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Nonzero spontaneous electric 
polarization in metals: 
novel predictive methods 
and applications
Shahrbano Rahimi 1, S. Jalali‑Asadabadi 1*, Peter Blaha 2 & Farhad Jalali‑Asadabadi 1

Ferroelectricity in metals has advanced since the initial discovery of nonmagnetic ferroelectric‑like 
metal LiOsO

3
 , anchored in the Anderson and Blount prediction. However, evaluating the spontaneous 

electric polarization (SEP) of this metal has been hindered by experimental and theoretical obstacles. 
The experimental challenge arises from difficulties in switching polarization using an external 
electric field, while the theoretical limitation lies in existing methods applicable only to nonmetals. 
Zabalo and Stengel (Phys Rev Lett 126:127601, 2021, https:// doi. org/ 10. 1103/ PhysR evLett. 126. 
127601) addressed the experimental obstacle by proposing flexoelectricity as an alternative for 
practical polarization switching in LiOsO

3
 , which requires a critical bending radius similar to BaTiO

3
 . 

In this study, we focus on resolving the theoretical obstacle by modifying the Berry phase and 
Wannier functions approaches within density functional theory plus modern theory of polarization. 
By employing these modifications, we calculate the SEP of LiOsO

3
 , comparable to the polarization 

of BaTiO
3
 . We validate our predictions using various ways. This study confirms the coexistence of 

ferroelectricity and metallicity in this new class of ferroelectric‑like metals. Moreover, by addressing 
the theoretical limitation and providing new insights into polarization properties, our study 
complements the experimental flexoelectricity proposal and opens avenues for further exploration 
and manipulation of polarization characteristics. The developed approaches, incorporating modified 
Berry phase and Wannier function techniques, offer promising opportunities for studying and 
designing novel materials, including bio‑ and nano‑ferroelectric‑like metals. This study contributes 
to the advancement of ferroelectricity in metals and provides a foundation for future research in this 
exciting field.

The spontaneous electric polarization (SEP) in metals was unexpected prior to 1965, challenging the under-
standing of long-range dipole order in metals and their equipotential  nature1,2. However, in 1965, Anderson and 
Blount (A &B) predicted the possibility of ferroelectricity in metals based on Landau’s theory of second-order 
phase  transitions3,4. Since then, the field of ferroelectric-like metals (FE-LMs) has witnessed significant growth, 
with contributions from researchers in diverse areas investigating a variety of FE-LMs5–14.

The A&B prediction was successfully validated by Shi et al.15, who discovered that lithium osmate (LiOsO3 ) 
exhibits a continuous shift in the mean position of Li+ ions below 140 K, confirming its classification as a new 
class of ferroelectric (FE) materials. This groundbreaking discovery was also acknowledged by Veerle Keppens 
in a news article, marking the first observation of a ‘ferroelectric metal’16. Since then, the continuous centrosym-
metric (CS) R ̄3 c to noncentrosymmetric (NCS) R3c phase transition in the ferroelectric-like (FE-L) LiOsO3 metal 
has attracted significant theoretical and experimental  attention17–29. This compound has exhibited rare properties 
consistent with the predictions of A &B, contributing to its significance in the field.

Notably, SEP, a fundamental metric for ferroelectric materials, has been theoretically assessed in hypothetical 
nonmetallic states of LiOsO3

22,27. However, its evaluation in the actual metallic state remains pending, hindered 
by two obstacles. The first obstacle pertains to experimental difficulties in switching polarization using an exter-
nal electric field. The second obstacle is the theoretical limitations of existing methodologies applicable only to 
nonmetals.
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Concerning the first obstacle, Zabalo and  Stengel30 very recently have investigated the potential of using 
flexoelectricity to switch the polarization of LiOsO3 . Flexoelectricity refers to the phenomenon where electric 
polarization can be induced by strain gradients in a material. By applying a specific type of strain gradient to 
LiOsO3 , the polarization direction can be switched without the need for an external electric field. Their ground-
breaking study, estimating that the critical bending radius for polarization switching in LiOsO3 is of the same 
order of magnitude as that of BaTiO3 , serves as an experimental alternative to address the first obstacle, opening 
new possibilities for practical polarization switching in LiOsO3 . Liu et al.21 found that LiOsO3 exhibits metal-
lic ferroelectricity characterized by highly anisotropic screening, unscreened local dipole interactions, order-
disorder type transition, and a triggering mechanism related to hybridization effects. Xiao et al.31 observed the 
ferroelectric transition in LiOsO3 through the nonlinear Hall effect, which revealed a strong dependence on polar 
displacement and proposed it as a method for detecting polar order. Sharma et al.13 successfully switched the 
polarization of a ferroelectric metal by applying an electric field and suppressing current flow using a dielectric 
layer. Wing Chi et al.32 demonstrated that LiOsO3 can serve as a platform for exploring topological phases and 
their interplay with ferroelectric ordering. In contrast to normal metals, the ferroelectric-like phase in LiOsO3 
exhibits dipole moment due to the confinement of charge carriers in Weyl nodes. Ronghan Li et al.33 showed 
that HgPbO3 exhibits a ferroelectric phase transition despite being a semimetal, highlighting the possibility of 
Weyl ferroelectric metals with cooperative atomic displacements. The unique characteristics of Weyl semimetals, 
such as lower carrier density and weaker electrostatic screening, enable the formation of electric dipoles and the 
potential for Weyl ferroelectric metals.

Due to the above pieces of evidence on the first obstacle, here, we concentrate only on the second obstacle by 
investigating that whether SEP and metallicity can also coexist in the FE-L lithium osmate metal. To this end, 
since LiOsO3 is a metal, it is enough to make sure that it is also a FE. To ensure that the LiOsO3 system can be 
considered as an acceptable FE material, besides the properties reported  earlier15–29 it is also crucial to know its 
SEP as a vital-character of  ferroelectricity34–37. However, the following literature review shows that the SEP has 
been calculated only for a hypothetical insulating form of this material due to the numerical limitations of the 
conventional polarization schemes. Chao He et al.22, calculated the SEP for a hypothetical nonmetallic (NM) 
G-type-antiferromagnetic (G-AFM) state of LiOsO3 after opening its bandgap by LDA+U38–41 in the framework 
of the Berry phase (Bp)  scheme42–45 as implemented in the pseudopotential-based VASP  code46–50. Yu Zhang 
et al.27, recently, calculated the effects of strain on the SEP of the hypothetical nonmetallic state of LiOsO3 after 
opening the bandgap of this metal by imposing tensile biaxial strains and G-AFM ordering employing LDA+U 
and LSDA approaches using the BP  scheme42–45 as implemented in the VASP  code46–50. However, the SEP, as a 
fundamental and main physical quantity of a FE material, has not been reported for this interesting FE-LM in 
its factual metallic state yet. This motivated us to calculate the SEP for this new class of FE-L material. However, 
the existing polarization methods are inapplicable to calculate the SEP of metals, as discussed below.

In the framework of the modern theory of  polarization51–59, there are two standard approaches to calculate the 
SEP for a material. The first approach is the Bp  method42–45. The second approach is the Wannier functions (Wf) 
 method60–65. In these methods, it is traditionally assumed that all the valence bands contributed in the electronic 
part of the polarization are completely occupied. This makes them inapplicable for metals containing valence 
bands with fractional occupation numbers in the vicinity of their Fermi levels. Therefore, in practice, neither 
Bp nor Wf method in their standard forms is applicable to calculate the electric polarization of a metal. To find a 
practical solution for the above problem, we, first, modify the conventional Bp and Wf methods of polarization, 
called mBp and mWf, and enable them to calculate the SEP of FE-LMs, see Sect. 1 of Supplementary Materials 
(SMs). We then calculate the SEP for the LiOsO3 FE-LM by our proposed mBp and mWf methods. Second, we 
uniquify the SEP by considering π-wrapping  problem57,66. To this end, we recalculate the SEPs using 9 interme-
diate superstructures, in addition to the initial CS (non-polar) and final NCS (polar) structures of the metallic 
state of LiOsO3 . Consequently, the best branch is chosen and the SEP is determined uniquely. The computed 
SEP we have determined exhibits a magnitude on par with that observed in BaTiO3 , as documented in studies 
by Abrahams et al.67 and  Merz68. This finding closely aligns with the data concerning the critical bending radius 
for polarization switching, as reported by Zabalo and  Stengel30, thereby positioning our results within the same 
domain of these established benchmarks in the field.

Furthermore, we systematically validate our predicted SEP (1) numerically by showing the constancy between 
the SEPs predicted by the two different approaches mBp and mWf, (2) empirically by successfully fitting the 
results to the available empirical equations proposed by Abrahams et al.67 and our empirical equations emerged 
from various available experimental transition temperatures and SEPs of the normal ferromagnetics, (3) phe-
nomenologically by fitting to the phenomenological equation proposed by Landau-Ginzburg, (4) hypothetically 
by opening the bandgap of the metal in question using GGA+U. After opening the bandgap, the SEP is calculated 
by the conventional Bp method without any modifications and found it consistent with our prediction made by 
the mBp proposed in this work. Using another different approach, the bandgap is opened by imposing distortion 
instead of GGA+U. Here, by the neural network the SEP is predicted at zero strain using the available SEPs at 
nonzero biaxial strains imposed on the system. The prediction made by the neural network is found in agreement 
with our SEP predicted by mBp method of polarization. All these show that the different but consistent mBp and 
mWf methods provide two novel approaches of polarization to satisfactorily calculate the electric polarization 
of the FE-LM within almost the same accuracy.

In essence, recent studies have made significant progress in addressing the first obstacle hindering the investi-
gation of ferroelectric-like metals (FE-LMs), which is the experimental difficulty in polarization switching using 
an external electric field. Researchers have explored alternative methods, such as flexoelectricity, to overcome 
this challenge. However, the second obstacle, related to the theoretical limitations of existing methodologies 
applicable only to nonmetals, still remains. Our study contributes to the advancement of ferroelectricity in met-
als by addressing this second obstacle and providing new insights and approaches. This opens up avenues for 
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further exploration and understanding of polarization characteristics in FE-LMs, offering new opportunities 
for advancements in this field.

Band classification and introduction to polarization methods for LiOsO
3

Both modified polarization methods, mBp and mWf, begin with band classification as their initial step. We 
will first cover this common step before individually discussing the subsequent steps for each method. To initi-
ate our methodology, we will classify the bands of LiOsO3 as calculated using the PBE-GGA functional for its 
rhombohedral structure, illustrated in Fig. 1.

Classification of bands
Classification of the valence and conduction bands constitutes the zeroth step of our modified methods of 
polarization.

In the zeroth step, we classify the bands into three classes, as shown in Fig. 1. These classes are labeled by I, 
I ∗ and II in Fig. 1. These labels are dual-purpose and, in addition to their roles in classifying the bands, they can 
be also used to distinguish three different energy intervals indicated in Fig. 1. The class I includes valence bands 
which are crossing the Fermi level and conduction bands. The highest energy limit of class I ∗ is the Fermi energy, 
while its lowest energy limit possesses in common with that of class I. Therefore, the class I ∗ is a subclass of class I. 
Only some of the valence bands in classes I and I ∗ are full while their other remaining valence bands are partially 
filled and hence they can only partially contribute into the electronic part of the Berry phase, as expressed in Eq. 
(12) of the SMs. The conduction bands in class I are empty and hence their contributions into the electronic part 
of the EP are zero. The class II includes valence bands which are all fully occupied. The valence bands included 
in class II are well separated by an energy interval of ≈ 0.4 eV from the bands included in class I, see Fig. 1.

After the classification, we introduce our polarization methodologies: the mBp and mWf methods. We begin 
with the six-step mBp polarization method. For a more detailed view, refer to Sect. 3 of the SMs.

Mean‑field‑like mBp method of polarization
To overcome the obstructs, as discussed in Sect. 2 of the SMs, and calculate the SEP of a FE-L metal, we modify 
the conventional Berry phase method, beginning after the zeroth step. The critical points of the proposed meth-
ods is concisely provided in the next six steps. For a comprehensive discussion, refer to Sect. 3.1 of the SMs.

In the first step, we obtain the ionic part of the Berry phase, ϕ(�)
ion,µ , for the structure � along polarization 

direction µ by applying the standard Berry phase approach over the density functional theory (DFT) results. 
Here, � , which can be 0 or 1, denotes the initial non-polar CS R ̄3 c structure and the final polar NCS R3c phase, 
which has a lower symmetry than R ̄3 c; i.e., (� = 0) ≡ R3̄c and (� = 1) ≡ R3c.

In the second step, using the standard Berry phase approach, we obtain the electronic part of the Berry phase 
in the µ direction for all bands of class II at every perpendicular wave vector k⊥ . This is illustrated in Fig. 2 for the 
structure � , represented as ϕ(�),(II)

el,µ (k⊥) . We then adjust the electronic Berry phase of class II to be independent 
of k⊥ . To achieve this, we draw an analogy to the standard Berry phase method. As depicted in Fig. 2, we take an 
average either over the perpendicular area A⊥ or over the discrete points Nk⊥

 of the 2D k⊥-point samples. This 
allows us to determine ϕel,µ(�),(II) as follows:

Figure 1.  (a) Band structure of the polar NCS R3c phase of the LiOsO3 compound constructed by the 
rhombohedral (trigonal) crystal system calculated using the PBE-GGA 69. (b) The corresponding first Brillouin 
zone including the symmetrical points and selected paths, as plotted by XCrySDen  package70.
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In the third step, we determine the electronic part of the Berry phase for all bands of class I, represented as 
ϕ
(�),(I)
el,µ (k⊥) . We make a temporary assumption that all bands of this class are fully occupied. This assumption 

will be modified in the fourth step. At this stage, we delay the averaging process for ϕ(�),(I)
el,µ (k⊥) until the end of 

the fourth step. This is when the modification occurs. Hence, for now, it remains dependent on k⊥.
In the fourth step, we adjust ϕ(�),(I)

el,µ (k⊥) by taking into account the correct occupation numbers for the class 
I bands, denoted as n(�)

n (k⊥) , as follows:

where φ stands for the modified ϕ , and MI is the number of bands of class I, as well as N(�)
kBZ

 is the total number 
of k-points generated in the full mesh of the first Brillouin zone for structure � , see Fig. 2. Now, it is time to 
make φ(�),(I∗)

el,µ (k⊥) independent of k⊥ using the same averaging procedure outlined in Eq. (2) to derive φ(�),(I∗)
el,µ .

