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Magnetic resonance image‑based 
brain age as a discriminator 
of dementia conversion in patients 
with amyloid‑negative amnestic 
mild cognitive impairment
Hye Weon Kim 1,4, Hyung‑Ji Kim 2,4, Hyunji Lee 1, Hyeonsik Yang 1, ZunHyan Rieu 1 & 
Jae‑Hong Lee 3*

Patients with amyloid‑negative amnestic mild cognitive impairment (MCI) have a conversion rate 
of approximately 10% to dementia within 2 years. We aimed to investigate whether brain age is an 
important factor in predicting conversion to dementia in patients with amyloid‑negative amnestic 
MCI. We conducted a retrospective cohort study of patients with amyloid‑negative amnestic MCI. 
All participants underwent detailed neuropsychological evaluation, brain magnetic resonance 
imaging (MRI), and [18F]‑florbetaben positron emission tomography. Brain age was determined by 
the volumetric assessment of 12 distinct brain regions using an automatic segmentation software. 
During the follow‑up period, 38% of the patients converted from amnestic MCI to dementia. Further, 
73% of patients had a brain age greater than their actual chronological age. When defining ‘survival’ 
as the non‑conversion of MCI to dementia, these groups differed significantly in survival probability 
(p = 0.036). The low‑educated female group with a brain age greater than their actual age had the 
lowest survival rate among all groups. Our findings suggest that the MRI‑based brain age used in this 
study can contribute to predicting conversion to dementia in patients with amyloid‑negative amnestic 
MCI.

We are living in the era of artificial intelligence (AI), which is being widely integrated into the neuroimaging 
 field1. Many AI software provide quantitative information based on brain magnetic resonance imaging (MRI) 
segmentation, particularly in degenerative brain disorders including mild cognitive impairment (MCI) and 
 dementia2,3.

One notable aspect of AI application in neuroimaging research is the concept of "brain age." Despite debates 
concerning its validity and utility as a biomarker of brain  health4,5, there is compelling evidence to suggest that 
brain age hold the value for predicting the risk of cognitive decline and neurological progression, including 
Alzheimer’s  disease6–8. The estimation of brain age can vary depending on different brain imaging techniques 
and algorithms employed, and there is diversity on the definition and measurement methods of brain  age9,10.

Within this regard, the concept becomes particularly pertinent to patients with amyloid-negative amnes-
tic MCI, who are at a risk of developing  dementia11. The main concern in patients with MCI is whether they 
will be able to perform activities of daily living; in other words, whether their condition will deteriorate into 
 dementia12,13. Approximately 50–60% of patients with amyloid-positive amnestic MCI develop dementia in 
approximately 2 years, while 10–20% patients with amyloid-negative amnestic MCI develop dementia, indicating 
that amyloid-negative amnestic MCI cannot be considered a simple benign  condition14,15.

Given the implications, early detection of conversion to dementia is crucial for timely intervention and 
 management16,17. To address the critical concern, our retrospective cohort study aimed to elucidate the role of 
brain age in predicting the conversion to dementia in amyloid-negative amnestic MCI.
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Results
Demographic characteristics
Detailed demographic characteristics of the participants are shown in Table 1. Age, duration from onset to diag-
nosis, sex, education level, and occurrence of apolipoprotein E (ApoE) genotype were not significantly different 
between the two groups. In contrast, the K-MMSE score was significantly higher (p = 0.001) and the CDR score 
was significantly lower in the non-converter group (p = 0.029).

