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Mathematical model predicts 
tumor control patterns induced 
by fast and slow cytotoxic T 
lymphocyte killing mechanisms
Yixuan Wang 1, Daniel R Bergman 1, Erica Trujillo 2, Alexander T. Pearson 2, Randy F. Sweis 2* & 
Trachette L. Jackson 1*

Immunotherapy has dramatically transformed the cancer treatment landscape largely due to the 
efficacy of immune checkpoint inhibitors (ICIs). Although ICIs have shown promising results for 
many patients, the low response rates in many cancers highlight the ongoing challenges in cancer 
treatment. Cytotoxic T lymphocytes (CTLs) execute their cell-killing function via two distinct 
mechanisms: a fast-acting, perforin-mediated process and a slower, Fas ligand (FasL)-driven pathway. 
Evidence also suggests that the preferred killing mechanism of CTLs depends on the antigenicity of 
tumor cells. To determine the critical factors affecting responses to ICIs, we construct an ordinary 
differential equation model describing in vivo tumor-immune dynamics in the presence of active or 
blocked PD-1/PD-L1 immune checkpoint. Specifically, we identify important aspects of the tumor-
immune landscape that affect tumor size and composition in the short and long term. We also 
generate a virtual cohort of mice with diverse tumor and immune attributes to simulate the outcomes 
of immune checkpoint blockade in a heterogeneous population. By identifying key tumor and immune 
characteristics associated with tumor elimination, dormancy, and escape, we predict which fraction 
of a population potentially responds well to ICIs and ways to enhance therapeutic outcomes with 
combination therapy.

Immunotherapy has remarkably improved outcomes for many cancer patients. To have efficacy, immunothera-
pies must overcome immunosuppression induced by tumors and their microenvironment to allow the cytotoxic 
immune cells to target and kill cancer  cells1. Immune checkpoint inhibitors (ICIs) are a well-studied class of 
immunotherapeutics that revitalize the killing capacity of immune cells by blocking the activation of inhibitory 
 immunoreceptors2. Immune checkpoint blockade therapy often results in a more durable response than chemo-
therapy or targeted  therapies2 and has shown remarkable results for many patients. However, the low overall 
response rates in many cancers present an ongoing challenge to clinicians. For example, objective response to 
checkpoint blockade monotherapy remains near 20% in patients with bladder  cancer3. Over the past decade, there 
has been keen interest in research to improve the efficacy of blocking the programmed death-1/programmed 
death-ligand 1 (PD-1/PD-L1) immune  checkpoint4. The FDA has approved seven monoclonal antibodies that 
target the PD-1/PD-L1 checkpoint with supplemental indications in over fifteen cancer types and two tissue-
agnostic  conditions5.

Adding further complexity to the antitumor immune responses is the fact that Cytotoxic T lymphocytes 
(CTLs) execute their cell-killing function via at least two distinct mechanisms. The first process is fast-acting and 
perforin/granzyme  mediated6. CTL-derived granzymes enter the tumor cell through perforin pores to induce 
structural damage and thus  apoptosis7. The second process is a slower, FasL-driven killing  mechanism6. FasL, a 
type II transmembrane protein upregulated on CTLs, can engage Fas on the target cell to trigger signaling that 
causes the activation of the apoptotic  cascade8. In one study, perforin-based killing was detected within thirty 
minutes, whereas FasL-based killing was detected no sooner than two hours after tumor cell conjugated with 
 CTL6 . More recently, Cassioli and Baldari corroborated that granzyme/perforin mediated killing happens faster 
than Fas-dependent  killing8. There is incomplete data regarding the manifestations of contact vs. granule-based 
T cell killing in solid tumors; however, some evidence suggests that CTLs switch from fast to slow killing with 
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decreased antigen  load6, demonstrating different behaviors of the immune system towards tumor cells with 
varying antigenicity. The antigenicity of a tumor can be defined as the extent to which tumor cells display HLA-
restricted antigens that can be selectively or specifically recognized by immune  cells9. One of the immunoevasive 
strategies cancer cells employ is the downregulation or loss of antigens, which can occur due to the immune 
selection of cancer cells that lack immunogenic tumor antigens and through the acquisition of defects in antigen 
 presentation10. Loss of antigenicity impairs the ability of natural immune responses to control cancers, impedes 
immunotherapies that work by re-invigorating CTLs, and potentially alters future responsiveness to additional 
 treatments11.