In the fifth step, we combine the electronic Berry phases calculated in steps 2 and 4 to obtain the modified 
total electronic Berry phase for structure � in direction µ . This is given by: φ(�)

el,µ = ϕ
(�),(II)
el,µ + φ

(�),(I∗)
el,µ  . To find the 

total Berry phase for structure � in direction µ , denoted as φ(�)
µ  , we add the electronic Berry phase φ(�)

el,µ to the 
ionic Berry phase for structure � in direction µ that was calculated and stored in step 1, represented as ϕ(�)

ion,µ . 
That is, φ(�)

µ = 2φ
(�)
el,µ + ϕ

(�)
ion,µ , where the factor of 2 accounts for the spin degeneracy in non-spin-polarized 

systems. For spin-polarized systems, the expression is modified as: φ(�)
µ = ϕ

(�)
ion + ϕ

(↑),(�)
el + ϕ

(↓),(�)
el  , where (↑) 

and (↓) denote spins up and down, respectively.
In the sixth step, we substitute ϕ(�)

µ  into the following equation:

(1)

ϕ
(�),(II)
el,µ =

1

A⊥

∫

A⊥

dA⊥ϕ
(�),(II)
el,µ (k⊥)

≈
1

Nk⊥

∑

k⊥

ϕ
(�),(II)
el,µ (k⊥),

(2)φ
(�),(I∗)
el,µ (k⊥) =

NkBZ

2MI

MI∑

n=1

[
n
(�)
n (k⊥)ϕ

(�),(I)
el,µ (k⊥)

]
,

Figure 2.  The first Brillouin zone used for the calculations of the electronic part of the Berry phase in the 
reciprocal lattice, decomposing k-points into k‖ and k⊥ samples. Here, k‖ is parallel to and k⊥ is perpendicular 
on the polarization direction Gµ , as shown on the right side of the figure. Several 2D-planes are formed by 
the k⊥ with the normal vectors k‖ . The points k‖ are distributed over the parallel strings. Occupation numbers 
of the bands at k‖ are indicated by n(k‖) . The contribution of the electronic Berry phase for the structure � 
at k‖ are shown by ϕ(�)

el,µ(k‖) . By the formula, as indicated in the top-left side of the figure, and considering 

ϕ
(�)
el,µ(k‖) , included in the overlap integral O(�)

M×M
(kj , kj+1) , the Berry phases are calculated along each k‖ strings 

individually, and the results for the structure � are mapped as ϕ(�)
el,µ(k⊥) into the central 2D-sheet with the area 

A⊥ . Occupation numbers of the bands at k⊥ are indicated by n(k⊥) By the formula, as indicated in the bottom-
left side of the figure, the average of the mapped Berry phases are calculated over the area A⊥ . For more detail 
see Sect. 1.1 of SMs.
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where e is the electron charge and �(�) is the unit cell volume of the structure � . In Eq. (3), R(�)
µ  is the length of 

the lattice vector in real space for the structure � , viz. R(�) =
∑3

µ=1 R
(�)
µ ê

(�)
µ  , where R(�)

µ ê
(�)
µ (R(�)

µ ) is the primitive 
vector (lattice constant) of structure � along µ in the direction of the unit vector ê(�)µ .

Then, after multiplying both sides of Eq. (3) by êµ and taking the summation over µ on both sides of the 
resultant equation, we obtain the polarization vector for structure � as:

The procedure discussed above, from step 1 to this stage of step 6, is performed for both structures: one for 
structure � = 0 and the other for structure � = 1 . In this manner, we obtain the electric polarization vectors 
P
(�=0) for the structure � = 0 and P(�=1) for the structure � = 1.

Finally, the spontaneous polarization �P is determined as: �P = P
(�=1) − P

(�=0) , employing the modern 
theory of  polarization51–59.

mWf method of polarization
The conventional Wannier functions scheme is not apt for FE-LMs as it presumes all bands to be fully filled, 
a condition not met by FE-LMs. Consequently, we employ the partly occupied maximally localized Wannier 
functions methodology introduced by Thygesen et al.71,72, further adapting the occupation numbers beginning 
after the zeroth step.

This method has shown that the degree of localization of Wannier functions can be optimized with a specific 
number of unoccupied  orbitals71,73. Andrinopoulos et al.74 enhanced DFT’s van der Waals energy contributions 
using partly occupied MLWFs, incorporating anti-bonding states. For metals, considering only occupied states 
can result in poorly localized Wannier functions. However, adding unoccupied conduction states can significantly 
improve  localization65,71,73,74. Although the maximally localized Wannier functions have been extended for partly 
occupied  states71,72,74, their application for predicting electric polarization in FE-LMs is unexplored. Occupancy 
in polarization formulas is often assumed to be 2 for each Wannier center, but metals with partial occupation 
can have values less than 2. We find it pertinent to provide a succinct overview of this method for SEP calcula-
tions in FE-LMs, incorporating modifications to tackle these challenges. For an exhaustive discussion, readers 
are directed to Sect. 3.2 of the SMs.

In our research, we used the approach delineated by Thygesen et al.71 from 2005. This methodology is wave 
vector-independent, paving the way for its straightforward implementation in both isolated and periodic systems. 
On the other hand, an earlier method presented by Souza et al.61 in 2001 uses a ‘disentangling procedure’. This 
technique, while older, zeroes in on specific bands, aiming to reduce variations in the character of Bloch states 
across the Brillouin zone, with an emphasis on revealing pertinent unoccupied states. Although these methods 
vary, their shared objective revolves around the creation of more localized Wannier functions by examining the 
conduction and valence bands proximate to the Fermi level. In contexts where band groupings are not evident 
or when specific computational attributes of bands near the Fermi level are required (as in the calculation of the 
anomalous Hall conductivity via Wannier  interpolation75), the method by Souza et al.61 might be the go-to choice. 
A testament to its utility is the work of Wang et al.75, where they applied a post-processing step to Bloch states 
near the Fermi level. Leveraging the Souza et al.  technique61, they mapped these states onto localized Wannier 
functions, enabling the computation of the anomalous Hall conductivity. This approach facilitated precise Berry 
curvature interpolation for any selected k-point, striking a balance between computational efficacy and precision. 
However, in scenarios echoing our situation, where distinct band groups are discernible (as depicted in Fig. 1), 
the partly occupied approach by Thygesen et al.71 is potentially more beneficial. Hence, for the purposes of our 
study, we deem the newer partly occupied  method71 to be aptly suited.

The total polarization vector P(�) for structure � can be expressed in terms of its electronic P(�)el  and ionic P(�)ion 
contributions within the Wannier functions framework as:

where the first (second) term can be interpreted as ionic (electronic) polarization per unit volume �(�) of struc-
ture � originated from N ions ( J Wannier centers) each with positive (negative) charges of +eZ

(�)
s  ( −en

W
(�)
n,R

 ) 

positioned at r(�)s  (〈r〉W (�)
n,R) . In this equation, n

W
(�)
n,R

 is the occupancy of Wannier center n and J is the number of 
Wannier centers in structure �.

In the ionic polarization, r(�)s  represents the classical position of ion s in structure � . On the other hand, in 
the electronic polarization, 〈r〉W (�)

n,R signifies the expectation value of the position of the Wannier center n in 

(3)P(�)µ =
e

2π

ϕ(�)
µ

�(�)
R(�)
µ ,

(4)
3∑

µ=1

P(�)µ êµ = P
(�) =

e

2π�(�)

3∑

µ=1

ϕ(�)
µ R(�)

µ êµ.

(5)

P
(�) = P

(�)
ion + P

(�)
el

=
e

�(�)

[
N∑

s=1

Z(�)
s r

(�)
s +

J∑

n=1

n
W

(�)
n,R
�r�

W
(�)
n,R

]
,
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structure � . It’s essential to understand that 〈r〉Wn,R(�) does not correspond to the position of a classical particle 
and should be interpreted within a quantum mechanical framework.

In order to calculate P(�) , we first decompose the electronic polarization based on the number of composite 
bands. For LiOsO3 , there are two distinct composite bands:

• The isolated class of bands II, which includes only deep-lying, fully occupied valence bands.
• The isolated class of bands I, which comprises shallow-lying, fully and partially occupied valence bands, as 

well as low-lying empty conduction bands.

Thus, we decompose P(�)el  into two parts:

where P(�),(II)el  ( P(�),(I
∗)

el  ) is the partial electronic contribution of Wannier centers of class II (I∗ ) into the electronic 
part of polarization P(�)el  at lattice vector R in structure � . The factor 2 inside the first summation accounts for 
fully occupied Wannier centers, whereas n(�)

Wn,R
 inside the second summation accounts for both fully and partially 

occupied Wannier centers. We have J = J(II) + J(I) . The term J(I) , as the upper limit of the second sum in Eq. 
(6), refers to the Wannier center of class I. However, the occupation numbers n

W
(�)
n,R

 used in the second term of 
Eq. (6) are so determined subsequently in step three that the second term itself refers to the polarization of class 
I ∗ and yields P(�),(I

∗)
el  . To complete the calculation of P(�) from Eqs. (5) and (6), we perform the following 5 steps. 

For a more detailed discussion on each step, readers are referred to Sect. 3.2 of the SMs.
In the first step, we perform a regular self-consistent DFT calculation for the structure � . Then, we restrict 

the energies to the energy interval II, as shown in Fig. 1. Now, we apply self-consistently the standard maximally 
localized Wannier functions procedure on the fully occupied valence composite bands of class II for structure 
� , see Fig. 1. This procedure is performed over the Bloch states calculated by WIEN2k  package76,77 to obtain 
maximally localized Wannier functions and their centers of charges using Wannier90  code60–63,65 and WIEN-
2WANNIER  interface64. At this stage, we use the first term of Eq. (5) to calculate P(�)ion entirely while we use the 
first term of Eq. (6) to calculate partial electronic polarization P(�),(II)el  . The latter electronic polarization is partial 
because it needs to be completed by including contributions of the Wannier centers of class I, i.e. P(�),(I)el  as the 
second term of Eq. (6).

In the second step, we restrict the energies to the energy interval I, see Fig. 1. Then, we apply self-consistently 
the generalized maximally localized Wannier functions procedure constructing partly occupied Wannier func-
tions on the composite bands of class I including valence and conduction bands for structure � , see Fig. 1. By 
this way, we calculate the positions of the Wannier centers of the structure � as

for Wannier centers n = 1 to J(I) . At this stage, we cannot calculate the remaining electronic polarization by the 
following conventional equation:

because in this equation the occupation numbers of all the Wannier centers are assumed to be 2, while the class 
I contains partially occupied Wannier centers. We cannot also use our generalized formula expressed as the 
second term of Eq. (6), because n

W
(�)
n,R

 still are unknown. Therefore, the main task of the next step is to determine 
the unknown occupation numbers n

W
(�)
n,R

 for the Wannier centers of class I.
In the third step, we determine n

W
(�)
n,R

 so that the polarization calculated in the following fourth step gives the 

polarization P(�),(I
∗)

el  which is related to the desired class I ∗ . To this end, we first individually project the density 
of states (DOS) on each of the maximally localized Wannier centers for n = 1 to J(I) , see Fig. 3a. For instance, 
the projected DOS, as shown in Fig. 3a, is obtained by projecting the calculated DOS on one of the maximally 
localized Wannier centers which is shown in Fig. 3b. Then, we integrate each of the projected DOSs up to the 
Fermi level. By this, we obtain individually the areas under each of the DOSs projected on the maximally local-
ized Wannier centers up to the Fermi level, e.g. see the filled area under the DOS shown in Fig. 3a which gives 
the occupancy of the corresponding center of charge. The values of these areas are the desired occupation num-
bers n

W
(�)
n,R

.
In the fourth step, we multiply each of the Wannier centers 〈r〉

W
(�)
n,R

 obtained in the second step by their cor-
responding occupation numbers n

W
(�)
n,R

 obtained in the third step. By this way, n
W

(�)
n,R
〈r〉W

(�)
n,R are obtained. By 

(6)

P
(�)
el = P

(�),(II)
el + P

(�),(I∗)
el

=
e

�(�)



J(II)�

n=1

2�r�
W

(�)
n,R

+

J(I)�

n=1

n
W

(�)
n,R
�r�

W
(�)
n,R


,

(7)
∫

r|W
(�)
n,R(r)|

2dr = �r�W
(�)
n,R = (�x�W

(�)
n,R , �y�W

(�)
n,R , �z�W

(�)
n,R),

(8)P
(�)
el =

e

�(�)

J∑

n=1

2�r�W
(�)
n,R ,
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substituting n
W

(�)
n,R
〈r〉W

(�)
n,R into the second term of Eq. (6), P(�),(I

∗)
el  are calculated. Now, by adding P(�),(I

∗)
el  calcu-

lated in this step to P(�),(II)el  calculated in the first step, we obtain the electronic polarization P(�)el  for structure � 
using the generalized Eq. (6). Let us close this step by indicating a practical note. To this end, let us consider a 
system whose its polarization direction is pointed along only a single direction. Such a system resemblances the 
case under study whose polarization direction is oriented along the c axis of the hexagonal supercell. In this case, 
it is enough to consider only n

W
(�)
n,R
〈z〉W

(�)
n,R rather than (n

W
(�)
n,R
〈x〉W

(�)
n,R ,nW

(�)
n,R
〈y〉W

(�)
n,R ,nW

(�)
n,R
〈z〉W

(�)
n,R).

In the fifth step, based on Eq. (5), we add the ionic part of polarization P(�)ion for structure � , as obtained in 
the first step, to the electronic part of polarization P(�)el  for structure � , as obtained in the fourth step. By this, we 
obtain the total electric polarization P(�) for structure �.

In analogy to the mBp approach of polarization discussed in “Mean-field-like mBp method of polarization”, 
all the steps discussed above are similarly performed for structures “ � = 0 ” and “ � = 1 ” individually. This leads 
to the electric polarization vectors P(�=0) for the structure “ � = 0 ” and P(�=1) for the structure “ � = 1 ”. Hence, 
the spontaneous polarization �P can be ultimately calculated as �P = P

(�=1) − P
(�=0) , using the modern theory 

of  polarization51–59.

Merits, limits, and management of mBp and mWf methods of polarization
Here, let us assess the strengths and limitations of our mBp and mWf methods of polarization. While most of 
computational methods inherently have distinct advantages due to their foundational principles and algorithms, 
they can also face certain challenges or constraints. Rooted in specific theoretical frameworks, our mBp and mWf 
methods have been developed to offer particular strengths designed for certain applications. Nevertheless, they 
are not without limitations. In the subsequent sections, we detail and address these constraints. Our goal is to 
provide a thorough understanding of these methods’ scope and to highlight situations where they demonstrate 
optimal effectiveness.

mBp method
Our mBp methodology represents a detailed evolution in the filed of polarization calculations. At its core, the 
mBp approach utilizes mean field-like calculations, with a focused attention on determining the occupation 
weight, predominantly for k⊥ . The merit of this approach is most evident when applied to materials like LiOsO3 , 
which exhibit distinct isolated band structures.

One of the notable features of our method is its adaptability to the material’s intrinsic electronic configuration, 
making it versatile for various materials, including metals and insulators. We observe that the SEPs calculated by 
mBp (PBE-GGA) and Bp (PBE-GGA+U) for LiOsO3 are close to each other for the material in question, showing 
the limited impact of bands crossing the Fermi level on the resultant polarization in this specific instance. This 
observation validates the applicability and reliability of our methodology for systems that exhibit the electronic 
behavior similar to LiOsO3.

Figure 3.  (a) DOS projected on one of the 6 Wannier centers related to the energy interval I, as shown in 
Fig. 1a. The initial DFT calculations were performed by the PBE-GGA DFT for the LiOsO3 in its polar NCS 
rhombohedral structure. The colored area under the projected DOS up to the Fermi level shows the occupancy 
of the Wannier center n at R for the polar NCS rhombohedral structure of the compound, i.e. n

W
(�)
n,R

 . The area is 
calculated by taking integration of the projected DOS up to the Fermi level. (b) The real-space plot of maximally 
localized functions, W (�)

n,R , constructed from the Bloch states. (c) Original bands were generated directly from the 
PBE-GGA DFT calculations for the polar NCS phase of the rhombohedral LiOsO3 , see thin black bands. 
Wannier-interpolated bands obtained from the subspace selected by an initially unconstrained projection onto 
atomic Os:dz2 , Os:dx2−y2 , Os:dxy orbitals for the isolated class of bands I, see thick blue bands. The Fermi level is 
set to zero in both the DOS and band structure figures.
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However, it is essential to understand the boundaries of any method’s universality. In scenarios devoid of 
such isolated band structures, our mBp might need further refinements. One promising direction involves inte-
grating the Wannier bases approach to compute the integral tied to the Berry phase, drawing inspiration from 
Wang et al.75. For cases influenced by d-orbitals around the Fermi level, the Hubbard model, as deduced from 
our prior  research78 and validated in this study, emerges as a powerful tool, enabling us to simulate a gap and 
further analyze the SEP using the conventional mB without modifications.