Volumetric results and brain age
Correlation between neuropsychological test performance and volume of ROI
The volume of ROIs in patients with Alzheimer’s dementia correlated well with the K-MMSE scores, especially 
in the non-converter group. However, the pattern of significant correlation between the results of neuropsy-
chological test and the volume of ROIs differed between the two groups (Fig. 1). The converter group showed 
an inverse correlation between the Controlled Oral Word Association Test (COWAT) animal test score and 
the regional volume of the left inferior lateral ventricle and between the COWAT Phonemic test score and the 
regional volume of the right inferior lateral ventricle (Fig. 1A). Interestingly, the non-converter group showed 
an inverse correlation between the CDR sum of boxes (CDR-SOB) score and the regional volume of the right 
hippocampus and between the Stroop color reading test score and the regional volume of the left hippocampus. 
In addition, the CDR-SOB and GDS scores were inversely correlated with regional volumes of the parietal, 
frontal, and temporal lobes (Fig. 1B).

Comparison of brain age with the actual chronological age
We compared the brain age with the actual chronological age of the patients. In the conversion group, all partici-
pants except three (91%, 32/35) had a brain age greater than their chronological age (Fig. 2, purple dots). Patients 
in the non-conversion group (N = 56) were comparatively diffusely scattered in the comparison graph (Fig. 2, 
gray dots). When the brain and actual ages were compared between the two groups, the group with a brain age 
less than their actual age had a significantly lower (p = 0.003) conversion rate to dementia from MCI. The age at 
onset, diagnosis, and MRI scans were significantly greater in the group with a greater brain age, and the K-MMSE 
score was significantly higher in the group with a less brain age (Supplementary Table S1).

Statistical subgroup analysis
Statistical differentiation in brain age subgroup analysis
Participants were divided into four subgroups. First, by comparing the brain and actual ages, we defined the older 
group as the group with patients having a brain age greater than their actual age, and the younger group as group 
with patients having a brain age less than their actual age. Second, converters and non-converters were separated. 
Finally, the formed four groups were as follows: group 1, younger by brain age- non-converters (N = 22); group 2, 
older by brain age non-converters (N = 34); group 3, younger by brain age converters (N = 3); and group 4, older 
by brain age converters (N = 32). As the number of patients in group 3 was very small, we decided to analyze the 
differences and compare the other three groups, that is, groups 1, 2 and 4. For continuous variables that did not 
show a normal distribution, the Kruskal–Wallis test was used. After performing the Kruskal–Wallis test, a post 
hoc test was performed using Benjamin Hochberg’s p-value-adjusted method. Age, sex, and education were not 
adjusted because the effect of age, sex, and education level on each test was 0 or the effect on the test in each 
group was not the same. As shown in Supplementary Table S2, there were significant differences in the K-MMSE, 
CDR-SOB, RCFT delayed, RCFT recognition, COWAT animal, and ideomotor apraxia scores between the groups.

In this study, discrimination between older by brain age groups, that is, groups 2 and 4, was the primary 
mode for determining whether the patient will develop to dementia. The conversion rate in the older by brain 
age group was 48.5% (32/66), which differed significantly from the ’lower conversion rate in the younger by brain 

Table 1.  Demographics and baseline characteristics of the subjects divided based on dementia conversion. 
The Student t-test was performed on normally distributed data. For continuous variables that did not show 
normal distributions, the Kruskal–Wallis test was performed. Group differences in dichotomous variables were 
evaluated using the χ2 test. MRI magnetic resonance imaging, K-MMSE Korean version mini-mental state 
examination, CDR clinical dementia rating. *p-value < 0.05.