By constructing and analyzing data-driven mathematical and computational models, we aim to investigate 
the roles of antigenicity, differential immune cell-kill mechanisms and other aspects of the tumor-immune land-
scape in immune checkpoint blockade therapy, and to formulate therapeutic strategies to enhance outcomes. 
The complex interactions between tumor and the immune system result in vastly different outcomes such as 
tumor elimination, tumor dormancy and uncontrolled tumor growth. One way to predict the specific circum-
stances leading to these fates is through non-linear ordinary differential equations (ODEs), which model cellular 
interactions and reveal the temporal dynamics of the components in tumor-immune interactions. In what has 
become a classic model of tumor immune dynamics, Kuzentzov proposed a system of ODEs that model the CTL 
response to the growth of an immunogenic  tumor12. Key features of this model include the characterization of 
antigen-independent and antigen-stimulated recruitment of cytotoxic effector cells to the tumor site, and an 
immune-mediated death rate of tumor cells that increases proportionally as the number of T cells increases. 
Alternative mathematical descriptions of tumor cell kill, such as the “Beddington” functional  response13, have 
now been proposed to reflect the more realistic assumption that immune cell killing saturates as the number of 
immune cells increases.

In this study, we test the hypothesis that immune checkpoint therapy impacts both the total tumor volume 
and the proportion of the two tumor cell phenotypes due to differential killing mechanisms associated with each 
tumor phenotype. Our analysis highlights important parameters that affect the outcomes of immune checkpoint 
blockade. Among these, some parameters characterize the tumor-immune landscape, and others can be modu-
lated by cancer treatments such as chemotherapy and additional types of immunotherapy. Understanding the 
impact of different parameters on tumor volume and phenotypic composition enables us to gain insights into 
which patients are most likely to respond to ICIs and what combination therapy can result in better therapeutic 
outcomes.

Methods
Our mathematical model reflects the current biological understanding of tumor-immune interactions includ-
ing the role of the PD-1/PD-L1 immune checkpoint. We develop a “checkpoint active” model that describes the 
fully functional PD-1/PD-L1 signaling pathway leading to immune suppression. We then relax this assumption 
by removing the immunosuppressive effects by the PD-1/PD-L1 complex to formulate a model with the PD-1/
PD-L1 signal inhibited to study the implications of a perfect checkpoint blockade therapy. The model captures 
the temporal evolution of the number of high antigen tumor cells (N), low antigen tumor cells (M) and cytotoxic 
T cells (T). Model variables and their units are described in Table 1, S1. Figure 1A is a schematic diagram of the 
components of the ODE model, with equations given in Fig. 1B. Parameters that have significant impact on post 
treatment tumor size and composition include: the probability of high ( p1 ) and low ( p2 ) antigen tumor cell death 
via fast killing; the rates of high ( δnf  ) and low ( δmf  ) tumor cell death via fast killing; the rate of T cell recruitment 
to the tumor site, µ ; and the maximum rate of additional antigen-stimulated T cell proliferation by high ( αnt ) 
and low(αmt ) antigen tumor cells. Descriptions of all parameters, their units and baseline values parametrized 
for mice are included in Table 1. A detailed description of the mathematical model is in S1.

Results
Impact of immune responses parameters on long-term tumor volume and composition after 
complete checkpoint blockade
Many parameters of our model are crucial because they either characterize the distinct immune cell-kill mecha-
nisms or can be modulated with therapy. By changing some of these parameters, we now study the impact of the 
different cell-kill mechanisms ( p1, p2 ) and individual or combined therapies. Examples of treatment strategies 
include immune checkpoint inhibition ( F(P, L) = 1 ), stimulated immune cell expansion due to the administra-
tion of therapeutic cytokines like IL-2 (increasing in αnt ,αmt)19, and adoptive T cell transfer (increasing µ ). We 
conducted global sensitivity analysis (S2) to determine which model parameters have the greatest impact on 
tumor growth. With checkpoint active, the tumor growth is only sensitive to intrinsic properties of the tumor 
such as proliferation rates. With checkpoint completely blocked, tumor volume and composition are largely 
influenced by immune parameters, including the probability of fast killing ( p1, p2 ), differential immune stimula-
tion by high or low antigen tumor cells ( αnt ,αmt ) and the immune effector cell localization rate ( µ ) as shown in 
(Fig. S1). Therefore, we focus on model predictions when these parameters vary.

We use bifurcation analysis to investigate how stable steady state tumor volume and composition change in 
response to variations in sensitive parameters when the PD-1/PD-L1 checkpoint is completely blocked. We plot 
two and three-parameter bifurcation diagrams to reveal important relationships between parameters associated 
with T cell killing mechanism ( p1, p2 ) and those that can be modulated by treatment ( µ,αnt ,αmt).

Differential immune cell‑kill mechanisms determine long‑term tumor composition
Figure 2A shows how tumor composition in a tumor-persistent steady state varies depending on the values of p1 
and p2 . When a tumor of any size persists at steady state, the p1 − p2 parameter space is dissected into regions 
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where the tumor consists of either only high or only low antigen tumor cells, represented by striped and solid 
regions, respectively. These high antigen-dominant and low antigen-dominant scenarios are the only two types 
of nonzero steady state outcomes for tumor composition predicted by our model for the parameter ranges in 
Table 1. Figure 2A shows that when the probability of high antigen tumor cell death via the fast-killing mecha-
nism is greater than that for low antigen tumor cells ( p1 > p2 ), the final tumor composition at steady steady will 
be homogeneous and only consists of low antigen tumor cells, and vice versa.