To address the inherent challenges associated with the mBp method, particularly regarding the use of mean 
field-like calculations for occupation weight focused on k⊥ , we incorporated a dense k-mesh in our post-pro-
cessing calculations. Additionally, by comparing the occupation numbers for class I∗ bands—obtained by aggre-
gating weights of k⊥—with those from self-consistent DFT calculations, we found noteworthy alignment. This 
compatibility reaffirms the reliability and soundness of our methodology.

Moreover, by emphasizing the change in polarization between CS and NCS phases, and consistent application 
of mean field-like calculations to both, we benefit from an inherent error compensation mechanism.

It is worth noting that in the conventional Bp method, the adiabatic condition is crucial for deriving Eq. (10) 
of the SMs. As our modification builds upon this equation, clarifying the physical rationale behind our adjust-
ments becomes paramount.

Our mBp computational approach is designed to emulate conditions typical of insulating systems. As detailed 
in step 3 of “Mean-field-like mBp method of polarization” and further expanded in Sect. 3.1 of the SMs, our 
calculations, particularly when using Eq. (10) (SM), align with the behavior of insulators. This choice ensures 
adherence to the adiabatic condition inherent in insulating systems.

To enhance the robustness of our method, we have incorporated refinements, such as considering weights 
at each k-point to adjust the previously calculated phase. These methodological tweaks aim to preserve an 
adiabatic-like behavior in our calculations, even if the system does not strictly abide by the adiabatic condition.

The underlying physical foundation of these adjustments can be understood as follows: in the adiabatic 
framework, external parameters like applied electric fields or strain, as the latter used in our case, vary slowly. 
This variation induces a change in the electronic polarization within a crystal due to adjustments in the self-
consistent Kohn-Sham potential. To capture this dynamic, we introduce a � parameterization for the potential, 
which spans from 0 (initial potential) to 1 (final potential), covering 9 intermediate potential stages, as illustrated 
in Fig. SM6 of the SMs.

In summation, our mBp methodology, underpinned by rigorous scientific principles and augmented by inte-
grated techniques, is a robust tool in polarization calculations. Its application across a spectrum of materials, judi-
ciously taking into account its foundational strengths and suitable augmentations, promises reliable outcomes.

mWf method
Our mWf methodology, designed to address electronic structures like the one observed in our primary case, 
optimizes the post-processing approach, especially when there are distinct, isolated groups of bands, as visual-
ized in Fig. 1. For such systems, our adaptation of the partially occupied approach by Thygesen et al.71 is highly 
effective, achieving a consistent, reliable representation of electronic behaviors.

However, we acknowledge that in more intricate electronic landscapes, where there is no conspicuous energy 
window around the Fermi level, challenges can arise. In these instances, our method’s intrinsic flexibility allows 
the incorporation of refined techniques, like the ’disentangling procedure’ advocated by Souza et al. This pro-
cedure ensures that the smallest spread for subsequent Wannier functions is secured, bolstering the accuracy 
of our calculations.

Moreover, the electronic characteristics of our study material, prominently featuring d-orbitals around the 
Fermi level (elaborated in Figure SM2 and Sect. 3.2 of the SMs), allow our mWf method to achieve optimal results 
with minimal iterations. It is paramount to note that while this property aids our specific case, there could be 
materials where orbital hybridizations are more pronounced. For such cases, our approach remains versatile: 
by carefully selecting various hybrid orbitals as initial estimates, we ensure the generation of highly localized 
Wannier functions, even in the face of significant hybridization challenges.

In summary, we have designed our mWf method to be both adaptive and resilient, able to cater to a diverse 
range of electronic structures while maintaining a high degree of precision. By recognizing potential challenges 
and proactively integrating solutions into our methodology, we remain confident in the method’s applicability 
and accuracy across varied electronic landscapes.

Results and discussions
SEP direction in LiOsO

3
 FE‑LM

First, it would be sensible to differentiate the non-polar phase of LiOsO3 FE-LM from its polar phase and sub-
sequently determine qualitatively the direction of the spontaneous electric polarization of the system under 
consideration. For the sake of conciseness, discussions on the CS R ̄3 c and NCS R3c crystal structures of LiOsO3 
are detailed in Sect. 5 of the SMs, as illustrated in Fig. SM5. Notably, the R3c structure can be characterized as 
the polar phase, denoted by “ � = 1 ” representing the final structure of the ferroelectric-like phase transition, 
while the R ̄3 c structure serves as the non-polar phase, indicated by “ � = 0 ”, representing the initial structure 
of the transition. Based on the displacement directions identified between the polar and non-polar phases, the 
spontaneous polarization vector is anticipated to align along the c-axis. An in-depth exploration of this topic is 
presented in Sect. 3.3 of the SMs, as shown in Fig. SM4. The spontaneous polarization orientation deduced in 
this section is further corroborated quantitatively in  “SEP of LiOsO3 : mBp approach of electric polarization” 
and “SEP of LiOsO3 : mWf approach of electric polarization”, where both the non-polar CS R ̄3 c and polar CS 
R3c phases are assessed using two distinct methodologies.
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SEP of LiOsO
3
 : mBp approach of electric polarization

In the modern theory of  polarization51–59, the spontaneous polarization �P is defined as the integrated current 
flow along the distortion direction during an adiabatic transition from a non-polar CS ( “� = 0 ”) structure to a 
polar NCS ( “� = 1 ”) structure, or in other words, �P := P

(�=1) − P
(�=0) modulo eR/�52,55–57, see Sect. 1.1 of 

SMs.
For the system under consideration, “� = 0 ” refers to the R ̄3 c structure, while “ � = 1 ” corresponds to the 

R3c. The spontaneous polarization �P = P
(R3c) − P

(R3̄c) , which represents the change in polarization during 
the phase transition from CS to NCS, is a more significant physical quantity than the absolute polarizations of 
the CS and NCS structures. Despite this, to demonstrate the consistency between the results calculated by our 
mBp and mWf approaches of polarization, we will present the individual partial polarizations for both phases 
in addition to �P.”

Following the first step of the mBp approach, as discussed in “Mean-field-like mBp method of polarization” 
and Sect. 3.1 of SMs, we have calculated the ionic parts of the polarizations, ϕ(�)

ion,µ , for both the non-polar CS 
R ̄3 c and polar NCS R3c phases taking the hexagonal supercells containing 30 atoms into account. The results 
are presented in Table 1. Our numerical results, in agreement with the prediction discussed in “SEP direction in 
LiOsO3 FE-LM”, confirm that the directions of the polarizations are oriented along the c-axes of the hexagonal 
supercells. This means that ϕ(�)

ion,µ for µ = 1&2 are almost zeros and thereby negligible compared to ϕ(�)
ion,µ for 

µ = 3 . Hence, the µ index is known to be 3. Therefore, in Table 1, we omitted the known index µ , simplifying 
ϕ
(�)
ion,µ to ϕ(�)

ion . The non-polar CS R ̄3 c (polar NCS R3c) is the initial (final) phase. The index � for the initial (final) 
phase known to be 0 (1) refers to R ̄3 c (R3c), viz � = 0 ≡ R3̄c and � = 1 ≡ R3c . Thus, for simplicity, the � index 
is also omitted in Table 1, simplifying ϕ(�)

ion to ϕion.
In the second step of the mBp approach, as discussed in “Mean-field-like mBp method of polarization” and 

Sect. 3.1 of SMs, we have calculated the electronic part of the Berry phase for all the bands of class II, ϕ(�),(II)
el,µ  , in 

both the non-polar CS R ̄3 c and polar NCS R3c phases. In analogy to the simplification made for the ionic part 
of Berry phase, ϕ(�),(II)

el,µ  is also similarly simplified to ϕ(II)
el  , see Table 1.

Applying the third and fourth steps with Eqs. (38) to (47), as discussed in “Mean-field-like mBp method of 
polarization” and Sect. 3.1 of SMs, we have calculated the electronic part of the Berry phase for all bands of class 
I ∗ , φ(�),(I∗)

el,µ  , for both the non-polar CS R ̄3 c and polar NCS R3c phases. After omitting µ and � indexes, as in the 
previous steps, the results are tabulated as φ(I∗)

el  in Table 1. Please, notice that φ differs from ϕ , see Eq. (38) and 
the notes after Eq. (39) of SMs, where φ is defined to be distinguished from ϕ.

Following the fifth step, we have first found the total electronic Berry phase, φel , for both the phases indi-
vidually by adding ϕ(II)

el  to φ(I∗)
el  as φel = ϕ

(II)
el + φ

(I∗)
el  , see Table 1. We have then summed the total electronic 

Table 1.  Calculated partial Berry phases and corresponding polarizations for the non-polar CS R ̄3 c and polar 
NCS R3c hexagonal supercells of LiOsO3 , using the PBE-GGA with mBp and mWf schemes. The values for 
the electronic parts of the Berry phases ( φel ) and polarizations ( Pel ) were obtained by adding the contributions 
from class II ( ϕ (II)

el  and P(II)el  ) and class I ∗ ( φ(I∗)
el  and P(I

∗)
el  ). Similarly, total Berry phases ( φ ) and polarizations 

( P ) were calculated by adding ionic and electronic contributions. Spontaneous polarizations ( �P ) were derived 
by subtracting the polarizations of R3c and R ̄3 c structures as �P = P(R3c)− P(R3̄c) . The results are given 
modulo eR/� and will be unwrapped in “Uniquifying of spontaneous polarization of LiOsO3 by finding the 
best branch” following the procedure proposed by Resta and Vanderbilt in Ref.57. Refer to Sect. 3 of the SMs for 
more detailed information.

mBp mWf

NCS R3c CS R ̄3c NCS R3c CS R ̄3c

ϕion 2.7396 6.2832 – –

ϕ
(II)
el

− 2.2402 0.0000 – –

φ
(I∗)
el

0.3267 − 1.5403 – –

φel = ϕ
(II)
el + φ

(I∗)
el

− 1.9135 − 1.5403 – –

φ = ϕion + 2φel − 1.0784 3.2026 – –

Pion 0.3130 0.0000 0.3130 0.0000

P
(II)
el

0.2060 0.0000 0.2076 0.0000

P
(I∗)
el

0.0746 − 0.3519 0.0706 − 0.3584

Pel = P
(II)
el + P

(I∗)
el

0.2806 − 0.3519 0.2782 − 0.3584

P = Pion + Pel 0.5936 − 0.3519 0.5912 − 0.3584

�P = P(R3c)− P(R3̄c) 0.9455 0.9496
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Berry phase φel and the ionic Berry phase ϕion to find the total Berry phase φ = 2φel + ϕion for both the phases 
individually, as presented in Table 1, where 2 shows the spin degeneracy.

In the sixth step, the total polarization P could be obtained by substituting the total Berry phase 
φ = 2φel + ϕion into Eq. (2) of SMs. However, we here preferred to use the second way indicated in the sixth 
step to obtain not only the total polarization but also all the partial components of polarization. Therefore, 
following the second way of the sixth step, we have obtained the ionic polarization Pion by substitute the ionic 
Berry phase ϕion into Eq. (2) in Sect. 1.1 of SMs for both the phases individually, as tabulated in Table 1. Then, 
we have obtained the partial electronic polarizations P(II)el  and P(I

∗)
el  , as well as the total electronic polarization 

Pel by substitute the partial electronic Berry phases ϕ (II)
el  and φ(I∗)

el  , as well as the total electronic Berry phase φel 
into Eq. (9) of SMs, receptively, for both the phases individually, as tabulated in Table 1. Consequently, we have 
obtained the total polarization as P = Pion + Pel.

Eventually, using our mBp approach of polarization, we have calculated the spontaneous electric polarization 
�P(= P(R3c)− P(R3̄c)) for the FE-LM LiOsO3 , as reported in Table 1.

The results show that the ionic Berry phase for the CS (R3̄ c) structure is 6.2832 rad , very close to an integer 
multiple of 2π rad (Table 1). Consequently, the ionic part negligibly contributes to the total polarization for the 
CS phase, as demonstrated by Pion = 0.0000 C/m2 calculated for the R ̄3 c phase.

For the NCS phase, ϕion is 2.7396 rad , a value not equal to an integer multiple of 2π rad . Hence, according to 
Eq. (2) of SMs, this ionic Berry phase significantly affects the total polarization, leading to Pion = 0.3130 C/m2 
for the R3c phase.

According to Eqs. (2) and  (9) of SMs, the ionic and electronic polarizations are obtained by multiplying ϕion2π  
and φel

π
 by the quantum of polarization eR/� , respectively.

ϕ
(II)
el  is − 2.2402 rad for the polar R3c phase and 0.0000 rad for the non-polar R ̄3 c phase (Table 1). It indicates 

that the partial electronic Berry phase originating from the fully occupied deep-lying bands (class II) does not 
contribute to the polarization of the R ̄3 c phase, while it significantly contributes to the R3c phase.

Surprisingly, even in the non-polar CS phase, non-zero polarizations exist. For example, the φ(I∗)
el  and 

φel(= φ
(I∗)
el + φ

(II)
el = φ

(I∗)
el + 0.0000 = φ

(I∗)
el ) are −1.5403 rad for the CS R ̄3 c phase (Table 1), resulting in 

Pel = −0.3519 C/m2.
In *“Uniquifying of spontaneous polarization of LiOsO3 by finding the best branch”, we examine the electronic 

Berry phases of LiNbO3 , LiTaO3 , BiFeO3 , and LiOsO3 and show that our calculated spontaneous polarizations 
are in agreement with existing experimental data and theoretical results.

However, despite the precise values obtained, we still have to account for the uncertainty rooted in the Berry 
phase theory of polarization, which defines polarization only modulo a quantum of  polarization57. This suggests 
that polarization is a multivalued quantity.

In “Uniquifying of spontaneous polarization of LiOsO3 by finding the best branch”, we address this uncer-
tainty by calculating the polarization at several intermediate points along the transition path following the 
procedure by Resta and  Vanderbilt57. This process allows us to select the best branch and to provide unwrapped 
results of the spontaneous polarization.

SEP of LiOsO
3
 : mWf approach of electric polarization

As a part of the initial stage of the mWf approach, outlined in “mWf method of polarization” and Sect. 3.2 of the 
SMs, we focus on the energy interval II. Within this context, we calculate the ionic component of polarization, 
represented as P(�)ion , and the partial electronic polarization, denoted as P(�),(II)el  . We carry out these calculations 
with a focus on two distinct phases: the non-polar centrosymmetric (CS) R ̄3 c phase, and the polar non-cen-
trosymmetric (NCS) R3c phase, taking into account the hexagonal supercells. The results are presented as Pion and 
P
(II)
el  in Table 1, where the known indexes � are removed for simplicity for both the CS R ̄3 c and NCS R3c phases. 

Similarly, the indexes µ have been eliminated because they consistently yield a value of 3 for both the CS R ̄3 c 
and NCS R3c phases. Our computational findings from the mWf method reveal that the x and y components of 
both P(�)ion and P(�),(II)el  are essentially zero, meaning they are remarkably close to integer multiples of eR/� . Our 
results from the mWf method indicate that the x and y components of P(�)ion and P(�),(II)el  are negligible compared 
to their respective z components in both the centrosymmetric (CS) R ̄3 c and non-centrosymmetric (NCS) R3c 
hexagonal supercells. This observation aligns with the numerical predictions of the mBp scheme (as discussed in 
“Mean-field-like mBp method of polarization” and Sect. 3.1 of the SMs) and the theoretical predictions discussed 
in “SEP direction in LiOsO3 FE-LM”. This evidence substantiates that the polarization vectors P(�)ion and P(�),(II)el  
align with the c-axes of the hexagonal supercells in both the CS R ̄3 c and NCS R3c phases. Besides the polarization 
directions, the computed values of Pion for both the centrosymmetric (CS) R ̄3 c and non-centrosymmetric (NCS) 
R3c phases, as well as P(II)el  for the CS R ̄3 c phase using the mWf method, align perfectly with their respective 
values calculated by the mBp scheme, as shown in Table 1. Moreover, the mWf-calculated value of the partial 
electronic polarization P(�),(II)el  for the CS R ̄3 c phase, measured at 0.2076 C/m2 , is in close agreement with the 
mBp-calculated value of 0.2060 C/m2 for the same phase (see Table 1).