Non-converter (N = 56) Converter (N = 35) p-value

Age of onset (years) 69.66 ± 9.55 72.80 ± 7.41 0.277

Age at diagnosis (years) 72.30 ± 8.88 74.69 ± 6.84 0.260

Age at MRI scan (years) 72.04 ± 9.10 74.51 ± 7.18 0.205

Duration from onset to diagnosis (months) 32.61 ± 30.50 28.37 ± 21.50 0.977

Sex (female) 29 (51.79%) 24 (68.57%) 0.174

Education (months) 9.62 ± 5.43 9.23 ± 5.53 0.681

ApoE genotype (e4 carrier%) 10 (17.86%) 6 (17.15%) 0.992

K-MMSE 26.25 ± 3.90 23.17 ± 4.20 0.001*

CDR 0.50 ± 0.00 0.54 ± 0.14 0.029*
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Figure 1.  Correlation between neuropsychological test performance and volume of ROIs. A. Correlation 
coefficients between neuropsychologic test performance and volume of ROIs in the converter group. The 
converter group showed good inverse correlations between the score of the COWAT animal test and the regional 
volume of the left inferior lateral ventricle, and between the score of the COWAT Phonemic test and the right 
inferior lateral ventricle. B. Correlation coefficients between neuropsychologic test performance and volume of 
ROIs in the non-converter group. Interestingly, this group shows an inverse correlation between the score of the 
CDR-SOB and the right hippocampus, as well as between the score of the stroop color reading test and the left 
hippocampus. In addition, the CDR-SOB, S-GDS scores and the regional volumes of the parietal, frontal and 
temporal lobes were also inversely correlated. Spearman correlation test was performed. Correlation Coefficients 
by Spearman’s rank correlation rho. Abbreviation: K-MMSE, Korean version Mini-Mental State Examination; 
HTN, hypertension; DM, diabetes mellitus; LDL, Low-density lipoprotein; HDL, High-density lipoprotein; CDR 
SOB, Clinical Dementia Rating Sum of Boxes; GDS, Global Deterioration Scale; K-BNT, Korean version-Boston 
naming test; RCFT, Rey complex figure test; SVLT, Seoul verbal naming test; COWAT, controlled oral word 
association test; S-GDS, Short version of Geriatric Depression Scale; ROIs, regions of interest. * p-value 0.3
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age group (12%, 3/25) as described earlier. The CDR-SOB, RCFT delayed, RCFT recognition, and COWAT ani-
mal test scores differed significantly between groups 2 and 4. The K-MMSE scores and other test domain scores 
did not differ between the two groups. The test results or past histories did not differ significantly between the 
non-converters and groups 1 and 2.

Survival analysis results of conversion
We defined the term ‘survival’ as the non-conversion of MCI into dementia and analyzed whether sex and 
education level affected survival probability. The division criteria were applied as follows: high level of educa-
tion, education duration ≥ 12 years and low level of education, education duration < 12 years. There was no 
significant difference in the survival probability among the four groups formed according to sex and education 
level (p = 0.230, Fig. 3A).

When the participants were divided into eight groups according to sex, educational level, and the additional 
application of brain age division (older group, brain age > actual age; younger group, brain age < actual age), 
survival probability differed significantly among groups (p = 0.036; Fig. 3B). The low-educated female group 
with a brain age greater than their actual age (Fig. 3B, pink line) had the lowest survival rate among all groups.

Discussion
Brain age calculated using quantitative information provided by the brain MRI AI software could be a novel 
imaging marker for predicting dementia conversion in patients with amyloid-negative amnestic MCI. Our study 
provides further evidence on the potential clinical utility of brain age prediction in identifying individuals at risk 
for dementia as the implication of four noticeable findings.

The first and main result of this study was that the older by brain age group had a 6.9 (CI 1.88–25.31) fold 
higher dementia conversion rate than the younger by brain age group (Supplementary Table S3). Patients with 
MCI having a brain age older than their actual age had heterogeneous features in terms of conversion. Hence, 
such patients should have regular clinical checkups for at least 36 months, which is the follow-up period of this 
study.