Combination checkpoint blockade and cytokine therapy enhances opportunities for tumor dormancy
Our model predicts three types of outcomes in terms of steady state tumor size: elimination, dormancy, and 
escape. Elimination is defined as no tumor cells present. Dormancy is characterized by the tumor approaching a 
small, nonzero steady state, and escape is characterized by the tumor approaching carrying capacity. In addition, 
our model also predicts bistability, which occurs when the steady state tumor can be any two among the three 
outcomes (e.g. elimination or dormancy) depending on the initial conditions.

Fixing other parameters at baseline values, we explored the impact of p1, p2 , and αmt on the realization of 
these outcomes. Figure 2B considers the p1 − p2 bifurcation plane for five values of αmt , the maximum rate of 
CTL proliferation activated by low antigen tumor cells. The slices are taken at αmt = 0.05, 0.15, 0.27, 0.39, 0.5, 
with the second from the bottom slice representing our baseline αmt . This figure shows that there are two types 
of therapeutic outcomes in terms of steady state tumor size: escape and bistability, represented by yellow and 

Figure 1.  (A) Schematic diagram and equations of the ODE model describing tumor-immune dynamics. The 
two tumor cell phenotypes are high antigen (N) cells and low antigen (M) cells. T cells kill tumor cells via two 
mechanisms: a fast-acting and perforin/granzyme-mediated process, and a slower, Fas ligand (FasL)-driven 
process. PD-1 expressed on T cells and PD-L1 expressed on tumor cells interact to inhibit T cell activity in 
tumor killing. Anti-PD-1 prevents the engagement of PD-1 and PD-L1. (B) Model equations.
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green, regions, respectively. The bistability region in this case includes both dormancy and escape as possible 
outcomes. With baseline parameters (red star in Fig. 2B) and the PD-1/PD-L1 checkpoint blocked, the tumor 
will escape and grow to carrying capacity. However, an additional therapy (e.g. cytokine therapy) that increases 
αmt makes tumor dormancy possible. More generally, our model predicts that a therapy that modulates αmt 
shrinks the region of p1 − p2 values where the tumor escapes with certainty and expands the region where the 
tumor can potentially stabilize in a small, dormant state. It is noted that steady state tumors in Fig. 2B will be 
either very large (escape) or small (dormant) and either completely high ( p1 < p2 ) or low ( p1 > p2 ) antigen 
dominant. One would observe the same trend if αnt is used instead of αmt because high and low antigen tumor 
cells are modelled in the same way mathematically.

Combination checkpoint blockade and adoptive T cell therapy enhances opportunities for tumor elimination
Similarly, Fig. 2C considers the p1 − p2 bifurcation plane for five values of µ , the T cell recruitment and activation 
rate. The slices are taken at µ = (0.5, 2, 4, 6, 8)× 104 , with the second from the bottom slice representing our 
baseline µ . This figure again shows that the yellow region, representing escape, shrinks as µ increases. However, 
as µ increases further, a third outcome emerges, bistability resulting in elimination or escape represented by 
the blue regions in Fig. 2C. These results imply that an additional therapy that increases µ (e.g. adoptive T cell 
therapy) can potentially, result in tumor clearance. With baseline parameter values (red star in Fig. 2C) and the 
PD-1/PD-L1 checkpoint completely blocked, the tumor will grow to carrying capacity. In this case, increasing 
µ can result in tumor dormancy or even elimination. Overall, increasing µ shrinks the region of p1 − p2 values 
where the tumor escapes with certainty and expands the region where the tumor has a chance of being eliminated 
or stabilizing in a small, dormant state.

Pre‑treatment immune landscape determines the feasibility of combination therapeutic strategies
Taken together, the results lead us to investigate the potential of combining cytokine and adoptive T cell therapies 
by exploring the µ− αmt plane. Figure 2D shows how this type of combination therapy impacts therapeutic 
outcomes when p1, p2 are fixed at their baseline values. Here we see that if a tumor is characterized by small 
intrinsic values of µ and αmt that would normally lead to escape (the lower left corner of the graph), the fast-
est way to move to a better outcome with the least amount of additional treatments is combination therapy 
(checkpoint blockade, adoptive T cell transfer and cytokine therapy) that simultaneously increases both µ and 
αmt . Figure 2D also implies that it is now possible with combination therapy (checkpoint blockade and adoptive 
T cell therapy) to only increase µ and move from any location in the yellow escape region to the blue region 
where elimination is possible. If a tumor is characterized by our baseline parameter values represented by the 
red star in Fig. 2D, then additional cytokine therapy within the range for αmt that we consider will be ineffective 

Table 1.  Baseline parameters.