Utilizing the second step of the mWf method, as detailed in “mWf method of polarization” and Sect. 3.2 
of the SMs, we focus on energy interval I to calculate the positions of the Wannier centers. These posi-
tions are determined by evaluating the integral 

∫
r|W

(�)
n,R(r)|

2dr , which results in the position vector 
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�r�Wn,R(�) = (�x�Wn,R(�), �y�Wn,R(�), �z�Wn,R(�)) . These calculations are performed for each Wannier 
center, numbered from n = 1 to J(I) , while considering both the CS R ̄3 c and NCS R3c phases individually. The 
number of bands of class I, M(I) , is 18 which equals the number of Wannier centers of class I, i.e. J(I) = 18 , for the 
hexagonal supercells of both the CS R ̄3 c and NCS R3c phases. In the FP-LAPW DFT calculations, we have set the 
separation energy of the valence electrons from core electrons to −9.0 Ry , leading to 306 valence electrons. The 
number of fully occupied bands of class II is 144. These bands contain 288 = 144× 2 electrons. Thus, the bands 
of class I contain 18 = 306− 288 valence electrons. These 18 electrons mostly come form the Os atoms, see Fig.  
SM2 of SMs. Although the DOSs shown in Fig.  SM2 of SMs are calculated for the rhombohedral unit cells, the 
DOSs calculated for the hexagonal supercells, not presented here, show approximately similar behaviors. In the 
hexagonal supercell, there are six Os5+ ions. Each Os5+ ion has a nonmagnetic 5d3 ground state, leading to almost 
3 valence d-electrons per Os5+  ion17,20,26. Our results, in agreement with Refs.17,20,26, show that the metallic state 
of LiOsO3 mainly originates from the d-orbital of the Os5+ ions, see Fig.  SM2 of SMs. By considering these 3 
valence d-electrons, it can be also verified that the total number of valence electrons of class I are approximately 
3× 6 = 18 . These 18 valence electrons are distributed over the bands of class I, including valence and low-lying 
conduction bands, so that 6 bands (containing ≈ 12 electrons) is almost fully occupied, 6 bands (containing 
≈ 6 electrons) is partially occupied, and 6 bands (containing ≈ 0 electrons) remain almost empty. In fact, these 
18 valence electrons are distributed over the bands of class I ∗ , including valence bands only. The polarizations 
P
(�),(I∗)
el  calculated below confirm  that the x and y components of the Wannier centers corresponding to the region 

I do not contribute to the polarizations in both the CS R ̄3 c and NCS R3c hexagonal supercells. Thus, only the z 
components of the Wannier centers 〈z〉Wn,R for n = 1 to J(I) = 18 are tabulated here in Table 2 for both the CS 
R ̄3 c and NCS R3c phases.

Following the third step, we have determined n
W

(�)
n,R

 for both the CS R ̄3 c and NCS R3c phases. To do this, we 
have first projected the total Wannier DOS on each of the 18 maximally localized Wannier centers for n = 1 to 
J(I) individually. Then, we have integrated each of the projected Wannier DOSs up to the Fermi level one by one. 
By integrating up to the Fermi level, we have changed the working class from the undesired I to the desired I ∗ . 
The areas under the projected Wannier DOSs calculated up to the Fermi are tabulated in Table 2 as the occupa-
tion numbers nWn,R , after removing the known � indexes, for n = 1 to J(I) = 18 . We have examined the correct-
ness of the occupation numbers by summing on nWn,R over all the Wannier centers for both the CS R ̄3 c and NCS 
R3c phases individually. The examination, as also presented in Table 2, validates that 

∑J(I)=18
n=1 nWn,R leads to 

18.00 for both the CS R ̄3 c and NCS R3c phases individually. It is worth noting that the number of Wannier cent-
ers of class I, J(I) , in 

∑J(I)=18
n=1 nWn,R = 18.00 equals the number of bands of class I, M(I) , while the resultant value 

of the summation yields 18.00 which equals the number of valence electrons of class I ∗ . This verifies that the 
occupation numbers are correctly calculated and the mWf procedure works well so far up to this step. The results 
show that the occupation numbers of the Wannier centers n

W
(�)
n,R

 are almost either 1.09 (:= A) or 0.82 (:= B) 
which are close to unity, viz. A = 1.09 ≈ B = 0.82 ≈ 1.00 . This shows that the occupation numbers can be 
approximately halved by including low-lying empty conduction states besides the fully occupied valence states 
for constructing the maximally localized Wannier centers. This shows that the 18 electrons are almost uniformly 
distributed over the 18 centers of the maximally localized Wannier functions constructed from both valence and 
conduction states. More precisely, by taking the differences between the values of A = 1.09 and B = 0.82 into 
account, a sequence AAB︸︷︷︸

1

AAB︸︷︷︸
2

AAB︸︷︷︸
3

AAB︸︷︷︸
4

AAB︸︷︷︸
5

AAB︸︷︷︸
6

 with a repeating pattern AAB involving 3 elements can be 

observed which is periodically repeated 6 times for both of the phases. If we multiply the number of elements of 
the repeating pattern, 3, by the number of repetitions of the pattern, 6, we obtain the number of the 18 centers 
associated with the maximally localized Wannier functions constructed from both valence and conduction states, 
viz. 3× 6 = 18 . Approximately half of these states, ≈ 9 , belong to the valence region and the other half belong 

Table 2.  The z components of the Wannier centers, 〈z〉Wn,R , and occupation numbers, nWn,R
 , as well as 

summation of nWn,R
 over the Wannier centers, 

∑J(I)=18

n=1 nWn,R
 , taking the eighteen Wannier centers from 

n = 1 to J(I) = 18 of class I into account for the NCS R3c (CS R ̄3 c) hexagonal structure of LiOsO3.

n 〈z〉Wn,R nWn,R
n 〈z〉Wn,R nWn,R

1 6.25 (6.63) 1.09 (1.09) 10 12.96 (0.00) 1.09 (1.09)

2 6.25 (6.63) 1.09 (1.09) 11 12.96 (0.00) 1.09 (1.09)

3 6.26 (6.63) 0.82 (0.82) 12 12.96 (0.00) 0.82 (0.82)

4 1.78 (2.21) 1.09 (1.09) 13 8.49 (8.84) 1.09 (1.09)

5 1.78 (2.21) 1.09 (1.09) 14 8.49 (8.84) 1.09 (1.09)

6 1.79 (2.21) 0.82 (0.82) 15 8.49 (8.84) 0.82 (0.82)

7 10.72 (11.05) 1.09 (1.09) 16 4.02 (4.42) 1.09 (1.09)

8 10.72 (11.05) 1.09 (1.09) 17 4.02 (4.42) 1.09 (1.09)

9 10.73 (11.05) 0.82 (0.82) 18 4.02 (4.42) 0.82 (0.82)
.
.
.

.

.

.

.

.

.

∑18
n=1 nWn,R

18.00(18.00)
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to the conduction states. The element A is repeated twice while the element B is repeated once in the AAB pat-
tern. The amount of the occupation numbers can depend on the number of bands that crosses the Fermi level 
and the ratio of the number of conduction states added to the total number of valence and conduction states. 
For the class I, there are 6 bands that cross the Fermi level, and 6 valence bands, as well as 6 conduction bands. 
The 12 Wannier centers related to the 6 valence bands and the 6 conduction bands are closer to the positions of 
the Os5+ ions while the remaining 6 Wannier centers related to the 6 bands that cross the Fermi level are farther 
from the positions of the Os5+ ions. The occupation number of the 12 Wannier centers which are closer to the 
ionic positions is larger than that of the remaining 6 Wannier centers which are farther from the ionic positions. 
The larger (smaller) occupation number is A = 1.09 ( B = 0.82 ). This results in the AAB pattern.

Following the fourth step, we have determined the partial electronic polarizations P(�),(I
∗)

el,µ  for � = 0 and 1 by 
substituting the multiplications of n

W
(�)
n,R
〈r〉

W
(�)
n,R

 into the second term of Eq. (52) of SMs using the results 〈r〉
W

(�)
n,R

 
and n

W
(�)
n,R

 tabulated in Table 2. The resultant partial electronic polarizations are given for both of the phases in 
Table 1 as P(I

∗)
el  , where the known indexes � and µ are removed. We have checked that the x and y components 

of this partial electronic polarization are very close to integer multiples of eR/� leading to vanished polarizations 
along x and y directions for both the phases individually. The partial polarizations P(I

∗)
el  are calculated by the mWf 

method to be 0.0706 C/m2 for the NCS R3c and − 0.3584 C/m2 for the CS R ̄3 c which are close to the correspond-
ing partial polarizations P(I

∗)
el  calculated by the mBp method, i.e. 0.0746 C/m2 for the NCS R3c and -0.3519 C/

m2 for the CS R ̄3 c. This shows that both the mBp and mWf approaches yielding consistent results can be con-
sidered as two different reliable methods to predict polarization corresponding to the entangled bands of class 
I ∗ . Then, we have obtained the electronic polarizations Pel for both of the phases using the mWf method expressed 
in the generalized Eq. (52) of SMs by adding P(I

∗)
el  to P(II)el  , as tabulated in Table 1. The results show that the elec-

tronic polarizations Pel calculated by the mWf method for both of the phases are in agreement with the corre-
sponding polarizations calculated by mBp method, see Table 1.

Utilizing the fifth step of the mWf method, we have obtained the total electric polarizations P(�) by substitut-
ing P(�)ion and P(�)el  , as tabulated in Table 1, into Eq. (51) of SMs for � = 0 and 1 . The total electric polarizations 
calculated by the mWf method are presented for both of the phases in Table 1 as P , where the known index � has 
been removed. The results show that the total electric polarizations calculated by the mWf and mBf methods 
are consistent with each other, see Table 1. Eventually, we have obtained the spontaneous polarization �P by 
�P = P

(�=1) − P
(�=0) according to the modern theory of  polarization51–59. The spontaneous polarization �P , 

as calculated by the mWf method, is 0.9496 C/m2 which agrees with the value of 0.9455 C/m2 calculated by the 
mBp method in “SEP of LiOsO3 : mBp approach of electric polarization”, see Table 1. This agreement authenticates 
that mWf and mBp are able to predict consistently spontaneous polarizations of FE-LMs.

Analogous to the spontaneous polarization of 0.9455 C/m2 calculated by the mBp method in “SEP of LiOsO3 : 
mBp approach of electric polarization”, the value of 0.9496 C/m2 obtained through the mWf method in this 
section is not considered the final result due to the quantum uncertainty problem. The phase freedom in the 
choice of the unk , was shown to leave Pel , invariant modulo eR/�55. The quantum uncertainty found in eR/� 
is reflected by the fact that the Wannier center position is defined only up to a lattice  vector79. Therefore, the 
polarization can be considered as a multivalued quantity due to this  uncertainty79. To overcome the quantum 
uncertainty problem of the mBp and mWf methods, the main task of the next section is devoted to counting the 
integer number of quanta involved in the polarizations calculated in “SEP of LiOsO3 : mBp approach of electric 
polarization” and/or “SEP of LiOsO3 : mWf approach of electric polarization”.

In summary, the above discussion covers a multi-step computational method (the mWf approach) that deals 
with the calculation of ionic and partial electronic polarizations of the non-polar CS R ̄3 c and polar NCS R3c 
phases in certain hexagonal supercells.

In the first step, our calculations show that the x and y components of the polarizations are almost zero and 
therefore negligible in comparison to the z components. This implies that the polarization vectors are primar-
ily aligned along the c-axis of the hexagonal supercells. Furthermore, these calculated values agree with prior 
calculations from the mBp scheme.

The second step involves calculating the positions of the Wannier centers, considering that there are 18 valence 
electrons predominantly originating from the Os atoms. It confirms that these 18 electrons are evenly distributed 
over the valence and low-lying conduction bands. Therefore, only the z components of the Wannier centers are 
considered significant and are tabulated.

The third step involves determining the occupation numbers of the Wannier centers by projecting the total 
Wannier DOS onto each center and then integrating up to the Fermi level. The occupation numbers are nearly 
equal to one, indicating that the 18 electrons are uniformly distributed over the 18 centers of the maximally 
localized Wannier functions.

The final step mentioned involves determining the partial electronic polarizations using the calculated occu-
pation numbers and the positions of the Wannier centers from the previous steps.

Consequently, the mWf method accurately calculates the polarizations and verifies the orientation of these 
polarizations along the c-axis of the hexagonal supercells. It also calculates the positions and occupation numbers 
of Wannier centers. For more detailed information see Sect. 3.2 of SMs.
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Uniquifying of spontaneous polarization of LiOsO
3
 by finding the best branch

In both the Wannier functions and Berry phase approaches of polarization, the spontaneous polarization �P 
along an adiabatic path is a multivalued quantity that can be only well defined modulo a quantum of polarization 
eR/�57, where R is the lattice vector in the real space. In principle, there is such an uncertainty in polarization 
in both the Berry phase approach, as indicated in “Mean-field-like mBp method of polarization” and Sect. 3.1 
of SMs, and the Wannier approach, as indicated in “mWf method of polarization” and Sect. 3.2 of SMs. In the 
Berry phase (Wannier) approach of polarization, a phase (Wannier center position) can be only well-defined 
modulo 2π ( R ). This implies that �P can be defined uncertainly as P(�=1) − P

(�=0) modulo eR/�52,55–57, which 
is a consequence of transnational  symmetry80. The definition “ �P := P

(�=1) − P
(�=0) (mod eR/�) ” reads “ �P 

and P(�=1) − P
(�=0) are congruent modulo eR/� ”. This means that �P and P(�=1) − P

(�=0) can be different but 
equivalent in mod eR/� as they have the same remainder when divided by eR/� . In this definition, �P is a 
factual quantity that can be observed and measured experimentally while P(�=1) − P

(�=0) is a successor quantity 
proposed by the modern theory of  polarization51–59 that may not be necessarily equal to the factual quantity. In 
other words, computing P(�=1) − P

(�=0) by the endpoints of the path only, may not always lead to the factual 
�P . This is the case because there is no guarantee that the successor spontaneous polarization P(�=1) − P

(�=0) is 
computed using the correct branch. If we only consider the endpoints of the path without verifying the branch’s 
correctness, we might not obtain the accurate  result57. Therefore, we have considered the uncertainty problem 
to uniquely obtain the spontaneous polarization of LiOsO3 , as to be discussed subsequently.

