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nordmanniana (Steven) Spach)
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Single nucleotide polymorphism (SNP) markers are powerful tools for investigating population 
structures, linkage analysis, and genome‑wide association studies, as well as for breeding and 
population management. The availability of SNP markers has been limited to the most commercially 
important timber species, primarily due to the cost of genome sequencing required for SNP discovery. 
In this study, a combination of reference‑based and reference‑free approaches were used to identify 
SNPs in Nordmann fir (Abies nordmanniana), a species previously lacking genomic sequence 
information. Using a combination of a genome assembly of the closely related Silver fir (Abies alba) 
species and a de novo assembly of low‑copy regions of the Nordmann fir genome, we identified a 
high density of reliable SNPs. Reference‑based approaches identified two million SNPs in common 
between the Silver fir genome and low‑copy regions of Nordmann fir. A combination of one reference‑
free and two reference‑based approaches identified 250 shared SNPs. A subset of 200 SNPs were used 
to genotype 342 individuals and thereby tested and validated in the context of identity analysis and/
or clone identification. The tested SNPs successfully identified all ramets per clone and five mislabeled 
individuals via identity and genomic relatedness analysis. The identified SNPs will be used in ad hoc 
breeding of Nordmann fir in Denmark.

The world’s productive forests are facing significant challenges from climate change, the green transition, and a 
growing global population that is driving up demand for wood products. Forest tree breeding, assisted migration, 
and other forms of genetic management seem to be evident and realistic solutions to address these challenges, 
both in terms of the necessary adaptation to new environments and of increasing wood production. Traditional 
long-term forest tree breeding with field trials is likely unrealistic, except for the most important timber  species1. 
Forest tree breeding could, however, be accomplished via ad hoc breeding, using pedigree reconstruction with 
DNA markers in production  stands2. For the assisted migration of forest tree species and/or seed sources, genetic 
monitoring and management is imperative. Working on many species in many forest stands and genotyping many 
thousands of individuals brings with it the need to develop cost-effective, high-throughput DNA markers. The 
present study explores methodologies that could be applied to generate DNA markers in a conifer species. This 
process is particularly challenging, because of the relative scarcity of unique, non-repetitive DNA sequences in 
 conifers3, which is a prerequisite for informative DNA-markers with mendelian inheritance that can be used in 
e.g. pedigree reconstruction.

Single nucleotide polymorphisms (SNPs) are the most frequent form of variation in genomic DNA, where 
different sequence alternatives (alleles) occur at a single base  level4. Besides being the most frequent form of 
variation in eukaryotic genomes, SNPs are primarily biallelic, ubiquitous, and amenable to high-throughput 
 automation5,6. Single nucleotide polymorphisms have been successfully applied in genetic marker-assisted breed-
ing in numerous economically important species with time and cost savings; this is especially important in woody 
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 perennials7. Although the focus has hitherto been on microsatellites, SNPs are replacing this marker type in kin-
ship analysis and pedigree reconstruction because of the advantages wrought by high-throughput genotyping.

Single nucleotide polymorphism identification typically involves mapping sequences onto a reference genome 
followed by a variant calling step to identify the SNP positions. However, in the case of non-model species, 
especially conifers with large and complex genomes, the availability of even a single reference genome remains 
limited to very few species (i.e., Picea abies:8; Pinus taeda:9; Pinus lambertiana:10; Pseudotsuga menziesii:11; Abies 
alba:12). Owing to their large size (≥ 18–20 Gb) and repetitive character, none of these reference genomes are 
complete. The recently published genome of the Chinese pine (Pinus tabuliformis;13, coast redwood (Sequoia 
sempervirens;14), giant redwood (Sequoiadendron giganteum;15) and Japanese cedar (Cryptomeria japonica;16) 
are the only chromosome-level assemblies. Some of the alternatives used in the absence of reference genome 
includes, RNA-seq, Genotyping-by-Sequencing17 and other reduced representation based techniques, such as 
 RADseq18 and DArTseq 19. RNA-seq can provide information about gene expression levels while at the same time 
enabling SNP detection in the expressed region. However, RNA-seq only offers a modest amount of coverage 
(expressed region). In addition, it could result in detection of variants that are introduced by RNA editing, hence 
not present at the DNA level. Moreover, a highly variable nature of gene expression could make SNP detection a 
challenging  task20. On the other hand, genetic analysis has been made possible in a substantial number of non-
model plants thanks to Genotyping-by-Sequencing and similar technologies (such as DArTseq and RADseq). 
They can, however, be susceptible to batch effects, and between-sample differences frequently produce a con-
siderable quantity of missing data, which has an impact on the consistency and quality of results across samples 
and studies. Furthermore, even though they can be economical when genotyping a modest number of samples, 
they might be prohibitively expensive when working with big populations.

Though not widely applied, a reference-free SNP identification approach that detects variants directly from 
primary sequences has recently been developed for use in the absence of high-quality reference  genomes21–23. 
 Ebwt2InDel23 is one of the reference free SNP calling approaches. It uses positional clustering  theory24 to detect 
SNPs using extended Burrows-Wheeler-Transform of a collection of reads. The basic principle in the positional 
clustering theory is that the extended Burrows-Wheeler Transform (eBWT) of a collection of reads tend to 
cluster together bases that span the same genomic location. These clusters are identified using the Longest Com-
mon Prefix Array and the Suffix Array of the dataset. This clustering enables locating and analyzing this genome 
positions to identify  SNPs23,24.

