-19 
infection compared to existing  models17. Our supplementary findings highlight the greater efficiency of the 

Table 3.  Predictive accuracy of the combined CNN-MLP algorithm without and with bias correction. 
CamCAN Cambridge Centre for Ageing and Neuroscience, MAE mean absolute error, RMSE root mean 
squared error, R2 coefficient of determination.

Input

Without bias correction With bias correction

MAE (years) RMSE (years) R2 MAE (years) RMSE (years) R2

Internal validation
(Test set, n = 301) 3.184 4.687 0.936 3.134 4.510 0.941

External validation
(CamCAN set, n = 645) 4.910 6.148 0.891 4.313 5.546 0.911
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hybrid CNN-MLP algorithm over the CNN model augmented with an additional linear fully-connected layer, 
especially in processing sex information. The MLP algorithm’s relatively streamlined structure, in comparison 
to other deep learning algorithms, may yield benefits such as reduced computational time and load in the crea-
tion of combined  models22,28. Consequently, in terms of clinical flexibility and scalability, the pairing of CNN 
and MLP algorithms might offer a strategic advantage in handling complex data, including datasets containing 
images and varied clinical  details17–19,26–28.

It is noteworthy that the proposed hybrid deep learning model takes into account both sex information and 
brain structural images when constructing the model. This is in contrast to other brain age prediction models 
that have subsequently corrected for sex during the validation  process14. Given that sex has been shown to affect 
regional brain  volumes11,12,32,33 and neurodegenerative  changes34,35, in distinct and influential ways, integrat-
ing brain structures and sex information may bolster the model’s efficacy in predicting brain age. This idea is 
supported by the fact that the CNN-MLP algorithm demonstrated superior predictive performance compared 
to the CNN algorithm, which relied solely on the T1-weighted  image22. Our model bears resemblances to the 
innovative 3D convolutional network, the two-stage-age network (TSAN), which integrates MR images and sex 
labels as input  variables13. However, TSAN diverges from our approach by incorporating a two-stage cascade 
architecture, wherein the initial age estimate is refined by a secondary network, adding an additional layer of 
analysis. This refinement enables TSAN to achieve significant accuracy, as evidenced by an MAE of 2.428 using 
a dataset of 6,586 subjects. To potentially improve our model’s accuracy, we undertook a supplementary analysis 
by incorporating a two-stage prediction method similar to that of TSAN (Supplementary Fig. S2, Supplementary 

Figure 3.  Scatter plots of brain age gap versus chronological age without and with linear bias correction. Results 
of brain age gap (predicted brain age—chronological age) without bias correction (a, c), and with bias correction 
(b, d). Scatter plots show the brain age gap, predicted by the proposed algorithm, versus chronological age in the 
test set (a, b), and in the CamCAN dataset (c, d). In all plots, the red lines indicate linear regression lines, and 
the dashed gray lines indicate ideal estimation references (y = 0). Abbreviations: CamCAN, Cambridge Centre 
for Ageing and Neuroscience.
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Table S2). This adaptation of our CNN-MLP algorithm, to include a two-stage prediction process, yielded an 
MAE of 2.253 years, demonstrating improved performance closely paralleling that of the TSAN model.

Additionally, our findings reveal that the utilization of minimally preprocessed T1-weighted images in the 
combined CNN-MLP algorithm yielded better results than those of the tissue-segmented T1 images utilized in 
the brainageR  algorithm15. Given the clinical importance of saving time and simplifying neuroimaging preproc-
essing, the current brain age prediction model, which employs minimally preprocessed T1-weighted images, can 
be applied efficiently in clinical  environments36,37.

Considering that sex information is complexly and variably reflected in regional brain  structures11,12,21,32,33, 
pinpointing the exact brain structural patterns displaying sex effects in influencing model performance has not 
reached a consensus, and findings have been  inconsistent38,39. Within this framework, the present algorithm is 
able to simultaneously reflect whole-brain structural features to identify the sex-related pattern of aging in the 
brain, using minimally preprocessed neuroimaging in conjunction with sex information.