Let us first more specifically clarify the problem. For the case under study, both of the polarizations P(�=0) 
and P(�=1) and consequently the spontaneous polarization �P are oriented along the c axes of the hexagonal 
CS and NCS supercells, see “SEP direction in LiOsO3 FE-LM”, “SEP of LiOsO3 : mBp approach of electric 
polarization”, and “SEP of LiOsO3 : mWf approach of electric polarization”. Therefore, for this case, R employed 
in eR/� can be simplified as R = nck̂ so that |R| = R = nc , where n is an integer number and c ( ̂k ) is the 
lattice constant (unit vector) along the Cartesian z axis. Hence, the above definition can be represented as 

Figure 4.  (a) Total, and wrapped partial Berry phases versus � . (b) Unwrapped total, and partial Berry phases 
versus � . All the Berry phases are scaled by 2π in (a,b) so that the interval of wrapping is simplified from 
[−π ,π ] to [− 0.5, 0.5] in (a). (c) Total, wrapped partial, and corresponding spontaneous polarizations versus � . 
The partial polarizations are wrapped into [ −ec/2�, ec/2� ], where ec/� = 71.78µC/cm2 is the quantum of 
polarization. (d) Unwrapped total, partial, and corresponding spontaneous polarizations versus � . The unit of 
polarizations is µC/cm2 in (c,d). The auxiliary symbols ∧ and ∼ indicate that when wrapping and/or shifting 
are/is performed, if necessary, compared to the results presented in Table 1, see “Uniquifying of spontaneous 
polarization of LiOsO3 by finding the best branch” where the symbols are defined. All the Berry phases and 
as a result polarizations are calculated by the mBp scheme including non-spin-polarized PBE-GGA along the 
distortion path as functions of structure � from “� = 0 ” to “� = 1 ” by step 0.1. The quantum of polarization 
and its number n are shown in (c,d). Our SEPs calculated by mWf, PBE-GGA+U with U = 0.2 and 2 eV are 
presented for comparison. The mBp, mWf, and empirical results presented in this figure are obtained for the 
metallic state of the NM LiOsO3 . Our GGA+U results and the GGA+U result taken from Ref.22 are calculated 
for the nonmetallic state of the G-AFM LiOsO3 using the standard Berry phase method. The P Emp is extracted 
from Ref.67, generated using an empirical equation. The theoretical datum is taken from Ref.22.
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�P := P
(�=1) − P

(�=0) + enck̂/� or equivalently as �Pk̂ := P(�=1)
k̂ − P(�=0)

k̂ + enck̂/� , where �P = |�P| , 
P(�=1) = |P(�=1)| , and P(�=0) = |P(�=0)| . By taking a dot product of the latter vector identity with the unit vector 
k̂ , it can be simplified to its scalar form �P := P(�=1) − P(�=0) + enc/� . Therefore, the basic task to identify 
�P uniquely is reduced to determine the integer number n for this case with polarization oriented along one-
dimension only. We do it below by the procedure proposed in Ref.57. To this end, in addition to the starting 
structure � = 0 ” and end structure � = 1 ”, as the two endpoints of the adiabatic transition, we have constructed 9 
intermediate structures � = 0.1, 0.2, ..., 0.9 , as shown in Fig. C2 and discussed in details in Sect. 5.4 of SMs. These 
intermediate structures are constructed using the freedoms of the  structure � = 1 ”. The freedoms originate from 
the 5 internal parameters z1, and z2, as well as x3, y3, z3 existed in the potions of Li+ , and Os+ , as well as O 2− 
ions in the polar NCS R3c  structure81, respectively, see Secs. 5.1, 5.2, 5.3 and 5.4 of SMs. It is well-known that 
If |�P| ≪ |eR/�| , the uncertainty may not be a serious  problem82,83. This condition, however, is not generally 
satisfied by all the compounds such as LiOsO3 . Therefore, in Sect. 5.4 of SMs, we have forced the transition to 
occur slowly from the starting structure � = 0 ” to the end structure � = 1 ” through the intermediate structures 
� = 0.1, 0.2, ..., 0.9 . To this end, we have constructed the first intermediate structure � = 0.1 ” to be very close to 
the starting structure “ � = 0 ”, as discussed in detail in Sect. 5.4 of SMs. By comparing structures “ � = 0 ” and 
“� = 0.1 ”, we have introduced some atomic vector steps �0.1 and distorted the structures one by one to gradually 
and slowly arrive at the endpoint “� = 1 ” step by step, see Sect. 5.4 of SMs. In this way, we find a chance to identify 
a sudden change (jump), if any, in the calculated polarization at an intermediate distorted structure compared 
to its previous and next structures. If a jump (ascent or descent) occurs, we modify it to make smooth the path 
by shifting the jumped polarization, i.e. pulling downward the ascent polarization or pushing upwards the 
descent polarization, using a negative or positive integer multiple of the quantum of polarization, as practically 
discussed below. In fact, by this way, we unwrap the polarizations (Berry phases) of the constructed structures 
step by step which are by default traditionally wrapped into the interval [−eR/2�, eR/2�] ≡ [−enc/2�, enc/2�] 
( [−π ,π ] ). Unwrapping refers to adjusting the phases of a signal to allow for smooth transitions. When phase 
jumps between successive signals are greater than or equal to the difference of π , unwrapping the phase helps 
in achieving continuous signals.

In addition to the components of the Berry phases of the structures “� = 0 ” and “� = 1 ”, tabulated in Table 1, 
here, we have also recalculated all these components for the 9 intermediate “� = 0.1, 0.2, ..., 0.9 ” structures of 
the non-magnetic (NM) metal LiOsO3 , shown in Fig. C2 of SMs. To this end, a set of non-spin-polarized 
PBE-GGA calculations are performed self-consistently by the mBp method, discussed in “Mean-field-like 
mBp method of polarization” and Secs. 1.1 and 3.1 of SMs. The Berry phases of these 9 intermediate struc-
tures together with those of the starting structure “� = 0 ” and the end structure “� = 1 ” are all represented 
as ϕ̂ion , ϕ̂ (II)

el  , φ̂(I∗)
el  , φ̂el , φ̂  in Fig. 4a. Here, the hat symbol over the ionic components indicates that if the ionic 

Berry phases are out of the range [−π ,π ] , they are first wrapped into the interval [−π ,π ] , and then they 
are divided by 2π . This can be represented as ϕ̂ion = (ϕion ± 2π)/2π . In this case, the plus (minus) sign is 
used when ϕion � −2π ( ϕion � 2π ). We can verify the consistency at the initial point “� = 0 ” by consider-
ing ϕion = 6.2832 Rad, which is reported in Table 1. In verifying this, we find that the results presented in 
Fig. 4a and Table 1 are consistent with each other at “� = 0 ”, viz. since ϕion = 6.2832 satisfies the condition 
ϕion � 2π , then 0 = ϕ̂ion = (ϕion − 2π)/2π = (6.2832− 2π)/2π ≈ 0/2π = 0 . If the ionic Berry phases 
belong to the range [−π ,π ] , they are divided by 2π only, represented as ϕ̂ion = ϕion/2π . We can verify this 
with the example 0.4360 = ϕ̂ion = ϕion/2π = 2.7396/2π ≈ 0.4360 at “� = 1 ”, where ϕion = 2.7396 ∈ [−π ,π ] 
as tabulated in Table 1. For the electronic parts of the Berry phases, the hat symbol on the electronic com-
ponents indicates that the electronic Berry phases are multiplied by 2, and if (after multiplying by 2) they 
lie out of the range [−π ,π ] , then they are wrapped into the interval [−π ,π ] , and finally they are divided 
by 2π , e.g. ϕ̂ (II)

el = (2ϕ
(II)
el ± 2π)/2π , where the plus (minus) sign stands for the case 2ϕ (II)

el � −2π 
( 2ϕ (II)

el � 2π ). At “� = 1 ”, from Table 1 we have ϕ (II)
el = −2.2402 Rad and from Fig. 4a we have ϕ̂ (II)

el = 0.2869 , 
which can be consistently converted to ϕ (II)

el  as 0.2869 = ϕ̂
(II)
el = (2(−2.2402)+ 2π)/2π ≈ 0.2869 , 

where ϕ̂ (II)
el = (2ϕ

(II)
el + 2π)/2π is used, since 2ϕ (II)

el = 2(−2.2402) = −4.4804 � −2π . If after multi-
plying the electronic Berry phases by 2 they are in the range [−π ,π ] , then they are divided by 2π only, e.g. 
ϕ̂

(II)
el = 2ϕ

(II)
el /2π . At “� = 0 ”, from Table 1 and Fig. 4a, it can be seen that ϕ (II)

el = ϕ̂
(II)
el = 0 , which are con-

verted as 0 = ϕ̂
(II)
el = (2× 0)/2π = 0 , where ϕ̂ (II)

el = 2ϕ
(II)
el /2π is used, since 2ϕ (II)

el = 2× 0 = 0 ∈ [−π ,π ] . 
In analogous to ϕ̂ (II)

el  ,  the sameconversion relations can be applied on φ̂(I∗)
el  . At “� = 0 ”, from Fig.  4a 

and Table  1 it  can be seen that −0.4903 = ϕ̂
(I∗)
el = (2ϕ

(I∗)
el )/2π = (2(−1.5403))/2π = −0.4903 , 

w h e r e  t h e  c o n d i t i o n  2ϕ
(I∗)
el = 2(−1.5403) = −3.0806 ∈ [−π ,π] i s  s a t i s f i e d .  At  “� = 1 ”, 

w e  h a v e  0.1040 = ϕ̂
(I∗)
el = (2ϕ

(I∗)
el )/2π = (2× 0.3267)/2π = 0.1040  ,  w h e r e  t h e  c o n d i -

tion 2ϕ(I∗)
el = 2× 0.3267 = 0.6534 ∈ [−π ,π] is satisfied, see Fig.  4a and Table  1. In Fig.  4a, φ̂el is 

obtained by the summation of ϕ̂ (II)
el  and φ̂(I∗)

el  , i.e. φ̂el = ϕ̂
(II)
el + φ̂

(I∗)
el  . We verify from Fig.  4a that 

φ̂el = ϕ̂
(II)
el + φ̂

(I∗)
el = 0+ (−0.4903) = −0.4903 at “� = 0 ” and φ̂el = ϕ̂

(II)
el + φ̂

(I∗)
el = 0.2869+ 0.1040 = 0.3909 

at “� = 1 ”. In Fig.  4a, φ̂  is obtained as φ̂ = ϕ̂ion + φ̂el . It can be also verified from Fig.  4a as 
φ̂ = ϕ̂ion + φ̂el = 0+ (−0.4903) = −0.4903 at “� = 0 ” and φ̂ = ϕ̂ion + φ̂el = 0.4360+ 0.3909 = 0.8269 at 
“� = 1”.

The results show that the electronic components ϕ̂ (II)
el  , φ̂(I∗)

el  , φ̂el are strictly and smoothly increasing functions 
of the distortion parameter � , see Fig. 4a. Without loss of generality, for convenience only, we displace the origins 
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of φ̂(I∗)
el  and φ̂el and thereby entirely shift them so that they start from zero. These shifts by constant values do not 

change the results, because the spontaneous polarization as the final important physical quantity is obtained from 
the difference between the polarizations calculated at the starting and end structures, �P = P(�=1) − P(�=0) , so 
that any constant shifts are canceled out. The shifted φ̂(I∗)

el  and φ̂el are shown as φ̃(I∗)
el  and φ̃el in Fig. 4b.

As the parameter � increases from 0 to 0.8, the ionic component ϕ̂ion decreases from zero to near the lower 
limit of the border shown by a horizontal dashed line at ϕ̂ = −0.5 , or equivalently at ϕ = 2πϕ̂ = 2π(−0.5) = −π , 
see Fig. 4a. Then, ϕ̂ion at “� = 0.9 ” suddenly jumps to near the upper border indicated by a horizontal dashed line 
at ϕ̂ = 0.5 , or equivalently at ϕ = 2πϕ̂ = 2π(0.5) = π , see Fig. 4a. Like before “� = 0.9 ”, again ϕ̂ion continues to 
decrease from “� = 0.9 ” to “� = 1 ”, see Fig. 4a.

The jump in ϕ̂ion detected at “� = 0.8 ” is not physically meaningful. By increasing the distortions very 
slowly, it may be expected to observe a smooth evolution between sequential structures leading to a non-zigzag 
path. Therefore, we unwrap, as shown in Fig. 4b, the sudden jump by pulling downwards the ascent ϕ̂ion at 
“� = 0.9 ” to ϕ̃ion which is performed by subtracting a quantum of Berry phase divided by 2π from ϕ̂ion , viz. 
ϕ̂ion

unwraps to
−−−−−−→ ϕ̃ion = ϕ̂ion − 2π/2π = ϕ̂ion − 1.

Similarly, we unwrap ϕ̂ion at “� = 1 ” to smooth the evaluation of ionic path from “� = 0.8 ” to “� = 1 ”, see 
Fig. 4b. By unwrapping ϕ̂ion at “� = 0.9 ” and “� = 1 ”, the entire ionic path becomes smooth and strictly decreas-
ing, eliminating the previously observable jump in ϕ̂ion through all the intermediate successive structures from 
“� = 0 ” to “� = 1 ”. The unwrapped ϕ̂ion is represented as ϕ̃ion in Fig. 4b.

The ϕ̂ (II)
el  remains unchanged, since ϕ̂ (II)

el  needs to be neither unwrapped nor shifted. It is also represented as 
ϕ̃

(II)
el  in Fig. 4b, keeping in mind that ϕ̃ (II)

el = ϕ̂
(II)
el  . Although φ̂  can be first unwrapped similar to ϕ̂ion → ϕ̂ion 

and then shifted similar to φ̂el → φ̃el , we obtain and represent it as φ̃  in Fig. 4b more simply by the summation 
of the shifted φ̃el and wrapped ϕ̃ion as φ̃ = ϕ̃ion + φ̃el . The unwrapping and shifting procedure depicted in Fig. 4b 
yields smooth evaluations of the Berry phases across all structures—initial, intermediate, and final.

Analogous to the Berry phases shown in Fig. 4a, partial electronic and ionic components of the polariza-
tions calculated in µC/cm2 for the 11 structures “� = 0, 0.1, 0.2, ..., 0.9, 1 ” are shown in Fig. 4c. The polari-
zations of the initial and final structures “� = 0 ” and “� = 1 ”, as the endpoints of the paths, are identical to 
the polarizations calculated in “Mean-field-like mBp method of polarization” and Sect. 3.1 of SMs, compare 
Table 1 with the endpoints of the paths shown in Fig. 4c, taking the conversion relation “100µC/cm2 = 1 C/m2 ” 
into account. As expected from Eqs. (3) and (9) of SMs, the polarizations vary the same as Berry phases with 
respect to � , compare Fig. 4a,c. Based on the wrapped results presented in Fig. 4c, the spontaneous polariza-
tion is calculated to be 94.55µC/cm2 , which is consistent with the results presented in Table 1 as 0.9455 C/m2 , 
viz. �P = P(�=1) − P(�=0) = 94.55µC/cm2 = 0.9455 C/m2 . In order uniquely determine �P and make cer-
tain the latter result, we determine the integer n by unwrapping the polarizations presented in Fig. 4c. To this 
end, the polarizations are unwrapped and the results are shown in Fig. 4d, where the tilde symbol in this fig-
ure denotes any necessary unwrapping and/or shifting tasks. The transformation procedure of the polariza-
tions, including both unwrapping and shifting operations, from Fig. 4c to d is similar to that of the Berry 
phases from Fig. 4a to b, as discussed above. The variations of the unwrapped polarizations with respect 
to � also behave like the unwrapped Berry phases, compare Fig. 4b,d and see the proportionality relations 
between polarizations and Berry phases in Eqs. (3) and (9) of SMs. The integer n is indicated by the vertical 
axes on the right of the Fig. 4c,d. By comparing Fig. 4c with Fig. 4d, the integer number n is determined to 
be −1 for the FE-LM LiOsO3 . Therefore, by recalling that �P := P(�=1) − P(�=0) + enc/� and noting that 
ec/� = 71.78µC/cm2 , ultimately we uniquely determined the spontaneous polarization of the FE-LM LiOsO3 
as �P̃ = P̃

(�=1)
− P̃

(�=0)
= P(�=1) − P(�=0) + enc/� = 94.55µC/cm2 + (−1)× 71.78µC/cm2 = 22.77µC/cm2.