Parameter Description Value (baseline) Units Source

αn Proliferation rate of high antigen tumor cells 0.05–0.6 (0.337) per day Estimated14

αm Proliferation rate of low antigen tumor cells 0.05–0.6 (0.337) per day Estimated14

K Carrying capacity for tumor cells 3−6 · 10
9(5 · 109) # of cells Estimated

δns Maximum CTL-induced death rate of high antigen tumor cells via the slow killing mechanism 1–12 (4) per day Estimated15

δms Maximum CTL-induced death rate of low antigen tumor cells via the slow killing mechanism 1–12 (4) per day Estimated15

δnf CTL-induced death rate of high antigen tumor cells via the fast-killing mechanism 10
−8

−10
−6(2.5 · 10−7) per cell per day Estimated14

δmf CTL-induced death rate of low antigen tumor cells via the fast-killing mechanism 10
−8

−10
−6(2.5 · 10−7) per cell per day Estimated14

κ0
Half-saturation constant in maximum CTL-induced death rate of via the slow killing mecha-
nism 10

6
−10

8(2 · 107) # of cells Estimated

κ1 Saturation effect by immune cells on slow killing 0.01–1 (0.5) Dimensionless Estimated12

κ2 Half-saturation constant in the antigen-mediated T cell proliferation rate 10
6
−10

8(2.019 · 107) # of cells Estimated14

δt Death rate of T cells 0–0.5 (0.0412) per day 12,16

µ Activation and recruitment rate of T cells 5 · 10
3
−1.5 · 10

5(2 · 104) # per day Estimated

δn CTL death rate due to interactions with high antigen tumor cells 10
−11

−10
−9(3.422 · 10−10) per cell per day Estimated12

δm CTL death rate due to interactions with low antigen tumor cells 10
−11

−10
−9(3.422 · 10−10) per cell per day Estimated12

p1 Probability of high antigen tumor cells death via the fast-killing mechanism 0–1 (0.92) Dimensionless Estimated

p2 Probability of low antigen tumor cells death via the fast-killing mechanism 0–1 (0.33) Dimensionless Estimated

αnt Maximum rate of CTL proliferation activated by high antigen tumor cells 0–0.5 (0.15) per day Estimated12,14,16

αmt Maximum rate of CTL proliferation activated by low antigen tumor cells 0–0.5 (0.15) per day Estimated12,14,16

ρp Molar concentration of PD-1 per T cell 10
−12

−10
−10(1.259 · 10−11) μM 16,17

ρl Molar concentration of PD-L1 per T cell 10
−12

−2 · 10
−10(2.510 · 10−11) μM 16,17

ǫc Expression of PD-L1 on tumor cells vs. T cells 1–50 (10) Dimensionless 17

µPA Blocking rate of PD-1 by anti-PD-1 6.45–273 (8.945) L/μ mol/h 17,18

kTQ Inhibition of T cells by PD-1/PD-L1 10
−10

−10
−8(1.296 · 10−9) (μM)2 17,18
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Figure 2.  Bifurcation analysis illustrates important variations in steady state tumor size, composition, and 
response to ICI monotherapy or combination therapy. (A) Steady state tumor composition in relation to 
p1, p2 values. High (low) antigen dominant: consisting of only high (low) antigen tumor cells. (B) Response 
to changing αmt (e.g. cytokine therapy) at various p1, p2 values. Two outcomes in terms of tumor size: escape 
(yellow) and bistability with dormancy or escape (green). (C) Response to changing µ (e.g. adoptive T cell 
transfer) at various p1, p2 values. One more outcome in addition to (B): bistability with elimination or escape 
(blue). (D) Comparison of the impact of µ and αmt on steady state tumor size. Escape: tumor size ≥ 500mm3 ; 
dormancy: 0 < tumor size < 500mm3 ; elimination: tumor size = 0mm3 . Red star: baseline parameters. 
Parameters not shown are fixed at baseline values.
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for changing the therapeutic outcome of escape, but if αmt can be increased to approximately four times our 
baseline value, dormancy is possible.