The proposed hybrid deep learning model was corrected for linear bias, utilizing individual neuroimaging 
during the modeling process, which enhanced the predictive accuracy for brain age. Although bias correction is 
critical for achieving both high accuracy and stability in brain age  prediction14,40,41, most statistical corrections 
have been conducted based on chronological ages following  modeling7,40–42. In this study, linear bias correction 

Figure 4.  Visualization of critical brain regions for age prediction utilizing Grad CAM. (a) A global average 
attention map was created from the entire test set (n = 301). Regions marked with higher values, closer to red on 
the map, signify a greater contribution of those regions to age prediction. (b) A gender difference attention map 
was generated by subtracting the average attention map of female (n = 153) from that of male (n = 148). Regions 
marked with higher values, closer to red on the map, indicate stronger gender-specific influences of those 
regions on age prediction. All attention maps are overlaid over the averaged brain MR image from the test set.

Table 4.  Brain age estimation in patients with MCI and AD. Data were sourced from the ADNI1 dataset. For 
both the MCI and AD groups, brain age was determined using the combined CNN-MLP algorithm. The brain 
age gap was computed by determining the discrepancy between chronological age and the estimated brain age. 
AD Alzheimer’s disease, ADNI1 Alzheimer’s Disease Neuroimaging Initiative 1, CNN convolutional neural 
network, MCI mild cognitive impairment, MLP multi-layer perceptron, SD standard deviation.

Group n

Male Age Brain age Brain age gap

n (%) Mean ± SD (range) Mean ± SD (range) Mean ± SD (range)

MCI 208 122 (58.7) 74.5 ± 7.3 (55.0–88.0) 74.8 ± 7.9 (52.7–90.8) 0.413 ± 3.515 (− 7.505–9.526)

AD 172 94 (54.7) 75.5 ± 7.5 (55.0–91.0) 76.9 ± 8.2 (49.7–95.7) 1.393 ± 3.606 (− 7.347–11.747)
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improved the predictive performance, reducing variance; the predicted brain age was refined by subtracting the 
offset corresponding to the brain age  gap40. It may be inferred that linear bias correction can counter underfit-
ting due to regression dilution and the non-Gaussian age distribution of the proposed model. Specifically, an 
incrementally increased brain age gap at the youngest and oldest extremities, along with a higher prediction 
error for individuals older than 50 years of chronological age, have been noted due to inter-individual variations 
in biological aging and biases in linear regression (e.g., linear regression toward the mean, attenuation)43,44.

To identify the brain regions that significantly influence age prediction, we utilized the Grad-CAM, an 
explainable artificial intelligence method, to create a voxel-wise average attention  map45. In line with previous 
 studies46–49, we discerned that the corpus callosum, internal capsule, and areas near the lateral ventricle were 
significant contributors to age prediction. Given the established significance of ventricular enlargement and 
atrophic changes near the lateral ventricle in the brain aging  process50,51, these regions likely play a vital role in 
enhancing model performance.

Moreover, our findings regarding gender differences in the attention maps corroborate previous research 
on gender-specific aging processes in white matter areas, particularly around the corpus callosum and internal 
 capsule11,32,34. This underscores the value of incorporating sex information into the brain age model to augment 
its predictive accuracy.

It is important to note that our hybrid CNN-MLP algorithm accurately predicted brain age in healthy indi-
viduals and also adeptly differentiated between the two neurodegenerative disease groups, MCI and AD, by 
identifying variances in their brain age gaps. The extent of brain age gaps for MCI and AD, as determined 
by our hybrid CNN-MLP model, aligns with that previously documented by Karim et al.52. From a scientific 
research perspective, using the brain age prediction model to analyze disease groups, especially in computing 
brain age gaps, greatly enhances our understanding of the model’s clinical  implications7,53. Consequently, the 
current data robustly support the clinical relevance of our hybrid CNN-MLP model, specifically in the field of 
neurodegenerative diseases.

The following limitations should be considered in interpreting the current results. It is important to under-
stand changes in brain structure and function that are associated with the variations in sex  hormones12. Numer-
ous estrogen receptors are found within the central nervous system, hence differences are evident between 
childbearing-age women and menopausal  women54. Specifically, it has been noted that the characteristics of the 
brain consistently change in tandem with the menstrual  cycle55. However, since information such as menopau-
sal status and menstrual cycle of female subjects were not obtained from the database utilized in this study, the 
related factors potentially impacting prediction performance were not completely accounted for. Therefore, future 
investigations that include sex hormonal information alongside neuroimaging may offer additional insights into 
the effects of gender on brain  aging54,55.