The auxiliary symbols ∧ and ∼ are used only temporarily in this subsection for clarity. They indicate where 
wrapping and/or shifting operations are performed. It is important to note that wrapping and shifting are prac-
tical operations. Their sole purpose is to ascertain the final, factual spontaneous polarization. Spontaneous 
polarization is a physical quantity that can be observed in nature and measured experimentally. The theoretical 
calculation of spontaneous polarization may depend on these practical operations. However, the experimentally 
measured spontaneous polarization, as observed in nature, is evidently independent of these operations. Given 
this, we have chosen not to use the ∧ and ∼ symbols in other sections and subsections of this manuscript. We 
have simply reported the results without any additional symbols, such as P , �P , and so on. This is under the 
understanding that the aforementioned operations are applied as necessary.

Validity of the SEP predicted for FE‑LM LiOsO
3

In *“Uniquifying of spontaneous polarization of LiOsO3 by finding the best branch”, we predicted the SEP of 
ferroelectric lithium osmate (LiOsO3 ) to be approximately 22.77µC/cm2 . This value aligns closely with the 
established SEP of Barium Titanate (BaTiO3 ), reported to be 25µC/cm267,68, as can be observed in Fig. 5a,c. This 
parallel is further corroborated by the research conducted by Zabalo et al.30, where similar critical bending radii 
were noted for these two compounds. Now, we aim to further validate and verify the accuracy of our prediction, 
aligning with predictions made by previous researchers as thoroughly reviewed in the introduction section.
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Numerical verification: consistency of mBp and mWf
In “SEP of LiOsO3 : mWf approach of electric polarization”, the SEP of theFE-LM LiOsO3 was numerically 
calculated to be 0.9496C/m2 using the mWf method, as seen in Table 1. This value is known to suffer from 
the uncertainty problem, arising from the fact that a Wannier center is well-defined modulo R , as discussed 
in “Uniquifying of spontaneous polarization of LiOsO3 by finding the best branch”. Analogously to the 
unwrapping procedure elaborated in detail in “Uniquifying of spontaneous polarization of LiOsO3 by find-
ing the best branch” for the mBp method, we similarly found that n = −1 for the mWf method. This leads to 
�P̃ = P̃

(�=1)
− P̃

(�=0)
= P(�=1) − P(�=0) + enc/� = 94.96µC/cm2 + (−1)× 71.78µC/cm2 = 23.18µC/cm2 

for the SEP of the FE-LM LiOsO3 by the mWf method, as shown in Fig. 4d and Table 3. By comparing the 
23.18µC/cm2 predicted by the mWf method with the 22.77µC/cm2 predicted by the mBp method, we can at 
least conclude that the numerical mBp and mWf methods of calculating polarization consistently yield similar 
results for the SEP in this ferroelectric metal, as shown in Fig. 4d and Table 3. Furthermore, since the numerical 
mBp and mWf methods of calculating polarization, as discussed in “Mean-field-like mBp method of polarization”, 
“mWf method of polarization” as well as Secs.3.1 and  3.2 of the SMs, are different, it is highly unlikely that their 
similar results were merely coincidental. However, in the following sections, we will provide further evidence to 
suggest that these results are also likely to be close to the experimental value.

Empirical verification: quadratic order
Here, we demonstrate that the spontaneous polarizations, as predicted by the mBp or mWf methods for the 
FE-LM LiOsO3 , can be effectively fitted to the empirical equation proposed by Abrahams et al.67. The spontaneous 
polarization, �P , and the phase transition temperature, T c , play vital roles in  ferroelectrics102. These two funda-
mental properties, i.e., �P and T c , can be influenced by the atomic displacement (�z) of the homopolar atom, 
which is the most crucial quantity in “Displacive”  ferroelectrics102. In compounds having similar symmetries, 
the homopolar atoms usually behave in a similar manner during ferroelectric phase transitions. Consequently, 
the variations in T c can be empirically estimated based on �P67,102,103.

For instance, Abrahams et al.67 proposed the following empirical relationship between �z (in Å) and T c (in K):

and, additionally, they proposed the empirical relationship between �P (in µC/cm2 ) and �z (in Å):

By eliminating �z between Eqs. (9) and (10), the following empirical quadratic relationship between �P (in 
µC/cm2 ) and T c (in K) can be derived:

This relationship aligns with Ref.67 (see Sect. 7.1 of SMs for details of the derivation).
Furthermore, from experimental data, Abrahams and  coworkers67 directly extracted the following empirical 

relation between �P (in µC/cm2 ) and T c (in K):

(9)Tc = (2.00± 0.09)× 104(�z)2,

(10)�P = (258± 9)�z.

(11)Tc ≈ (0.300± 0.020)(�P)2.

(12)Tc = (0.303± 0.018)(�P)2.

Figure 5.  Empirical T c − (�P)2 dependence for (a) 10 normal ferroelectrics, indicated by empty square 
symbols, (b) 2 normal Li-based ferroelectrics, undergoing the same R3c to R ̄3 c phase transition as the system 
under study, (c) 11 normal ferroelectrics, including the 10 compounds considered in (a) plus the multiferroic 
BiFeO3 . (d) The linear empirical Eq. (12), proposed by Abrahams et al.67, and our empirical quadratic Eqs. (17)–
(19), as well as linear Eq. (20), emerged from experimental  data68,85,87,89,92–101. The experimental T c of the FE-LM 
LiOsO3 is taken from Ref.15 and its �P is calculated in the present work by our proposed mBp method.
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This is consistent with Eq. (11), which was indirectly derived from Eqs. (9) and  (10).
Here, we use empirical quadratic Eq. (12), derived directly from experimental data, and calculate the sponta-

neous polarization for the compound under investigation. To this end, we substitute the experimentally measured 
T c = 140 K for LiOsO3

15 into Eq. (12). In this way, we empirically obtain �P = (21.50± 0.64)µC/cm2 for the 
FE-LM LiOsO3 (see Sect. 7.2 of SMs for details of the derivation). Our empirical result agrees with the theoreti-
cal predictions made using the mBp and mWf methods of polarization (see Table 3). This empirical evidence 
further strengthens the conclusion drawn at the end of “Numerical verification: consistency of mBp and mWf ”. 
The consistency achieved based on quadratic Eq. (12), together with the agreement between results predicted 
by the mWf and mBp methods of polarization, helps to affirm the accuracy of our theoretical predictions. Not 
only does experimental data support Eq. (12) and, as a result, validate our numerical predictions, but the pro-
portionality between Tc and (�P)2 also has strong theoretical backing, as discussed below.

Phenomenological verification: Landau–Ginzburg theory
Landau and Ginzburg developed a phenomenological theory for the second-order phase transition in ferroelec-
tric materials by considering spontaneous polarization as an order parameter and expressing free energy with 
respect to this order parameter, �P . The free energy density F�P within this framework can be represented in 
the absence of external electric field and stress as  follows104,105:

where the power series is truncated at the fourth order, α0 is a constant that depends on the materials, β is the 
Landau coefficient, and the critical phase transition temperature Tc is the Curie-Weiss temperature TC . For the 

(13)F�P =
1

2
α0(T− Tc)(�P)2 +

1

4
β(�P)4,

Table 3.  �P calculated for LiOsO3 , LiNbO3 , LiTaO3 and BiFeO3 , together with the available experimental, 
empirical, and theoretical results. R is the magnitude of the real-space lattice vector along the polarization 
direction, i.e. R = c, where c is the lattice constant along the Cartesian z-axis. a is the other  hexagonal lattice 
parameter, � is the volume of the unit cell, eR

�
 is the quantum of polarization, and T c is the Curie temperature. 

Scheme, exchange-correlation functional (XC), Hubbard parameter (U), spin-polarization (SP), magnetic 
ordering (Order), Metallic state (Metal) and the Code are indicated. The units of the quantities are indicated. 
The results calculated in the present work are denoted by *. aThe datum is extracted from Ref.67, produced 
using an empirical equation proposed by Abrahams et  al. bThe lattice vector in [111] direction and the volume 
of rhombohedral unit cell, as extracted from Ref.22, are noteworthy for their distinct feature: the volume of the 
rhombohedral unit cell is one-third the size of a hexagonal structure. cThe SEP predicted, in “Hypothetical 
verification using neural network: bandgap opening by imposing distortion”, by the neural network at zero 
biaxial strain based on the data extracted from Ref.27, see Fig. 8c. dOur previous work with SOC. eSOC is 
neglected. fRef.67. gRef.90. hRef.91

Crystal Scheme XC U(eV) SP Order Metal Code Tc(K) a (Å) R (Å) �(Å3) eR

�
(µC/cm2) �P(µC/cm2) Ref.

LiOsO3

mBp PBE No NM Yes WIEN2k 5.077 13.412 299.359 71.78 22.77 *

mWf PBE No NM Yes WIEN2k 5.077 13.412 299.359 71.78 23.18 *

Emp. No NM Yes 140 21.50±0.64a *

Bp PBE+U 0.2 Yes G-AFM No WIEN2k 5.077 13.412 299.359 71.78 24.33 *

PBE+U 2.0 Yes G-AFM No WIEN2k 5.077 13.412 299.359 71.78 22.32 *

LDA+U 2.0 Yes G-AFM No VASP 13.210b 97.800b 216.4b 22.23 22

LDA Yes G-AFM No VASP 23.46c 27

Exp. No NM Yes 140 5.046 13.239 291.931 72.66 15

BiFeO3

Bp PBE+U 4.0 Yes G-AFM No WIEN2k 5.579 13.870 373.857 59.44 101.90d 79

Bp PBE+U 2.0 Yes G-AFM No WIEN2k 5.579 13.870 373.857 59.44 103.52d 79

PBE+U 2.0 Yes G-AFM No VASP 5.623 14.058 384.924 58.51 100.30e 85

LDA+U 2.0 Yes G-AFM No VASP 5.497 13.484 352.862 61.22 94.80e 85

Exp. Yes G-AFM No 1143 13.870 373.857 59.44 100.00 86

LiNbO3

Bp PBE No NM No WIEN2k 5.148 13.863 318.212 69.80 78.31 *

PBE No NM No VASP 5.203 14.111 330.812 68.34 84.40 85

LDA No NM No VASP 5.093 13.807 310.157 71.32 77.90 85

LDA No NM No ABINIT 5.151 13.703 314.869 69.73 86.00 87

Exp. No NM No 1468 f 5.148 g 13.863 g 318.212 g 69.80 g 71.00 88

LiTaO3

Bp LDA No NM No WIEN2k 5.148 13.767 315.970 69.80 53.12 *

VB No NM No 53.00 89

Exp. No NM No 891c 5.148h 13.767h 315.970h 69.80h 50.00 88

Exp. No NM No 980 5.144 13.781 315.760 69.93 48.60 90
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second-order phase transition, where no latent heat is present, we have viz.Tc = TC . By minimizing the free 
energy density as follows:

we can deduce either �P = 0 , representing the equilibrium polarization of the paraelectric phase, or ta nontrivial 
(nonzero) equilibrium polarization of the ferroelectric phase:

Thus, the Landau-Ginzburg theory of second-order phase transition (paraelectric↔ferroelectric) implies, accord-
ing to Eq. (15), that:

We notice that the theoretical quadratic Eq. (16), which is derived from the Landau-Ginzburg theory of 
second order phase transition, is consistent with the empirical quadratic Eq. (12). As shown in “Empirical veri-
fication: quadratic order”, our results are also consistent with the empirical Eq. (12), derived from experimental 
data. Consequently, our results are theoretically supported by Eq. (16) as well.

Empirical verification: biquadratic order
In “Phenomenological verification: Landau–Ginzburg theory”, we truncated the power series of the free energy 
density F�P (as expressed by Eq. (13)) at the fourth order. This resulted in a quadratic order polynomial for the 
transition temperature in terms of spontaneous polarization (see Eq. (16)). In “Empirical verification: quadratic 
order”, we used Eq. (12), which also represents a quadratic equation. However, to incorporate a broader range 
of interactions, including anharmonic vibrations, it would be necessary to involve higher orders of spontaneous 
polarization. This approach can provide a more precise tool for verifying the reliability of our SEP calculations 
for FE-LM LiOsO3 . With this in mind, let us go beyond the quadratic order. In principle, the power series of the 
free energy density could be truncated at the sixth order. This would, in principle, lead to a quartic (biquadratic) 
relation between spontaneous polarization and the transition temperature. Following this approach, we derive 
empirical biquadratic polynomials using available experimental �P and T c data for a wide range of ferroelectric 
compounds.

In a Tc − (�P)2 Cartesian coordinate system, as shown in Fig. 5a, we have positioned thirteen points 
(Tc , (�P)2) . Twelve of these points are based on experimental  data68,85,87,89,92–101 for various FE perovskite semi-
conductors and one of them, whose experimental T c is taken from Ref.15, is our numerical data calculated by the 
mBp method for the FE metal under question. In this figure, we did not include the numerical point calculated by 
the mWf method because it closely aligns with that calculated by the mBp method for the FE LiOsO3 metal. We 
only fitted a quartic-order polynomial to ten of the thirteen experimental points. These 10 experimental points 
are indicated by hollow-square-symbols, see Fig. 5a. Some of the experimental  data85,89,97 have been recently 
measured. Fig. 5a includes two different experimental data points for LiTaO3 . We used one of these data points, 
recently measured by Zhang et al.89, for a better fit, as it brings the coefficient of determination (R-squared) closer 
to unity, see R 2 = 0.97 in Fig. 5a. Similarly, for NKbO3 compound, among two different sets of experimental 
data included in Fig. 5a, we used only one of them, reported by Günter96, for a more efficient fit that brings R 2 
closer to unity. We have excluded our numerical point, indicated by solid-square-symbol, in the fitting procedure 
to avoid affecting the resultant empirical quartic relation emerged from the experimental data. By this way, we 
have obtained the following biquadratic empirical relation:

where a linear behavior of T c versus (�P)2 , in agreement with Eq. (12) reported by Abrahams et al.67, can be 
observed for smaller �P for which the effects of the quartic term due to the factor of 10−5 can be less than the 
quadratic term, see Fig. 5a. However, a deviation from the linear behavior of T c with respect to (�P)2 can be 
observed for larger �P , where the quartic term can compete against the quadratic term despite the 10−5 factor. 
Even though the curve shown in Fig. 5a is fitted to the experimental data, and the point (Tc , (�P)2) correspond-
ing to LiOsO3 is absent, the fitted curve closely aligns with our numerical results calculated for LiOsO3 . This 
validates our spontaneous polarization calculated for the FE-LM LiOsO3.

Additionally, we have limited the number of compounds utilized in the fitting procedure to the experimen-
tal data in Fig. 5a to just LiTaO3 and LiNbO3 , which belong to the same family as LiOsO3 displayed in Fig. 5b. 
These LiXO3 (X=Nb, Ta) ferroelectrics, similar to LiOsO3 , undergo an R3c to R ̄3 c phase transition and possess 
symmetry comparable to FE-LM LiOsO3 . Within these three compounds-LiNaO3 , LiTaO3 , and LiOsO3-their 
homopolar atoms (Ta, Nb, and Os) play key roles in determining their ferroelectric properties.

(14)
∂F�P

∂(�P)
= α0(T− Tc)(�P)+ β(�P)3 = 0,

(15)�P =

√
α0(Tc − T)

β
, for T < Tc .

(16)

Tc − T =
β

α0
(�P)2,

Tc = T+
β

α0
(�P)2,

Tc ∝ (�P)2.

(17)Tc = (0.52± 0.06)(�P)2 + (−4.60± 1.59)× 10−5(�P)4,
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A quadratic polynomial was fitted to the experimental (Tc , (�P)2) points considering only LiTaO3 and 
LiNbO3 , resulting in the following biquadratic polynomial for Tc as a function of �P:

Its coefficient of determination, R 2 = 0.99 , is closer to unity than R 2 = 0.97 , determined for Eq.(17), indicating 
a better fit to the experimental data. To further test the accuracy of our results, LiOsO3 was also considered. The 
data for LiOsO3 were not used to obtain the fitted curve in Fig. 5b. However, this curve still closely approximates 
the point associated with LiOsO3 , lending credibility to our theoretical predictions.