Clinical implications of variable probabilities of fast killing
The previous subsection examined how steady state tumor sizes vary with parameters that can be modulated 
by therapy as the probability of tumor cell death via fast killing changes. These steady states are rarely seen in 
practice. To consider these effects on a clinically relevant timeline, we measure the total tumor volume on Day 
25 and Day 150. The first end point of 25 days was chosen because model tumor xenograft experiments in mice 
are often conducted for 3–4 weeks. The second endpoint of 150 days was chosen to represent the timescale of 
clinical elimination. Figure 3 shows the changes in total tumor volume and composition on Day 25 and Day 
150 for varying p1, p2 combinations when the PD-1/PD-L1 checkpoint is active or completely blocked. Again, 
p1(p2) is the probability of high (low) antigen tumor cell death via the fast-killing mechanism. Due to limita-
tions of current imaging technology, tumors smaller than 0.1mm3 cannot be  detected20. Therefore, we define 
clinical elimination as a tumor smaller than 0.1mm3 . For the same reason, we stop our simulations when the 
total tumor size reaches 0.1mm3 or below. When this happens, the tumor size remains at 0.1mm3 . The size of 
a circle in Fig. 3 represents the size of the tumor and the color of a circle is a measure of tumor composition as 
it represents the ratio of low antigen tumor cells to total tumor cells. As the tumors move up the color bar from 
blue to red, they transition from high antigen-dominant to low antigen-dominant.

Figure 3A shows that as p1, p2 vary when the checkpoint is active, the total tumor volume on Day 25 remains 
largely unaffected; all tumors are within about 300mm3 of each other. By Day 150, these tumors have all reached 
the maximum carrying capacity volume (Fig. 3B). Tumor composition varies little when the checkpoint is active 
despite large variations in p1, p2 . The initial tumor size is 1mm3 and consists of 50% high antigen tumor cells 
and 50% low antigen tumor cells. As the difference between p1 and p2 increases, moving towards the lower right 
corner, there is a modest shift toward low antigen dominance with low antigen tumor cells making up at most 

Figure 3.  Probability of “fast” T cell killing ( p1, p2 ) determines the dominant cell type and tumor size in 
response to checkpoint blockade therapy. (A,B) Tumor size and composition with checkpoint active on Day 25 
and Day 150. (C,D) Tumor size and composition with checkpoint blocked on Day 25 and Day 150. Magenta 
line: combinations of p1, p2 that result in 75% reduction in total tumor volume after checkpoint blockade, 
relative to when the checkpoint is active. Size of the circles: tumor size; color of circles: the ratio of low antigen 
tumor cells to total tumor cells, a measure of tumor composition. Initial tumor size in all simulations is 1mm3 
and consists of 50% high antigen tumor cells and 50% low antigen tumor cells.
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56% of the tumor cells. Similarly, moving towards the upper left corner, there is a modest shift toward high 
antigen dominance.

Outcomes for complete checkpoint blockade are shown in Fig. 3C and D. When p1 > p2 , the proportion of 
low antigen tumor cells in the tumor increases significantly after checkpoint blockade, as illustrated by the shift 
to more red colors in the lower right portion of the graphs. The magenta curve in Fig. 3C and D represents the 
combinations of p1, p2 that result in 75% reduction in total tumor volume and our baseline values fall into this 
region. These figures demonstrate the importance of the probability of fast killing on the therapeutic outcomes 
of PD-1/PD-L1 checkpoint blockade. If both cell types are killed by the fast mechanism, the resulting tumor on 
Day 25 is twenty times smaller than if both cell types are killed by the slow mechanism, as illustrated by the dif-
ference in size of the dots in the upper right and lower left corners. If high antigen tumor cells are killed only via 
the fast mechanism, then low antigen tumor cells must have at least 0.33 probability of being killed via the fast 
mechanism in order to achieve at least 75% tumor reduction on Day 25. The relative values of p1, p2 determine 
the prevailing type of tumor cells in the long run. When p1 > p2 , checkpoint blockade therapy will increase the 
proportion of low antigen phenotype in the tumor despite reducing the total tumor size. This change in tumor 
composition will impact the tumor’s responsiveness to future treatments. For example, since low antigen tumor 
cells in our baseline assumption elicit slower immune response, a more low antigen-dominant tumor will likely 
be less responsive to subsequent immunotherapy.

Figure 3D shows that by Day 150 several p1, p2 combinations lead to clinical elimination. However, there are 
also p1, p2 combinations that lead to substantial tumor reduction on Day 25, but complete relapse by Day 150, e.g. 
p1 = 0.85, p2 = 0.36 . It is also noteworthy that our Day 25 prediction that when p1 > p2 , checkpoint blockade 
therapy will increase the proportion of low antigen tumor cells still holds on Day 150.

Outcomes for virtual tumors before and after checkpoint blockade
To further investigate the effect of PD-1/PD-L1 checkpoint blockade on tumor reduction, we generate a virtual 
cohort of mice upon which to test therapeutic impact. To predict the response of a diverse population compris-
ing individuals with heterogeneous tumor and immune characteristics to checkpoint therapy, we use Latin 
Hypercube Sampling (LHS) to generate 30,000 combinations of all parameters, initial tumor composition and 
initial immune to tumor cell ratio. Each parameter combination represents a mouse with unique tumor and 
immune dynamics. We categorize our simulated outcomes before and after complete checkpoint blockade into 
clinical elimination (tumor size less than 0.1mm3 ), dormancy (tumor size between 0.1 and 500mm3 ) and escape 
(greater than 500mm3 ). Figure 4A shows that when the checkpoint is active approximately 20% of tumors are 
small enough to be dormant on Day 25, but almost 80% are already large enough to be in the escape category. By 
Day 150, almost all dormant tumors have progressed to escape with only a very small fraction being clinically 
eliminated.