Figure 2.  Comparison of brain age with the actual chronological age. The red line is y = x. In the conversion 
group (purple dots), 91% (32/35) had a brain age older than their actual chronological age (y > x). The 
conversion rate to dementia was significantly lower in the group with a younger brain age than their 
actual age (y < x).
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Figure 3.  Survival analysis results of conversion. The graph demonstrates the interval survival rate at each 
event point during the entire study period and ultimately calculate the cumulative survival rate. The ‘survival’ 
is defined as the non-conversion of MCI to dementia. A. The four groups, divided by sex and education level, 
did not significantly differ in survival probability with a p-value of 0.23. B. When groups were divided based on 
sex, education level, and brain age, eight groups significantly differed in survival probability with a p-value of 
0.036. The low-educated female group with a higher brain age than their actual age (orange line) had the lowest 
survival rate of all groups. * ‘+’ sign means censored data.
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Second, the actual age at onset, diagnosis, and MRI scans did not differ significantly between converters and 
non-converters (Table 1), indicating that the effect of actual age was insignificant in these specific patient groups 
in terms of dementia conversion. Patients of all 3 age groups were significantly older in the brain age-older 
group compared to the brain age-younger group (Supplementary Table S1). As actual age may affect the cortical 
volume included in the formula for calculating the brain age, these results were  expected18. However, because 
the values of ROIs are already adjusted for the same sex and age before including in the formula, brain age does 
not always correlate with actual age, as expected. These findings support the idea that brain age could be another 
prognostic marker that differs from actual age in patients with amyloid-negative amnestic  MCI19,20. In addition, 
other factors, such as sex, education level, and ApoE genotype, did not differ between the two groups. However, 
we noticed that the subtracted value from brain age to age at the time of the MRI scan was significantly higher 
in the converter group. This finding indicates that the gap between the two types of ages can serve as a predictor 
of conversion of MCI to dementia (Supplementary Fig. S1).

Third, we found prominent frontoparietal dysfunction in converters in the older by brain age group. These 
findings indicate the need for careful assessment of frontoparietal dysfunction as an indicator of dementia 
conversion in amyloid-negative amnestic patients with MCI. Non-converters of older and younger by brain 
age groups did not have any significantly different features, indicating that brain age has a lower impact on the 
discrimination of non-converting patients.

Lastly, the brain age calculated by the model in this study helped discriminate survival probability, while sex 
and education level did not affect the estimation of dementia conversion, as shown in Fig. 3. The results suggested 
that the low-educated female group with a brain age greater than their actual age (Fig. 3, pink line) had the low-
est survival rate of all groups, partially concurring with previous studies, indicating that dementia conversion is 
highest in the low-educated female  group21,22. However, the finding that the younger by brain age, low-educated 
female group had a very high survival probability (Fig. 3, pink line) implies that brain age should be used as an 
additional predictive index in estimating dementia  conversion23. As the number of patients in each subgroup 
was small, further evaluation with a larger sample size is warranted to validate this result.

Although our model shows feasible results for use in the neurological and neuroradiological fields, further 
research is needed to determine its potential clinical utility and to establish guidelines for its use in the diagnosis 
and management of dementia.

In this study, confirmation of pathological mechanisms other than amyloid was not performed. As amyloid 
PET follow-up study was also not performed. From enrollment, other cause of neurodegenerative disease has 
been excluded, thus, tau, TAR DNA-binding protein 43 (TDP-43), hippocampal sclerosis, and argyrophilic grain 
disease might still be the cause of these specific disease group. Furthermore, investigation on the influence of 
social and lifestyle factors including physical activity, smoking, and alcohol consumption is warranted. These 
variables may play a significant role in explaining the interindividual variability in brain age, extending beyond 
the impact of education alone.

In conclusion, our findings suggest that brain age using quantitative information provided by the brain MRI 
AI software can contribute to predicting conversion to dementia in patients with amyloid-negative amnestic MCI.

Methods
Ethical approval
We declare that all methods were performed in accordance with the relevant guidelines and regulations. The 
Institutional Review Board (IRB) of the Asan Medical Center waived the need for informed consent for the 
study. And the protocol of this study was also approved by IRB of the Asan Medical Center (#2019-0738). The 
study was performed in accordance with relevant guidelines and regulations. Also, we state that no live animals 
were used in this study.

Participants
A total of 211 patients with amyloid-negative amnestic MCI with the following inclusion criteria who visited the 
memory clinic of Asan Medical Center from March 2013 to March 2016 were recruited: (1) age over 50 years 
with at least a 36-month follow-up period; (2) MCI defined by the criteria proposed by  Petersen24,25; and (3) no 
visual evidence of amyloid deposition in amyloid positron emission tomography (PET) scans.