Lebeuglea et al. reported a large SEP for the multiferroic BiFeO3  compound85. In Fig. 5c, we have included this 
multiferroic compound along with the standard ferroelectric compounds from Fig. 5a. The data from Lebeuglea 
et al.85 for BiFeO3 were added to Fig. 5c, and a polynomial was fitted to the expanded dataset. This process yielded 
the following biquadratic polynomial with R 2 = 0.98 for Tc as a function of �P:

This empirical polynomial also validates our calculated polarization for the LiOsO3 , see how the point (Tc , (�P)2) 
of LiOsO3 is close to the curve in Fig. 5c.

To emphasize, Eqs. (11) and (12) from “Empirical verification: quadratic order” are quadratic in terms of �P , 
while being linear in (�P)2 . The Eqs. (17) to (19) in “Empirical verification: biquadratic order”, derived from 
updated experimental data, are quartic (biquadratic) in �P and quadratic in (�P)2 . In Fig. 5(d), for comparison, 
the linear empirical Eq. (12), proposed by Abrahams et al.67, and the quadratic empirical Eqs. (17) to (19), emerged 
from some newer experimental  data85,89,95–97,99,101 added to the valuable older experimental  data68,87,92–94,98,100 
in this work, are plotted in terms of (�P)2 . In addition to these 4 fitted curves included in Fig. 5d, similar to 
Abrahams et al.67 but including altogether both older and newer experimental  data68,85,87,89,92–101 already used in 
Fig. 5a, we have fitted a linear polynomial for T c in terms of (�P)2 to the experimental data, as well. This linear 
fit, which is also added to Fig. 5d for comparison, reads as:

which aligns with Eq. (12) introduced by Abrahams et al.67, as shown in Fig. 5d where both Eqs. (12) and (20) 
are depicted. Notably, a comparison reveals that the non-linear Eqs. (17), while still in concordance with linear 

(18)Tc = (0.49± 0.09)(�P)2 + (−43.84± 1.90)× 10−5(�P)4.

(19)Tc = (0.49± 0.03)(�P)2 + (−3.78± 0.39)× 10−5(�P)4.

(20)Tc = (0.35± 0.02)(�P)2,

Figure 6.  (a) Total, and wrapped partial Berry phases versus � . (b) Unwrapped total, and partial Berry phases 
versus � . All the Berry phases are divided by 2π in (a) and (b) so that the wrapping interval is converted from 
[−2π , 2π ] to [− 1, 1] in (a). (c) Total, wrapped partial, and corresponding spontaneous polarizations versus 
� . The partial polarizations are wrapped into [ −ec/�, ec/� ], where ec/� = 71.78µC/cm2 is the quantum 
of polarization. (d) Unwrapped total, partial, and corresponding spontaneous polarizations versus � . The unit 
of polarizations is µC/cm2 in (c) and (d). Unlike Fig. 4, here, only for simplicity, the auxiliary symbols ∧ and 
∼ are not used. All the Berry phases and as a result polarizations are calculated by the standard Berry phase 
scheme including SP using GGA+U with U = 0.2 eV for the nonmetallic state of the G-AFM LiOsO3 along the 
distortion path as functions of structure � from “� = 0 ” to “� = 1 ” by step 0.1. The quantum of polarization and 
its number n are shown in (c) and (d).
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Eqs. (12)and (20), display linear behaviors for �P values approximately less than 70.71µC/cm2 . Lastly, at 
T c = 140 K, the SEPs predicted by these fits range from 17 to 22 µC/cm2 , which fall within the linear regime, 
i.e., 22µC/cm2 < 70.71µC/cm2 . These values align with our SEP results predicted by mBp and mWf methods 
in “Uniquifying of spontaneous polarization of LiOsO3 by finding the best branch”, as indicated in Table 3.

Hypothetical verification: bandgap opening by Hubbard model using GGA+U
In this subsection, our objective is to calculate the SEP of LiOsO3 in its hypothetical semiconductor phase. To do 
this, we slightly open the bandgap using PBE-GGA+U. This adjustment enables us to use the conventional Bp or 
Wf method without any restrictions or modifications. Our goal is to demonstrate that the SEP, as projected by the 
conventional Bp or Wf method for the synthetically developed G-AFM semiconductor LiOsO3 , is comparable 
to the SEPs predicted by the mBp or mWf polarization method for the naturally occurring nonmagnetic metal 
LiOsO3 . This comparison is intended to validate that our modified mBp or mWf method aligns well with the 
conventional Bp method, even without our modifications.

To achieve our aim, we seek to validate that the drawn conclusions are robust against changes in DFT methods 
and supercell configurations. Hence, we will proceed with the calculation of SEP in a manner that harmonizes 
more consistently with the methodologies used in this research. Thus, following our study’s approach, we will 
also estimate the SEP using the conventional Berry phase theory, as implemented in the WIEN2k code based on 
full potential. To this end, we will also utilize GGA+U to open the gap and transform the rhombohedral unit cell 
into a hexagonal supercell of LiOsO3 , as detailed in Secs. 5.2 and 5.3 of the SMs, while imposing G-type AFM 
ordering. In our GGA+U calculations, we will set U eff = 0.2 eV . This choice allows us to open the bandgaps of 
both polar noncentrosymmetric R3c and non-polar centrosymmetric R ̄3 c structures, by minimal amounts of 
0.061 eV and 0.071 eV respectively. Indeed, the aim of opening the gap was to leverage the standard Berry phase 
of polarization to corroborate our findings. By applying GGA+U with U eff = 0.2 eV , we computed the electronic, 
ionic, and total Berry phases for the initial, final, and the nine intermediate superstructures, as elaborated in 
Sect. 5.4 and illustrated in Fig. SM6 of the SMs.

As illustrated in Fig. 6a, the electronic Berry phase exhibits a linear trend, while both ionic and total Berry 
phases present a zigzag pattern across the array of 11 superstructures. The abrupt zigzag fluctuations in the 
ionic Berry phases are tempered by unwrapping sudden shifts, thus creating a smoother line, as demonstrated 
in Fig. 6b. We also modify the trajectory of the electronic Berry phase to ensure its origin at “� = 0 ” aligns with 
the zero-point, as shown in Fig. 6b. The total Berry phase is then obtained by combining the electronic and ionic 
Berry phases (Fig. 6b).

The initial or misplaced polarizations, visible in Fig. 6c, are adjusted as depicted in Fig. 6d. This specific 
method and its aim are extensively detailed in “Uniquifying of spontaneous polarization of LiOsO3 by finding 
the best branch” and visually illustrated in Fig. 4, so further elaboration here is redundant. In Fig. 6, we have 
intentionally omitted auxiliary symbols ∧ and ∼ , as discussed in “Uniquifying of spontaneous polarization of 
LiOsO3 by finding the best branch”.

Figure 7.  (a) Spontaneous polarization, �P , (b) total polarization of the CS phase, P(�=0) , (c) total polarization 
of the NCS phase, P(�=1) , (d) electronic polarization of the NCS phase, P(�=1)

el  , and (e) ionic polarization of the 
NCS phase, P(�=1)

ion  , calculated by the standard Berry phase approach for the nonmetallic state of the G-AFM 
LiOsO3 using GGA+U with U ∈ [0.2, 2.4 eV] . The jumps in P(�=0) occurred at U = 0.6, 1.0, 1.4, 1.6, 1.8, 2.0 , as 
shown by empty blue square symbols in the inset (b), are pulled down and the blue zigzag path is made smooth 
as a straight orange line by subtracting one quantum of polarization, see empty orange circle symbols in the 
inset (b).
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Upon comparing Fig. 6c and d, we find that the SEP, calculated by considering only the initial “� = 0 ” and 
the final “� = 1 ” structures, aligns with the SEP computed across all 11 structures, evidenced by the identical 
value of �P = 24.33µC/cm2 . Hence, the consideration of intermediate superstructures, or adjustment of abrupt 
zigzag patterns, is redundant for this compound. However, this finding should not be generalized, as the SEP 
may vary when intermediate structures are included, as demonstrated in Fig. 4c,d.

Interestingly, the phases (polarizations) for the G-AFM phase fall  within the range 
[−2π , 2π Rad]([−71.78, 71.78µC/cm2]) (Fig. 6a,b), while the phases (polarizations) for the NM phase are 
confined to [−π ,πRad]([−71.78/2, 71.78/2µC/cm2]) (Fig. 4a,b). This discrepancy stems from spin-polarized 
calculations for the G-AFM phase (Fig. 6a,b) versus non-spin-polarized calculations for the NM phase (Fig. 4a,b). 
In spin-polarized calculations, the Berry phases (and corresponding polarizations) for spin-up states are summed 
with those for spin-down states, causing the doubling in wrapping intervals due to the additional spin degree of 
freedom. However, this factor does not affect the calculation of �P , where the difference between initial and final 
polarizations is calculated. Our computed SEP, �P = 24.33µC/cm2 for the nonmetallic state, aligns with the SEP 
calculated for the metallic state of LiOsO3 , �P = 22.77µC/cm2 , as seen in Fig. 4d and Table 3, along with Fig. 6d.

Continuing our analysis, we acknowledge the work of He et al., who calculated the SEP as 22.23µC/cm222. 
Their research relied on the standard Berry phase  theory52,55 and employed the pseudopotential-based VASP 
 code46–50. Using LSDA+U with Ueff = 2 eV , they established a 2× 2× 2 supercell derived from the rhombohedral 
unit cell of G-AFM LiOsO3.

The computed SEP of 22.23µC/cm2 for the conjectured G-AFM insulating LiOsO3 aligns with our SEP for 
the authentic nonmagnetic metal LiOsO3, calculated as 22.27 (23.18)µC/cm2 by the mBp (mWf) method of 
polarization we have developed (see Fig. 4d and Table 3). This compatibility validates our mBp and mWf meth-
ods and indicates that the influence of GGA+U on the class I ∗ , where the valence bands cross the Fermi level, 
is limited (refer to Fig. 1 and Table 1, where P(I

∗)
el  is reported as a moderate value of 0.0746 C/cm2 for the polar 

NCS R3c structure).
Before concluding this subsection, we will examine the implications of U on polarization in greater depth. 

Additionally, see Sect. 5.6 of the SMs for a discussion regarding the influence of U on lattice parameters and the 
energy bandgap.

Our investigation reveals a marginal discrepancy between the SEP obtained using GGA+U with U eff = 0.2 eV 
and that determined by He et al.22 using LDA+U with U eff = 2.0 eV , where �P = 24.33 > 22.23µC/cm2 (refer 
to Table 3). Interestingly, the SEP value acquired by He et al. aligns more closely with our PBE-GGA calcu-
lated outcome for the metallic state than with our GGA+U calculations involving U eff = 0.2 eV , such that 
�P = 22.77 ≈ 22.23 µC/cm.

In alignment with the procedure employed by He et al., we recalculated the SEP using GGA+U with 
U eff = 2.0 eV . The resultant SEP value, �P = 22.32 µC/cm , displays superior concurrence with the findings 
reported by He et al., as well as with our mBp and mWf polarization-derived SEPs in the metallic state. These 
shared findings indicate �P = 22.32 ≈ 22.77 ≈ 22.23 µC/cm (refer to Table 3 and Fig. 4d).

Nonetheless, it is essential to remember that we applied the PBE-GGA functional and the FP-APW+lo 
method, differing from those used in Ref.22. Thus, although the closer agreement when using the identical U 
value is not surprising, given these divergences in computational methodology, it warrants mention.

Given the above analysis, the effects of U parameter on the SEP are significant, albeit not necessarily large. 
Therefore, we have systematically studied these effects, as promised earlier. We have calculated �P by GGA+U 
for a range of U from 0.2 to 2.4 eV in steps of 0.2 eV, as shown in Fig. 7a. Our findings reveal a decrease in �P 
with increasing U.

This reduction is attributable to the electronic part of the polarization of the polar NCS R3c phase, which 
corresponds to the final structure “� = 1 ”. For clarification, let’s examine the changes in the electronic and ionic 
parts of the Berry phases in both the initial “� = 0 ” and final “� = 1 ” structures.

Our results computed by GGA+U with U eff = 0.2 reveal that P(�=0)
ion = 0 and P(�=0)

el = −ec/2� . Addi-
tional results, not presented here, show that P(�=0)

ion  and P(�=0)
el  remain constant over the examined range of 

U, yielding P(�=0)
ion = 0 and P(�=0)

el = −ec/2� for U ∈ [0.2, 2.4 eV] . Thus, the total polarization for “� = 0 ”, 
P(�=0) = 0− ec/2� = −ec/2� , remains unaltered with variation in U over the examined range, as depicted 
in Fig. 7b.

The total polarizations for the initial structure “� = 0 ”, represented by blue empty square symbols in Fig. 7b, 
show fluctuations between −ec/2� and +ec/2� . By subtracting a quantum of polarization, +ec/� , from 
P(�=0) = ec/2� at selected U values, we smooth the path of polarization.

Therefore, P(�=0) = −ec/2� remains constant for U ∈ [0.2, 2.4 eV] , as indicated by orange empty circle 
symbols in Fig. 7b. This indicates that P(�=0) remains constant at half of the quantum of polarization and is not 
affected by variations in U for U ∈ [0.2, 2.4eV] . Hence, the variation of �P cannot be attributed to the non-polar 
CS R ̄3 c structure and originates solely from the polar NCS R3c structure.

Our GGA+U results indicate that P(�=1)
ion  remains constant at −0.40482 µC/cm2 for U ∈ [0.2, 2.4 eV] , while 

P
(�=1)
el  decreases as U increases, as depicted in Fig. 7d. Consequently, the variation of �P with U is solely attribut-

able to the variation of P(�=1)
el  with U, as shown by the comparison of Fig. 7a with Fig. 7c.

The band structures calculated by PBE-GGA for the NM phase and by GGA+U with U = 0.2 eV and U = 2 eV 
for the G-AFM phase, as presented in Fig. SM1 of the SMs, reveal 18 bands within the energy range of [−- 2, 
2 eV]. Our calculations show minimal changes to the valence bands with increasing U in GGA+U, while the 
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conduction bands move away from the Fermi level. Our findings suggest that the variation in SEP is primarily 
due to changes in the electronic part of the NCS phase.

In conclusion, our study articulates the validity of SEPs as projected by the mBp and mWf methodologies 
for the NM metallic phase of LiOsO3 . We have demonstrated that these SEPs can be accurately approximated 
and corroborated using the generalized gradient approximation plus Hubbard U (GGA+U) for the contrived 
G-AFM nonmetallic phase of LiOsO3 . Furthermore, it has been discerned that the influence of diminutive U 
parameters on the SEP is relatively marginal, permitting us to open the bandgap of the G-AFM phase through 
GGA+U and estimate the magnitude of SEP for the NM metallic LiOsO3 . Therefore, our endeavors have suc-
cessfully met the stated objectives.

Hypothetical verification using neural network: bandgap opening by imposing distortion
Here, we present an alternative strategy for bandgap modulation, complementing the GGA+U methodology 
described in “Hypothetical verification: bandgap opening by Hubbard model using GGA+U”. It involves the 
application of appropriate strain to the system. Zhang et al.27 examined the correlation between the bandgap and 
biaxial strain in LiOsO3 , maintaining consistent crystal symmetry. Their results demonstrated a direct relation-
ship between the increase in the percentage of tensile biaxial strain, represented as ε (%) , and the augmentation 
of the bandgap.