When the checkpoint is completely blocked, Fig. 4B shows that on Day 25 about 16% of tumors are clinically 
eliminated and only about 36% have escaped. By Day 150, most tumors that were dormant on Day 25 have been 
clinically eliminated and a small amount have escaped. Taken together, the results illustrated in Fig. 4 suggest 
that Day 25 tumor size alone can be a poor predictor of long-term clinical outcomes, especially when the tumor 
is small but detectable.

Correlation between key immune parameters and therapeutic outcomes
We showed in the previous section that mice with different tumor-immune landscapes have distinct responses to 
checkpoint therapy. In Fig. 5 we investigate how clinical outcomes depend on the values of important parameters, 
which relate to specific tumor and immune characteristics in our cohort of 30,000 mice. Figure 5A,C,E,G are 
stacked bar plots showing the probability of each outcome (clinical elimination, dormancy, or escape) for a range 
of a chosen parameter that impacts clinical outcome. Figure 5B,D,F,H are violin plots showing the distribution, 
median and interquartile range of parameters in our virtual cohort associated with each outcome.

Figure 5A implies that as the maximum rate of CTL proliferation activated by high antigen tumor cells ( αnt ) 
increases from smallest values to the largest, the probability of clinical elimination also increases from 0.38 to 
0.72, while the probability of escape decreases from 0.61 to 0.26. In our cohort, the αnt median and interquartile 
range for escape cases are lower than that of the clinical elimination and dormancy cases as shown in Fig. 5B. 
CTL-induced death rate of high antigen tumor cells via the fast-killing mechanism ( δnf  ) and activation and 
recruitment rate of T cells ( µ ) show similar trends (Fig. 5C,D,E,F). However, the trend is more pronounced 
for µ . As µ increases from the smallest to the largest values, the probability of elimination quadruples while 
the probability of escape  drops down to one fourth (Fig. 5E). Moreover, the µ median and interquartile range 
of elimination cases is also significantly higher than that of escape cases. These all reiterate the importance of 
µ in tumor elimination as we explained in Fig. 2. Regarding the death rate of T cells ( δt ), we observe that the 
probability of clinical elimination decreases slightly and probability of escape increases slightly as δt increases 
(Fig. 5G). We also notice that dormancy is extremely unlikely with small δt and its probability improves slightly 
with bigger δt values.

Discussion
Here we presented the first mechanistic mathematical model designed to investigate the impact on immuno-
therapy outcomes of differential cell-kill strategies immune cells use to target tumor cells with different antigen 
loads. To predict which patients are more likely to respond to ICIs, and to develop improved therapeutic strate-
gies, understanding the differential cell-kill mechanisms that T cells use against tumor cells is essential. Since 
the discovery of the PD-1/PD-L1 immune checkpoint, the immunosuppressive effect of the checkpoint has 
been included in several mathematical models of tumor-immune  dynamics14,16–18. While our model has similar 
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features to existing models, our work is distinctive and innovative in two ways: (i) we consider two types of tumor 
cells (high antigen and low antigen phenotype), and (ii) we explicitly incorporate the two killing mechanisms.

We assessed the impact of ICI monotherapy or combination therapy by analyzing the relationship of impor-
tant model parameters to tumor volume and composition. Based on bifurcation analysis of potential long-term 
tumor responses, we categorized therapeutic outcomes into “elimination”, “dormancy” and “escape”, which can 
correspond to the three phases of the immunoediting  framework21. Other works such  as22 have categorized 
outcomes of tumor-immune dynamics similarly. “Elimination” referred to a tumor volume of 0mm3 , while 
“dormancy” referred to a tumor with volume less than 500mm3 and “escape” referred to a tumor expanding 
larger than 500mm3 . To better understand how parameters impact therapy outcomes in a more clinically relevant 
time frame, we supplemented bifurcation analysis with direct visualization of Day 25 and Day 150 tumor volume 
and composition with varying parameters in Fig. 3. We chose the endpoints, Day 25 and Day 150, to reflect 
immediate and long-term responses to therapy. In this case, we re-coined “elimination” as “clinical elimination” 
to refer to a clinically undetectable tumor with volume less than 0.1mm3 , representing the limit of clinical and 
imaging assessment.