While the performance of the model that employs the combined CNN-MLP algorithm did exceed that of the 
CNN-only algorithm, this improvement did not attain statistical significance. Our findings align with numerous 
previous studies on brain age prediction models, where numerical differences in model performance were noted 

Figure 5.  Distribution of brain age gap by clinical diagnosis. The mean (SD) brain age gaps were 0.413 (3.515) 
years and 1.393 (3.606) years for the MCI and AD groups, respectively. A significant difference in brain age gaps 
between the MCI and AD group was identified (t = − 2.673, P = 0.008). Abbreviations: AD, Alzheimer’s disease; 
MCI, mild cognitive impairment; SD, standard deviation.
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but without reaching statistical significance, hinting at performance  enhancement15,40,42,53. Nonetheless, future 
research is warranted to confirm the improved performance of the combined CNN-MLP model, incorporating 
high-resolution structural images and sex information, through more rigorous statistical  evaluations15,40,42,53,56,57.

Moreover, recent algorithms that employed more than 10,000 brain images for training have accomplished 
brain age prediction with an impressive MAE of less than three  years23. In line with this, the pyment model, which 
benefited from a significant training set (n = 53,542), surpassed our CNN-MLP algorithm, which was developed 
using a considerably smaller training set (n = 2703), in terms of predictive accuracy. Therefore, enriching the 
training set could potentially boost the performance of our proposed CNN-MLP algorithm in subsequent studies.

While the CamCAN dataset is recognized for its reflection of the general population in terms of demographic 
 variables58,59, it should be noted that the generalizability of the model’s performance across varied populations 
still demands further examination and validation in future investigations.

It is important to underline that our MLP algorithm solely utilized gender information for predicting brain 
age, not including several vital features such as scanner information or site identification. This limitation was in 
part due to the absence or ambiguity of relevant information in the available dataset. Considering the proven 
capability of the MLP algorithm in handling various types of biological  information60–62, future work should 
include essential features such as gender, site identification, or scanner information, all known to influence brain 
 age32–35. The integration of these features into the hybrid CNN-MLP algorithm may notably augment model 
performance.

It warrants emphasis that future research utilizing the hybrid CNN-MLP algorithm should carefully incor-
porate both genetic and environmental factors, due to their well-documented impacts on brain  aging63–66. In 
alignment with this perspective, recent investigations have developed algorithms skilled in processing multimodal 
data. This approach provides a more comprehensive framework, integrating MRI data with other relevant vari-
ables. For example, Qiang et al.64 created an integrated CNN-MLP framework that effectively combined MRI data 
with clinical and APOE genetic markers, thereby enhancing the diagnostic accuracy for AD. This underscores 
the potential benefits of augmenting traditional imaging data with genetic and clinical information to enhance 
model performance. Similarly, Bintsi et al.65 demonstrated improved performance by concurrently integrat-
ing imaging and non-imaging variables, such as blood pressure, stroke history, and alcohol consumption, into 
brain age estimation models. These non-imaging environmental factors have previously been shown to have 
significant correlations with brain  aging65,66. Employing a multimodal approach that considers both imaging and 
non-imaging genetic/environmental variables has been shown to improve the accuracy of brain age  estimation65.

Furthermore, future research involving multimodal neuroimaging (for example, both functional and struc-
tural neuroimaging), feature selection, and optimal parameter tuning could refine and optimize the proposed 
CNN-MLP  algorithm67–69.

In the current study, the hybrid CNN-MLP algorithm, utilizing the minimally preprocessed T1-weighted 
images along with sex information, showed higher accuracy in predicting brain age compared to the CNN-only 
algorithm. These findings may suggest that neuroanatomical changes in brain aging could intertwine with sexu-
ally dimorphic clinical features. Accordingly, the proposed CNN-MLP algorithm could broaden our understand-
ing of individual brain aging patterns in the context of both normal and pathological aging and provide critical 
insights regarding sexually individualized interventions.

Methods
Data collection
The current study included 3004 T1-weighted images of healthy subjects, whose ages ranged from 18.0 to 
86.3 years, sourced from various open neuroimaging databases (mean age = 42.1 years, standard deviation 
[SD] = 18.7; consisting of 1471 men and 1,533 women). We excluded individuals with significant neurological 
or psychiatric disorders. For the longitudinal databases that contained follow-up brain imaging, only the brain 
structural MRI images from the baseline assessment were utilized to prevent data leakage between the training 
and test sets.

The dataset was stratified according to each age bin to ensure an identical age distribution in both the training 
and test sets. It was randomly divided into the training set (n = 2703) and the test set (n = 301).