Patients with the following exclusion criteria were excluded: (1) stroke, brain tumors, or white matter changes 
greater than a modified Fazekas scale score of 2 were excluded from the dataset (N = 42); (2) a history of traumatic 
brain injury, seizure, or current systemic medical illness (N = 2); (3) other causes of dementia such as Parkin-
son’s disease, corticobasal syndrome, diffuse Lewy body dementia, idiopathic normal pressure hydrocephalus, 
or frontotemporal dementia (N = 14); and (4) follow-up period less than 36 months (N = 46). All diagnostic 
processes were performed approximately 3 months after the neuropsychological tests. Additionally, 16 patients 
were excluded from the dataset because of technical errors caused by MRI artifacts during the imaging process. 
Therefore, the final sample comprised 91 patients with amyloid-negative amnestic MCI (Fig. 4).

Cognitive measurement and diagnosis of amnestic MCI
All patients were evaluated using the Seoul Neuropsychological Screening Battery (SNSB) as a formal test, which 
is a comprehensive neuropsychological battery that includes tests for assessing attention (forward/backward 
digit span), language (comprehension, repetition, confrontational naming, reading, and writing), calculation, 
praxis (buccofacial and ideomotor), visuospatial function (Rey Complex Figure Test [RCFT]), verbal memory 
(Seoul Verbal Learning Test assessing immediate recall, delayed recall, and recognition), visual memory (RCFT 
assessing immediate recall, delayed recall, and recognition), and frontal/executive function (contrasting pro-
gram, go/no-go test, verbal fluency, and the Stroop test). We also performed several other clinical and cognitive 
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performance measurements, including the Korean version of the Mini-Mental State Examination (K-MMSE), 
Global Deterioration Scale (GDS), Clinical Dementia Rating (CDR), Neuropsychiatric Inventory, and Geriatric 
Depression Scale.

All patients visited the clinic regularly at intervals of 3–6 months and were interviewed by neurologists. The 
point of dementia conversion was determined by a clinical interview with a skilled neurologist using detailed 
neuropsychological evaluation, including assessment using the Seoul-Instrumental Activities of Daily Living 
(ADL) scale. For patients who did not undergo neuropsychological evaluation, an experienced neurologist 
determined their status based on a decline in K-MMSE scores of more than 4 per year with definite evidence of 
dysfunction in instrumental ADL (use of public transportation, shopping independently, and banking).

MCI was diagnosed based on changes in patients’ cognition, objective evidence of impairment in one or more 
cognitive domains, preservation of independence in ADL. Similar to our previous  study26, only patients with 
amnestic MCI were included in this study. The amnestic subtype was determined on the basis of scores below 
the  16th percentile (–1 standard deviation) for demographically matched norms in verbal and visual memory 
tasks. Patients with both single- and multiple-domain amnestic MCI were included.

Imaging acquisition
MRI was performed using a 3.0-T system (Achieva; Philips Medical Systems) with a sensitivity-encoding, eight-
channel head coil. A high-resolution anatomical three-dimensional (3D) volume image was obtained using a 3D 
gradient-echo T1-weighted sequence with the following parameters: repetition time/echo time, 9.9/4.6 ms; flip 
angle, 8°; field of view, 224 × 224 mm; matrix, 224 × 224; slice thickness, 1 mm with no gap.

All PET images were obtained using Discovery 690, 710, and 690 Elite PET/CT scanners (GE Healthcare, 
Milwaukee, WI, USA). Amyloid PET images were acquired for 20 min, beginning 90 min after the injection of 
300 ± 30 MBq of  [18F] florbetaben. PET images were assessed using a predefined Brain Amyloid Plaque Load 
(BAPL) scoring system. The final score was determined by consensus among 2 skilled nuclear medicine special-
ists and 1 neurologist, with BAPL1 being Aβ-negative and BAPL2 and BAPL3 being Aβ-positive. Only patients 
with BAPL1 expression were included in this study.