A novel feature of our model was that the probability of tumor cell death via fast killing differs based on tumor 
antigenicity, with p1 being the probability associated with high antigen tumor cells and p2 associated with low 
antigen tumor cells. Our analysis showed that, after checkpoint blockade therapy, p1 and p2 critically determine 
whether tumor elimination is possible and how tumor composition changes if the tumor persists. In Fig. 3, we 
showed that if the probability of tumor cell death via fast killing is sufficiently high for both high and low antigen 
tumor cells, ICI monotherapy can clinically eliminate the tumor. Under our baseline assumption, high antigen 
tumor cells are more likely to be killed via the fast mechanism than low antigen tumor cells, i.e. p1 > p2 . In this 
case, when the tumor persists under ICI monotherapy, the resulting tumor is more low antigen-dominant than 
the initial tumor in the short term. The tumor then progresses to become wholly composed of low antigen tumor 
cells over time. If our baseline assumption holds, our result suggested that the presence of low antigen tumor 

Figure 4.  Virtual cohort simulations show that checkpoint blockade results in better clinical outcomes on both 
Day 25 and Day 150. (A) Probability of each clinical outcome when the checkpoint is active. (B) Probability of 
each clinical outcome when the checkpoint is blocked. Clinical elimination: tumor size < 0.1mm3 ; dormancy: 
0.1 ≤ tumor size ≤ 500mm3 , escape: > 500mm3 ). Size of virtual cohort: 30,000.
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Figure 5.  Relationship between model parameters and the outcome of checkpoint blockade therapy in the same 
virtual cohort as Fig. 4. (A,C,E,G) Stacked bar plots of the probability of each outcome (clinical elimination, 
dormancy, or escape) for a range of a chosen impactful parameter. (B,D,F,H) violin plots of the distribution 
of parameters of the virtual cohort associated with each outcome, with the shape showing probability density, 
the white circle showing median and the grey lines showing interquartile range. ( αnt : maximum rate of CTL 
proliferation activated by high antigen tumor cells; δnf  : CTL-induced death rate of high antigen tumor cells via 
the fast-killing mechanism; µ : activation and recruitment rate of T cells; δt : death rate of T cells).
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cells weakens the response to ICI monotherapy. A related phenomenon was observed clinically in a recent study 
by Zapata et al.23, which demonstrated that immune-edited tumors with low tumor antigenicity are less likely 
to respond to ICIs.

Furthermore, we studied how to enhance the therapeutic results of ICI with combination therapy. To do this, 
we focused on parameters that can be altered by current clinical interventions. CTL activation and recruitment 
rate ( µ ) proved to be the most important immune parameters for achieving tumor reduction or elimination, fol-
lowed by maximum rate of antigen-mediated CTL proliferation ( αnt ,αmt ) . This model finding is consistent with 
clinical observations that have shown that activation of T cells via immune checkpoint blockade is not effective for 
non-T cell-inflamed tumors, which do not have T cell recruitment beyond a minimal  threshold24. Furthermore, 
in preclinical models, the systemic administration of activating, proliferating tumor antigen-specific T cells is 
insufficient to control tumors that lack the appropriate chemokine signals for recruitment of T  cells25. We showed 
that increasing µ can lead to a much smaller tumor or even elimination, with other tumor-immune character-
istics kept constant. One way to increase CTL activation and recruitment is through adoptive T cell therapy. 
Emerging clinical evidence supports the use of adoptive cell therapy using tumor-infiltrating lymphocytes after 
anti-PD-1 or PD-L1  therapy26,27, as well as the use of CAR T-cell therapy before anti-PD-1 to treat solid  tumors28. 
Moreover, according to our simulations, increasing αnt or αmt can also lead to significant volume reduction. IL-2, 
a cytokine that promotes the growth and activation of T cells, is often used in combination with other forms of 
immunotherapy, including adoptive T cell  transfer19. Therefore, cytokine therapy can be potentially combined 
with ICIs to increase antigen-mediated T cell proliferation ( αnt , αmt ) and produce better therapeutic outcomes. 
Using a humanized mouse model, Jespersen et al. determined continuous presence of IL-2 to be essential for 
eradicating tumors undergoing adoptive T cell transfer and/or anti-PD-129, although they did not manage to 
show that anti-PD-1 and adoptive T cell transfer combination therapy is superior than adoptive T cell transfer 
alone. In practice, IL-2 therapy combined with ICI has not proven more effective than ICI monotherapy to 
 date30, although a recent phase 1b study suggested that combination therapy with high-dose IL-2 therapy and 
anti-PD-1 might be feasible and  tolerable31. Nonetheless, new variants of IL-2 for synergy with ICI continued 
to be developed in clinical  setting30. Overall, combination therapy may have two significant benefits: (i) achieve 
tumor elimination or drastic tumor volume reduction that is otherwise unattainable with ICI alone; (ii) reduce 
the amount of drug used in each treatment, which patients might tolerate better.