The databases included 1000 Functional Connectomes Project (1000 FCP, available at http://fcon_1000.
projects.nitrc.org/fcpClassic/FcpTable.html)70,71, International Neuroimaging Data-Sharing Initiative (INDI, 
available at http://fcon_1000.projects.nitrc.org/indi/IndiPro.html)71, Information eXtraction from Images (IXI, 
available at https:// brain- devel opment. org/ ixi- datas et), Open Access Series of Imaging Studies 3 (OASIS-3, avail-
able at https:// oasis- brains. org/)72, OpenNeuro (available at https:// openn euro. org/), and Cambridge Centre for 
Ageing Neuroscience (CamCAN, available at http:// www. mrc- cbu. cam. ac. uk/ datas ets/ camcan/)73.

The corresponding Institutional Review Boards of the aforementioned open databases (1000 FCP, INDI, IXI, 
OASIS-3, OpenNeuro, CamCAN) either provided waivers or granted approval for the submission of anonymized 
data. Written informed consent was obtained from each subject. This research was conducted in compliance 
with the Declaration of Helsinki. The databases and detailed information regarding the included subjects are 
provided in Table 5.

Data preprocessing
Data preprocessing was conducted using Statistical Parametric Mapping (SPM) 12 software (Wellcome Centre 
for Human Neuroimaging, London, UK). This process involved non-linearly registering T1-weighted images 
in native space to the Montreal Neurological Institute (MNI) standard space. Such normalization across vari-
ous scanner types and acquisition protocols ensures consistent model training. The normalization process in 
SPM12 also incorporated corrections for MR gradient field deviations, employing "bias regularization" and "bias 

https://brain-development.org/ixi-dataset
https://oasis-brains.org/
https://openneuro.org/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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FWHM"  options74,75. Subsequently, the processed images were resampled to a voxel resolution of 1.5 mm using 
cubic spline interpolation, yielding a field-of-view of 105 × 127 × 105.

Brain age prediction algorithms
In this study, we employed a three-dimensional (3D) CNN architecture, utilizing minimally preprocessed 
T1-weighted images with a dimension of 105 × 127 × 105 for brain age  estimation15. This architecture consists of 
sequential convolutional blocks, each encompassing a 3D convolution layer, batch normalization layer, rectified 
linear unit (ReLU) activation function, and a max pooling layer with a stride of two. The initial block incorpo-
rated eight feature channels, while subsequent blocks double this number to better capture the intricate nuances 
of brain structures 15.

Following the convolutional blocks, the output from the final block was flattened and directed into a dense 
layer with sixty-four neurons and ReLU activation. This was then succeeded by a batch normalization layer, a 
dropout layer with a rate of 0.3, and another dense layer with sixteen neurons, again activated by ReLU.

The MLP architecture, formulated to process categorical sex information, integrated a dense layer with sixteen 
neurons activated by ReLU, followed by another dense layer with four neurons, also under ReLU activation.

To create the combined CNN-MLP algorithm, the outputs from the concatenation layer were used as inputs. 
This concatenated input underwent processing through a dense layer with four neurons activated by ReLU, fol-
lowed by an additional dense layer with a single neuron. Lastly, a linear activation function was applied to this 

Table 5.  Demographic information of the subjects from the five datasets. FCP Functional Connectome 
Project, INDI International Neuroimaging Data-sharing Initiative, IXI Information eXtraction from Images, n 
number, OASIS Open Access Series of Imaging Studies, SD standard deviation.

Dataset n

Age Male Age-male Female Age-female

mean ± SD (range) n (%) mean ± SD (range) n (%) mean ± SD (range)

1000 FCP 939 28.6 ± 13.8 (18.0–85.0) 398 (42.4) 29.3 ± 13.8 (18.0–78.0) 541 (57.6) 28.1 ± 13.7 (18.0–85.0)

INDI 982 45.7 ± 16.6 (18.0–80.0) 444 (45.2) 44.6 ± 16.6 (18.0–80.0) 538 (54.8) 46.6 ± 16.5 (18.0–78.0)

IXI 461 53.6 ± 13.8 (20.0–86.3) 205 (44.5) 51.4 ± 14.4 (30.0–86.2) 256 (55.5) 55.3 ± 13.1 (20.0–86.3)

OASIS-3 218 65.7 ± 6.7 (42.0–79.0) 218 (100.0) 65.7 ± 6.7 (42.0–79.0) 0 (0.0) –

OpenNeuro 404 38.0 ± 17.3 (18.0–84.0) 207 (51.2) 37.7 ± 16.8 (18.0–81.0) 196 (48.5) 38.3 ± 17.9 (18.0–84.0)