Formula for calculation of brain age
In this study, we introduce a novel formula to estimate brain age using brain volume data, which provides an age 
estimate that is lower than the actual age for cognitively normal individuals and higher than the actual age for 
those with cognitive abnormalities. Our approach relies on the premise that cerebral atrophy serves as a reliable 
marker of declining neurobiological health, and we achieve precise measurements of distinct brain regions by 
utilizing commercially available AI-driven segmentation  algorithms27,28.

We specifically identified and quantified regions of interest (ROIs) within the total brain volume, following 
the provided formula to calculate brain age (Fig. 5). Our selection of these ROIs was based on the identification 
of 12 regions (Supplementary Table S4) which showing significant volume differences, confirmed by t-tests 
between individuals with cognitive abnormalities such as MCI and dementia, and those with normal cognition.

Calculating brain age involves several steps: measuring volumetric differences in regions of interest (ROIs) 
between cognitively unimpaired (CU) and cognitively impaired (CI) groups. Weight values (w_c) quantify 

Figure 4.  Patient disposition. Flow chart for this study from the initial screening to the final analysis. The solid 
outline squares represent the subjects that remained. The dash line squares represent the excluded subjects. 
Abbreviation: MCI, mild cognitive impairment.
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ROI volume differences for each component (c). Patients with dementia are in the CI group. ROI volumes are 
multiplied by w_c and summed to compute Brain age (BA) for each patient. This process varies based on the 
presence of an "atrophic region," defined as a bottom 5 percentile volume area for a specific ROI. An atrophic 
region results in an older brain age (BA_up), while its absence yields a younger age (BA_down). Brain age is 
calculated using age gap (g(p)) and a scaling parameter (θ), typically set to 7, providing a brain age estimation 
ranging from 7 years younger to 7 years older than the actual age.

Statistical analysis
To compare the effectiveness of using the brain age index to distinguish between the dementia conversion and 
non-conversion groups, we analyzed the collected data with and without the brain age index using the statistical 
methods described below.

First, we examined the distribution of each group variable by conducting normality tests (Shapiro–Wilk test) 
and homogeneity of variance tests (Levene test). Equivalence tests of the regression coefficients were performed 
to determine the presence of interactions, to assess the need for demographic adjustments in the comparison 
tests. Based on the results of these tests, we selected appropriate statistical methods to assess group differences. 
For normally distributed data with equal variance, two-sample independent t-tests were used. Welch’s t-test 
was used for normally distributed data with unequal variance. For non-normally distributed data, we used the 
Kruskal–Wallis test. For categorical variables, we used the chi-squared test. If more than three groups were com-
pared, we used the Kruskal–Wallis test. Spearman’s rank correlation coefficient was used to assess the correlation 
between the volume of the brain region used to calculate brain age and demographic or neuropsychological data.

In addition, we performed a survival analysis to investigate the difference in the rates of diagnosis of dementia 
between the groups, according to sex, education level, and brain age. The occurrence of dementia was regarded 
as an event, and data from patients who were not diagnosed with dementia within the 36-month follow-up 
period were considered censored data. The Kaplan–Meier estimation method was used to estimate the rate of 
event occurrence at the time of the event according to the observation time. We used the log-rank test to com-
pare survival curves between groups and the Cox proportional hazard model to calculate the hazard ratio and 
significant variables.

All statistical analyses were performed using R software (version 4.2.2, R Foundation for Statistical Comput-
ing, Vienna, Austria), and the following R packages were used: car, stats, survival, survminer, and rms. Statistical 
significance was determined using a p-value threshold of 0.05.

Figure 5.  Calculation formula of the brain age.
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Data availability
The data that support the findings will be available on request from the corresponding author. The data are not 
publicly available due to privacy or ethical restrictions.
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