Beyond immunotherapy alone, our analysis showed that ICIs can also be combined with first-line treatments 
like chemotherapy to produce therapeutic benefits. The “elimination or escape” and “dormancy or elimination” 
bistability regions in Fig. 2 suggested that, depending on the initial tumor size, tumor composition, or ratio of 
tumor to immune cells, two patients with similar tumor-immune landscapes may have tumors of vastly differ-
ent sizes after receiving checkpoint blockade therapy. Furthermore, mouse models showed that chemotherapies 
that induce immunogenic cell death can turn a non-T cell-inflamed tumor into a T cell-inflamed tumor more 
infiltrated with tumor-specific T  cells32. Some chemotherapies can upregulate the expression of PD-L1 by cancer 
 cells32. Since T cell-inflamed tumors elicit different immune responses from non-T cell-inflamed tumors, which 
would translate to different immune or tumor parameters in our model, ICI can produce qualitatively different 
therapeutic outcomes depending on the baseline endogenous immune response to the tumor. Therefore, chemo-
therapy may be used before ICI to enhance the efficacy of ICI and facilitate tumor elimination. This strategy has 
been successful clinically in bladder cancer where maintenance therapy with avelumab, an anti-PD-L1 therapy, 
has become standard of care with an overall survival  benefit33.

To single out the impact of each aforementioned model parameter on an individual patient, we had to keep 
the other parameters invariant. Through virtual cohort analysis, we shifted our focus to a diverse population 
and study the relationship between specific characteristics of the tumor-immune landscape and the outcomes of 
checkpoint blockade therapy or combination therapy. High CTL recruitment rate ( µ ), antigen-mediated T cell 
proliferation rates ( αnt ,αmt ), and CTL-induced death rate of tumor cells via fast killing ( δnf , δmf  ) all corresponded 
to a higher probability of tumor elimination after checkpoint blockade therapy. This was particularly pronounced 
for µ : patients with a high CTL recruitment rate ( µ ) were four times more likely to get their tumors eliminated 
than those with a low µ . If these patient-specific parameters can be measured, they can be used to predict the 
probability of tumor elimination after receiving ICI alone. If other forms of cancer treatments (e.g. adoptive T cell 
transfer, cytokine therapy) can modulate these parameters, they should be considered for combination therapy 
with ICI for better odds of tumor elimination. The correlation between the rate of fast killing for high and low 
antigen tumor cells ( δnf , δmf  ) and the outcomes of checkpoint blockade therapy highlighted the importance of 
considering differential immune cell-kill mechanisms when evaluating the efficacy of ICI. Furthermore, virtual 
cohort simulations suggested that it might be too soon to conclude the outcome of ICI on Day 25, because tumors 
that shrunk significantly by Day 25 might relapse by Day 150, as implied by results in Figs. 3 and 4.

This study thoroughly investigated the outcomes of complete immune checkpoint blockade as the best-case 
scenario for using ICIs by assuming that F(P, L) = 1 . In reality, the value of F(P, L) will likely be less than 1 
and vary with time, depending on how anti-PD1 is administered. Hence, we will implement a realistic dosing 
schedule of anti-PD-1 therapy in the virtual cohort in our future work to improve the clinical relevance of the 
model. Terms and parameters of ODE models also have to be carefully chosen to ensure that key parameters can 
be calibrated with real-world data. Therefore, one cannot represent all relevant reaction pathways and have to 
omit many details of biological processes in an ODE model. Despite the computational and analytical advantages 
of continuous ODEs in modeling tumor-immune dynamics, the lack of spatial components in ODEs leads to 
the inability to obtain structural information about the tumor and the tumor microenvironment. Agent-based 
models, which describe each cell as an independent agent in a three-dimensional space and prescribe how cells 
move or interact, can better reflect the complexity seen in vivo and complement ODE models. These approaches, 
along with parameterization of ODE models with in vivo data in the future, will improve representation of diverse 
patient populations in the models.
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Data-driven and biologically informed mathematical models of cancer control strategies are a powerful 
complement to experimental studies. Mechanistic ODE models like the ones presented in this work allow rapid 
simulations to identify critical patterns or discover underlying mechanisms in the tumor microenvironment that 
drive cancer progression and therapeutic resistance. In particular, we explored how differential cell-kill mecha-
nisms that T cells use against tumor cells with variable antigenicity impact tumor growth and their implications 
on ICI monotherapy or combination therapy. Our methodology can be used to systematically explore a wide 
range of questions related to tumor-immune dynamics and immunotherapy. The modeling framework and exten-
sions proposed can provide valuable insights for the rational design of pre-clinical experiments and clinical trials.

Data availability
The original contributions presented in the study are included in the article/supplementary material, further 
inquiries can be directed to the corresponding author.
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