Total 3004 42.0 ± 18.6 (18.0–86.3) 1472 (49.0) 43.6 ± 18.7 (18.0–86.2) 1532 (51.0) 40.4 ± 18.3 (18.0–86.3)

Figure 6.  Overview of the proposed combined CNN-MLP algorithm for brain age prediction. The CNN 
architecture, designed for minimally preprocessed T1-weighted images, consists of repeated convolutional 
blocks, each with 3D convolutional layers, batch normalization, ReLU activations, and max pooling. After these 
blocks, the sequence includes a flattening layer, two dense layers interspersed with ReLU activations, batch 
normalization, and a dropout layer. The MLP, tailored for categorical sex information, features dense layers with 
ReLU activations. Both algorithms’ outputs are merged by a concatenation layer, processed through two dense 
layers, with the final layer using a linear activation for brain age prediction. Abbreviations: 3D, 3-dimensional; 
BatchNorm, batch normalization; CNN, convolutional neural network; Conv, Convolution; MaxPool, max 
pooling; MLP, multi-layer perceptron; ReLU, rectified linear unit.
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final dense layer, deriving the predicted brain age. A schematic representation of the proposed architecture is 
depicted in Fig. 6.

The proposed algorithm was refined through hyperparameter tuning, a method renowned for boosting the 
accuracy of the brain age prediction model by adjusting key hyperparameters like batch size, epoch, learning 
rate, and neural network structural  variables76,77. Hyperparameter tuning involves the utilization of different 
optimizers to stabilize the pattern of model  updates76. Specifically, in this study, five optimizers were implemented 
across two combinations of learning rates and decay values: a learning rate of 0.01 with a decay of 0.003, and a 
learning rate of 0.001 with a decay of 0.0003. Among the investigated optimizers—adaptive gradient (Adagrad)78, 
adaptive moment estimation (Adam)79, Nesterov accelerated gradient (NAG)80, root mean square propagation 
(RMSprop)80, and stochastic gradient descent (SGD)81—the 10-fold cross-validation using Adam, with a learning 
rate of 0.001 and a decay of 0.0003, yielded the most favorable results. Comprehensive results for each of the five 
optimizers are detailed in Supplementary Table S1. It should be noted that, due to GPU constraints, the model 
was trained with a batch size of 16.

In addition, we constructed a CNN-only algorithm, trained exclusively with the minimally preprocessed 
T1-weighted images by using Adam with a learning rate of 0.001 and a decay of 0.0003, for the purpose of com-
paring its performance with the proposed combined CNN-MLP algorithm.

Training and testing
To evaluate the performance of each algorithm, we utilized mean absolute error (MAE), root mean squared error 
(RMSE), and the coefficient of determination  (R2) as performance metrics.

In this study, a 10-fold cross-validation scheme was applied to compare the performances of different meth-
ods: each algorithm was trained on nine randomly selected subsets, and then validated on the final subset, 
referred to as the validation set. The optimal algorithm was identified by evaluating the average performance 
metrics in 10-fold cross-validation.

Utilizing a computational framework comprising two NVIDIA Titan Xp GPUs with 12 GB memory, the 
training time for the CNN-MLP algorithm was approximately 6.94 h, whereas the CNN-only algorithm neces-
sitated 5.28 h for training.

External validation
The external validation of the proposed algorithms was performed using an independent dataset from the Cam-
CAN (available at http:// www. mrc- cbu. cam. ac. uk/ datas ets/ camcan/)73. Recognized for its approximate reflection 
of the broader UK demographic profile, this dataset is deemed less biased and more  generalizable58,59. Due to 
these attributes, the CamCAN set has been the preferred choice for external validation in numerous previous 
studies regarding brain age prediction  models58,59,82–84. Specifically, the dataset, consisting of 645 individuals, 
demonstrated a balanced distribution of age (mean age = 54.7 years, SD = 18.6 years, range = 18.5–88.9 years, 
Supplementary Fig. S1) and gender (319 men, 49.5%, mean age = 55.1 years, SD = 18.4 years; 326 women, 50.5%, 
mean age = 54.3 years, SD = 18.8 years), enhancing its suitability for this study. We further validated our proposed 
model, the combined CNN-MLP algorithm, by contrasting its performance with well-established brain age 
prediction algorithm packages, specifically  brainageR15. We selected brainageR for performance comparison 
because of the comparable size of its training dataset (brainageR, n = 3377 vs. our study, n = 2703) and its proven 
high, well-validated performance, making it a suitable  benchmark85. According to Cole et al.15, the brainageR 
model was constructed using a computational setup that incorporated four NVIDIA Titan X GPUs. While 
their  study15 did not specify the exact training duration, the application of Gaussian process regression (GPR) 
is known to reduce computational time compared to certain other deep learning algorithms with a similar level 
of performance.