On expanding the bandgap, Zhang et al.27 proceeded to calculate the SEP of the insulated LiOsO3 , using the 
Berry phase  theory52,55 as implemented in the pseudopotential-based VASP  code46–50. The SEP was measured as 
a function of ε (%) ranging from +3 to +5% in steps of +0.5%.

The data obtained from Zhang et al.’s  work27 were used to predict the SEP value at ε = 0 using linear extrapola-
tion, quadratic extrapolation, and neural network machine learning techniques. The data points were represented 
as five red markers spaced at increments of +0.5% from +3 to +5% in Fig. 8. Linear regression yielded the equa-
tion �P = [(−5.47± 0.70)ε+ (31.26± 2.85)]µC/cm2 , as depicted in Fig. 8a.

However, the limitations of linear extrapolation became apparent when comparing the 
rate of change of �P at different ε values. A quadratic fit was applied, resulting in the equation 
�P = [(−1.88± 0.57)ε2 + (9.57± 4.55)ε+ (2.10± 8.91)]µC/cm2 , as seen in Fig. 8b. Despite an improved R2 
value for the quadratic function, the relative error remained significantly high.

Given these limitations, the study turned to machine learning, employing the Bayesian regularization-trained 
multilayer perceptron (MLP)  methodology106–111. The MLP procedure applied Bayesian activation function 
to optimize the weights and reduce the error function E(O) = T − f (IWio) . The network output vector O is 
computed as O = f (IWio) . After the training, the predicted SEP at ε = 0 was 23.46 µC/cm2 , as shown in Fig. 8c, 
consistent with the predictions made by the mBp and mWf methods.

Figure 8.  SEP, �P , as a function of tensile biaxial strain, ε , imposed on LiOsO3 . The data, indicated by red 
points from +3% to +5% by step +0.5% , are extracted from Fig. 3b of Ref.27. Using these extracted data 
only, at ε = 0% the SEP is predicted to be (a) �P = 31.26± 2.85µC/cm2 by the linear extrapolation, (b) 
�P = 2.10± 8.91µC/cm2 by the quadratic extrapolation, and (c) �P = 23.46µC/cm2 by the neural network. 
(d) After including the point (ε = 0%,�P = 23.46µC/cm2) , predicted by the neural network in (c), as 
indicated by a blue point here in (d), to the set of red points, extracted from Fig. 3b of Ref.27, at ε = 0% the SEP 
is predicted to be �P = 23.38± 0.85µC/cm2 by the quadratic interpolation.
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Lastly, a refined empirical quadratic equation was derived for �P as a function of strain ε by including the 
prediction from the neural network, yielding:

which was graphed in Fig. 8d. This model’s prediction at ε = 0 aligns closely with the neural network prediction, 
as well as the predictions made by the mBp and mWf methods, providing validation for these methodologies.

Comparative verification: BiFeO
3
 , LiNbO

3
 , and LiTaO

3

In this section, we aim to validate the efficacy of our unwrapping procedure in determining the most suitable 
branch for the unique prediction of the resultant SEP, as elucidated and applied to LiOsO3 in *“Uniquifying of 
spontaneous polarization of LiOsO3 by finding the best branch” for its actual metallic state, and in “Hypothetical 
verification: bandgap opening by Hubbard model using GGA+U” and “Hypothetical verification using neural 
network: bandgap opening by imposing distortion” for its conjectural nonmetallic state.

To facilitate this, we have selected the normal ferroelectrics BiFeO3 , LiNbO3 , and LiTaO3 for comparison. 
These compounds, similar to LiOsO3 , undergo the R ̄3c-R3c ferroelectric transition. This transition, as detailed 
in Sect. 5.4 of the SMs, facilitates the creation of their intermediate structures in a manner analogous to LiOsO3 . 
We simulate this transition from � = 0 to � = 1 , passing through the intermediate structures � = 0.1, 0.2, ..., 0.9 
as illustrated in Fig. SM6 of the SMs.

Contrary to LiOsO3 , the SEPs of these selected compounds have been both experimentally  measured85,87,89 
and theoretically  computed84,88. The availability of experimental data provides us the opportunity to evaluate the 
accuracy of our unwrapping and uniquifying process in the context of real-world results.

We begin our analysis with the multiferroic BiFeO3 , drawing extensively from our previous  work78. For 
its G-AFM phase, we calculate the Berry phases and polarizations across all 11 superstructures depicted in 
Fig. SM6 of the SMs. These calculations, conducted via GGA+U methodology with an optimized Ueff = 4 eV , 
are presented in Fig. 9. Figure 9a presents the total and wrapped partial electronic and ionic components of the 
Berry phases, scaled by 2π.

The scaled wrapping interval for G-AFM BiFeO3 , [−0.5, 0.5] , is precisely half of that for G-AFM LiOsO3 , 
[−1, 1] , as observed when comparing Fig. 9a with Fig. 6a. Spin-orbit coupling (SOC) demonstrates a greater 

(21)�P = [(−0.54± 0.15)ε2 + (−1.27± 0.74)ε+ (23.38± 0.85)],

Figure 9.  (a) Total, and wrapped partial Berry phases versus � . (b) Unwrapped total, and partial Berry phases 
versus � . All the Berry phases are divided by 2π in (a) and (b) so that the wrapping interval is converted 
from [−π ,π ] to [− 0.5, 0.5] in (a). (c) Total, wrapped partial, and corresponding spontaneous polarizations 
versus � . The partial polarizations are wrapped into [ −ec/2�, ec/2� ], where ec/� = 59.44µC/cm2 is the 
quantum of polarization. (d) Unwrapped total, partial, and corresponding spontaneous polarizations versus 
� . The unit of polarizations is µC/cm2 in (c) and (d). Like Fig. 6 but unlike Fig. 4, here, only for simplicity, the 
auxiliary symbols ∧ and ∼ are not used. All the Berry phases and as a result polarizations are calculated by the 
standard Berry phase scheme including SP and SOC by GGA+U with Ueff = 4 eV for the Multiferroic G-AFM 
BiFeO3 along the distortion path as functions of structure � from “� = 0 ” to “� = 1 ” by step 0.1. The quantum 
of polarization and its number n are shown in (c) and (d). Due to the SOC, the scaled wrapping interval, 
[−0.5, 0.5] , is obtained to be half of the interval [−1, 1] .  Experimental85 and  theoretical84 SEPs are included for 
comparison.
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influence on G-AFM BiFeO3 than G-AFM LiOsO3 , thus our computations for G-AFM BiFeO3 (G-AFM LiOsO3 ) 
incorporate (exclude) SOC, as illustrated in Fig. 9 (Fig. 6).

Relativistic quantum mechanics elucidates that the DOSs of spins up and down either combine or separate 
in accordance with the presence or absence of  SOC112–114. Consequently, Berry phases, polarizations, and other 
electronic properties either couple or decouple accordingly, necessitating the choice of a relativistic ( |j,mj , l, s� ) 
or non-relativistic basis ( |l,ml , s,ms�).

In this context, the wrapping interval of Fig. 6a is twice that of Fig. 9a, given the corresponding quanta of 
polarizations. Fig. 9c illustrates the changes in the wrapped polarizations across the 11 superstructures.

The uncertainty problem arising from the calculated wrapped SEP of 16.98 µC/cm2 , which differs significantly 
from the experimental value of 100.00 µC/cm284, requires resolution via identification of the optimal branch, 
or integer quantum number n.

We apply an unwrapping procedure (analogous to that discussed in “Uniquifying of spontaneous polarization 
of LiOsO3 by finding the best branch”) to the Berry phases and polarizations, as depicted in Fig. 9b,d, respectively. 
By comparing total polarizations at “� = 1 ” before and after wrapping, or equivalently total Berry phases, we 
discern the integer quantum number n to be −2.

Therefore, taking into account n = −2 and the quantum of polarization 59.44 µC/cm2 , the SEP derived from 
the unwrapped total polarization 16.98 µC/cm2 is calculated to be −101.90 µC/cm2.

Our SEP calculation using the density functional and standard Berry phase theories with GGA+U and 
Ueff = 4 eV is consistent with both experimental  data85 and theoretical  results84. This congruence affirms the 
validity of our unwrapping and uniquifying procedure. We also replicated standard Berry phase calculations 
using GGA+U with Ueff = 2 eV , and found an increase in |�P| as U decreases from 4 to 2 eV, affirming the �P -U 
relationship depicted in Fig. 7a.

In this investigation, we consider the typical ferroelectrics (FEs) LiNbO3 and LiTaO3 . These materials exhibit 
equivalent electronic configurations, similar chemical compositions, and undergo identical R ̄3c-R3c ferroelectric 
transitions as LiOsO3

84,86. Their spontaneous electrical polarizations (SEPs) have been documented experimen-
tally. In Fig. 10a–d, both the wrapped and unwrapped or shifted total and partial polarizations as a function of 
superstructures � = 0, 1, 2, . . . , 1 are represented for LiNbO3 and LiTaO3 , respectively.

Figure 10.  Total, wrapped partial, and corresponding spontaneous polarizations versus � for (a) LiNbO3 and 
(c) LiTaO3 . The partial polarizations are wrapped into [ −ec/�, ec/� ], where ec/� = 69.80µC/cm2 is the 
quantum of polarization. Unwrapped total, partial, and corresponding spontaneous polarizations versus � for 
(b) LiNbO3 and (d) LiTaO3 . The unit of polarizations is µC/cm2 . Like Figs. 6 and 9 but unlike Fig. 4, here, only 
for simplicity, the auxiliary symbols ∧ and ∼ are not used. All the Berry phases and as a result polarizations are 
calculated by the standard Berry phase scheme including SP by PBE-GGA for the normal FE LiNbO3 and by 
LDA for the normal FE LiTaO3 along the distortion path as functions of structure � from “� = 0 ” to “� = 1 ” by 
step 0.1. For comparison,  experimental87,87,89 and  theoretical84,86,88 SEPs are included in (b) for LiNbO3 (in (d) 
for LiTaO3).
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These manipulations do not modify the SEPs for LiNbO3 and LiTaO3 ; for both, the shift n is null, demon-
strated by an equivalent 78.31 µC/cm2 value for LiNbO3 and 53.12 µC/cm2 for LiTaO3 , observed in Fig. 10a–d 
for �P.

The G-AFM FE LiOsO3 , with a bandgap, also exhibits n = 0 , illustrated by a constant 24.33 µC/cm2 value 
for �P in Fig. 6c,d84,86. Conversely, the NM FE-LM LiOsO3 and the GAM normal multiferroic BiFeO3 dis-
play n = 1 �= 0 and n = −2 �= 0 , respectively. For these cases, the SEPs differ as shown by the distinct values 
extracted from the respective figures for �P . This indicates that the unwrapping or shifting procedure modifies 
“ P(�=1) − P(�=0) ” unless the optimal branch is chosen, in which case it remains consistent.

For LiNbO3 (Fig. 10a), some discontinuities are noted, while for LiTaO3 (Fig. 10c), these are absent. This 
suggests a n = 0 for LiNbO3 , as the difference “ P(�=1) − P(�=0) ” is impervious to a simple shift. However, this 
is not solely dependent on the initial and final structures “� = 0 ” and “� = 1 ”, and necessitates examination of 
intermediate structures to guarantee the selection of the optimal branch.

Theoretical data and experimental values at room temperature for LiNbO3 are presented in Fig. 10b and 
Table 3, offering a comparative analysis. Our results align with existing theoretical research and experimental 
 data84,86,87. Likewise, for LiTaO3 , our findings accord with the experimental SEPs measured by Wemple et al.87, 
and Zhang et al.89, and the theoretical datum calculated by Tan et al.88. Notably, these consistencies between 
theoretical and experimental results extend further when considering that the theoretical DFT results were 
computed at zero temperature while experimental data were obtained at room temperature. Reduction in tem-
perature can decrease entropy and enhance the electrical order, thus potentially increasing the experimentally 
measured polarization. This, in turn, can improve the consistency between theoretical results (calculated at zero 
temperature) and experimental data (recorded at lower temperatures).

The ferroelectric structural distortion in LiXO3 perovskites ( X = Nb, Ta, Os ) has been linked to the hybridiza-
tion of O:p and X:d  orbitals22,84,115. The degree of this distortion is influenced by the eccentricity of the X atom, 
as measured by the c/a ratio, a recognized indicator of structural distortion  strength84, and outlined in “SEP 
direction in LiOsO3 FE-LM”.

In the LiXO3 family, the computed c/a ratios are 2.69, 2.67, and 2.64 for LiNbO3 , LiTaO3 , and 
LiOsO3 respectively, illustrating a decrease in structural distortion with decreasing c/a ratio. This 
trend also corresponds to a decrease in the spontaneous electric polarization (SEP). Hence, the smaller 
SEP of LiOsO3 can be substantiated when compared to the larger SEPs of LiNbO3 and LiTaO3 , i.e. 
(c/a)LiNbO3 = 2.64 > (c/a)LiTaO3 = 2.67 > (c/a)LiOsO3 = 2.64 ⇒ �(P)LiNbO3 = 78.31 µC/cm2 >

(�P)LiTaO3 = 53.12 µC/cm2 > (�P)LiOsO3 = 22.77 µC/cm2 , as shown in Table 3.
However, this comparison should not be generalized for compounds with different correlations. While the 

SEP decreases with an increase in U for LiOsO3 (with a constant c/a ratio, as depicted in Fig. 7), it may increase 
with U if the c/a ratio is not fixed due to its own increase with U (as shown in Table (SM2) of the SMs). Hence, 
the SEP is influenced by both the c/a ratio and U, and its behavior relative to U is contingent upon whether the 
c/a ratio is held constant. This necessitates caution when extrapolating these results to other cases.

Conclusion
In this work, we have explored a groundbreaking possibility: the existence of nonzero spontaneous electric 
polarization (SEP) in metals. We have challenged the widely accepted belief that itinerant electrons invariably 
annihilate ferroelectricity in metals. Our work builds on the theoretical conjecture of Anderson and Blount, and 
experimental findings of Y. Shi and team, offering a quantitative validation.

Our research’s pivot is the adjustment of existing methods, namely the Berry phase theory and Wannier 
functions theory, for calculating electric polarization in systems with nonzero bandgaps. By addressing their 
limitations and modifying these methods, we have developed the modified Berry phase (mBp) theory of polariza-
tion and modified Wannier functions (mWf) theory of polarization. These adapted methods are poised to work 
effectively in predicting the SEP of metals.

In the case study of the ferroelectric-like metal (FE-LM), lithium osmate (LiOsO3 ), our calculated SEP 
demonstrates an alignment with the SEP in Barium Titanate (BaTiO3 ), a regular ferroelectric compound. The 
consistency with both empirical and theoretical data underscores the validity of the mBp and mWf methods. 
We further validated our findings via multiple approaches: numerical verification, empirical testing, compari-
son with the Landau-Ginzburg theory, hypothetical adjustments to the bandgap, and comparative analysis with 
normal ferroelectric materials.

Notably, due to the absence of SEP at zero biaxial strain, we employed the multilayer perceptron method - a 
subset of the feedforward artificial neural network class in machine learning - to project the SEP at this state. 
This prediction was based on available data for nonzero strains.

Overall, the consistency across all validation methods implies a high likelihood of our predictions being accu-
rate. As such, our proposed mBp and mWf methods can be reliably applied to predict SEP in metals. This opens 
up avenues for the theoretical identification and practical synthesis of new ferroelectric-like metals, enhancing 
the broader understanding of ferroelectricity, as aptly expressed by Evgeny Y. Tsymbal. Our research marks a 
significant contribution to the continuous enrichment of knowledge in physics and material science, 100 years 
after the original discovery of ferroelectricity.

Data availability
All data analyzed during this study are included in this published article and its supplementary material. In 
addition, to enhance the reproducibility and transparency of the results, the raw data sets utilized in the present 
study are also available from the corresponding author upon reasonable request.
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