In addition, we compared our model performance with another model, the pyment  model23. The training 
process of the pyment model spanned approximately 70 h when using two NVIDIA V100 GPUs with 32 GB 
 memory23. We selected it primarily for comparison because of its utilization of the CNN algorithm, a feature 
aligned with our current study. However, it is important to note that the pyment model was developed using 
a significantly larger, multisite dataset (n = 53,542), and thus surpassed various brain aging models, including 
ours, with an MAE of 2.4723,30,86. For this comparison, we employed a new, independent dataset comprising 200 
healthy individuals (mean age = 57.6 years, SD = 23.0 years, range = 18.0–90.0 years; consisting of 93 men and 
107 women) sourced from the ADNI1 and OASIS-1 databases, as the CamCAN dataset had been previously 
used in training the pyment model.

Bias correction
The phenomenon of underfitting is frequently observed in brain age prediction models and can be attributed to 
factors such as regression dilution and non-Gaussian age distribution. Therefore, in the current study, a linear 
bias correction  method40 predicted on the chronological age was employed to diminish the variance and enhance 
the prediction performance. The procedure entailed the following steps: Initially, the relationship between the 
offset, derived from the brain age gap (defined as the difference between the predicted brain age and the corre-
sponding chronological age), and chronological age was established. Subsequently, the predicted brain age was 
refined by subtracting the identified offset.

Visualization of critical brain regions for age prediction
To explore the specific brain regions that notably contribute to brain age prediction, we incorporated the explain-
able AI technique, gradient-weighted class activation mapping (Grad-CAM), into the CNN  algorithm45,87. This 
approach facilitates the visualization of essential brain regions that are integral to the model’s performance, 

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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employing a heat  map44. Although Grad-GAM was originally devised for classification  tasks45, we adapted it for 
regression algorithms, consistent with previous  literature88,

In this particular application, we utilized Grad-GAM within a three-dimensional space to generate attention 
maps for individual brain images of the test set (n = 301), all registered to the MNI standard template. The values 
within attention maps were normalized within a range of 0–1, with a higher value denoting a more considerable 
contribution of a specific region to the overall brain age prediction. A global average voxel-wise attention map 
was subsequently created by averaging the individual attention maps.

To examine the influence of gender information on predictive performance, we crafted global average voxel-
wise attention maps for both male (n = 148) and female (n = 153) samples in the test set. These attention maps 
could reveal gender-specific vital brain regions for age prediction. In our study, we visualized the gender-specific 
contributions of brain regions to age prediction by computing the differences between male and female atten-
tion maps. These difference values were normalized within a range of 0–1 and illustrated as a voxel-wise map. 
A higher value suggests a more marked gender difference in the contribution of brain regions to age prediction, 
possibly reflecting an augmented influence of gender information on age prediction.

Brain age estimation in patients with MCI and AD
To investigate the clinical applicability of our brain age prediction model further, we employed the combined 
CNN-MLP algorithm to estimate the brain age in patients diagnosed with MCI (n = 208, MCI group) and AD 
(n = 172, AD group). The data utilized for these analyses were sourced from the ADNI1 database (available at 
https:// adni. loni. usc. edu/ about/ adni1/)89. We determined the brain age gap, defined as the difference between 
chronological age and estimated brain age, for both the MCI and AD groups. Subsequently, we compared these 
brain age gaps between the two groups using an independent t-test.

Data availability
The datasets analyzed during the study are available in the following sources: 1000 Functional Connectomes 
Project (1000 FCP, available at http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html); International 
Neuroimaging Data-sharing Initiative (INDI) Prospective Data Sharing Samples (available at http://fcon_1000.
projects.nitrc.org/indi/IndiPro.html); Information eXtraction from Images (IXI, available at https:// brain- devel 
opment. org/ ixi- datas et/); Open Access Series of Imaging Studies (OASIS, available at http:// www. oasis- brains. 
org/); Cambridge Centre for Aging and Neuroscience (CamCAN, available at https:// www. cam- can. org/); Alz-
heimer’s Disease Neuroimaging Initiative 1 (ADNI 1, available at https:// adni. loni. usc. edu/).
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