Conifers have worldwide economic importance because they are amenable to large-scale wood production, 
rapid growth, and relative ease of both paper and solid wood  processing25. In addition, owing to their attractive 
foliage, some coniferous species are in high demand for their ornamental value, while others are required for 
special purposes such as Christmas trees. Nordmann fir (Abies nordmanniana (Steven) Spach) is one of the most 
prominent Christmas tree species, with over 40 million trees sold annually in Europe  alone26.

Denmark is the only country with a breeding program for Nordmann fir Christmas  trees27, and references 
therein]. The program, which began in 1992, has relied primarily on seed harvesting of selected plus (i.e., best 
performing) trees and their use in traditional half-sib field trials. In parallel, clonal seed orchards (CSOs), which 
are grafted with scions from the plus trees, can be genetically thinned when the half-sib trials had been evalu-
ated after a Christmas tree rotation. Nordmann fir reaches reproductive maturity at the late age of 30–35 years. 
Therefore, many of the plus trees have been chosen at an age beyond Christmas tree size, when the focus has been 
on health and needle appearance. However, in a specific part of the breeding program—the so-called Ambrolauri 
gene pool—plus trees have been selected in Christmas tree stands 12–14 years from seed, which is the normal 
age for felling. Scions from the plus trees have been grafted in CSOs, but no seed for half-sib trials has been 
available (because they are so young). The resulting CSOs belonging to the Ambrolauri gene pool delivered their 
first seed crops in 2009, and many commercial Christmas tree stands based on their seed production have since 
been established. To be able to carry out a genetic thinning of the first generation CSOs in the Ambrolauri gene 
pool and select the best plus trees for the second generation, an ad hoc breeding approach was undertaken. In 
this breeding activity, parentage analysis had to be conducted for thousands of trees, using DNA-markers, and 
it was therefore decided to develop a panel of SNP markers.

Nordmann fir has a rather limited natural distributional range in the Caucasian region. This includes Georgia, 
the southern part of Russia, and the northeastern parts of  Turkey28. The species tends to be used primarily as a 
Christmas tree, so it has high regional economic importance (e.g., in Denmark and northern Germany). There 
is hardly any genomic information thus far (e.g., no reference genome).

The present study aimed to explore a combination of reference-based (using the closely related Silver fir 
genome) and reference-free approaches to develop a set of reliable SNPs in Nordmann fir, thereby enabling ad 
hoc breeding. The SNPs thus developed will help significantly in the ongoing breeding program of the species.

Methods
Plant material and DNA extraction
Two commercial seed lots from the CSOs FP. 259 and FP. 266, respectively, obtained from Nature agency in 
Denmark, were used as starting material. These two CSOs represent two different gene pools in the first genera-
tion of the Danish Christmas tree breeding  program29, namely:

A. The Borshomi gene pool—where FP.259 currently consists of 68 clones from the approved Danish seed 
stands F.526 (17 clones) and F.527 (43 clones; 1st generation seed imported directly from the Borshomi area 
in Georgia), as well as from the Lilleheden source (8 clones), which was the second generation from seed 
directly imported from the Borshomi area.
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B. The Ambrolauri gene pool—where FP.266 currently consists of 143 clones that have been selected from 
the approved Danish seed stands F.808 Ny Saltbjerg and F.824 Tveden, both of which originate from the 
Ambrolauri area in Georgia.

Two seeds from each of the two seed lots were soaked in de-ionized water for 24 h before the embryos and the 
seed skin was removed. DNA was extracted from the megagametophytes using the DNeasy Plant Mini Kit from 
QIAGEN (Germany). Low-coverage whole genome sequencing was carried out using a NovaSEQ 6000 running 
a 2 × 150 bp configuration at Admera Health LLC. Library preparation included shearing to roughly 300 bp and 
dual-index, PCR-free library construction and quantification using KAPA kits, according to the manufacturer’s 
instructions. This resulted in approximately 300 million pairs of 150 bp for each of the four samples (around 2.4 
billion sequences in total). A total of 342 individuals representing 140 clones originating from the Ambrolauri 
gene pool was used to validate the identified SNPs.

Data preprocessing and assembly
FastQC30 was used to obtain an overview of the quality status of the raw sequencing reads per sample. Individual 
FastQC reports were then summarized in an overall quality status report by  MultiQC31. All reads were trimmed 
for adaptor sequences, G-homopolymer and poor-quality bases (< 10 quality score) using  FastP32.

Up to 75% of conifer genomes is made up of highly repetitive DNA  sequences33. These often pose a challenge 
during assembly and marker identification. Given the difficulty of resolving repetitive regions with low-coverage 
sequencing, we used reads originating from low-copy regions of the genome for de novo assembly. As a first step 
in repeat detection and de novo assembly, KMC  v334 was used to count k-mers, a procedure that determines 
all unique substrings of length k in the sequencing reads. The k-mer database was converted into a histogram 
text file using the kmc_tools transform  program34. The kmc_tools filter program was then used to filter the input 
reads and recover putative low copy reads. The filtered low copy reads were then correctly paired into read1 and 
read2 sequences and unpaired reads were written to a separate singletons file using the repair.sh tool from the 
BBTools  Suite35.

Two de novo assembly tools, namely MaSuRCA 36 and  SOAPdenovo237 version r240, were used to assemble 
the filtered reads into contigs (Fig. 1). In the preparation of the config file for MaSuRCA, the k-mer size was left 
to auto so the program could select the optimal one, and the k-mer size of 99 was selected for the graph recon-
struction. The same k-mer size of 99 was also used to assemble reads using SOAPdenovo2.

Mapping of short‑read sequences
For simplicity, we compared the two de novo assemblies from MaSuRCA and SOAPdenovo2 (hereafter denoted 
as MaS-assembly and SOAP-assembly) based on simple criteria, that is, assembly statistics and mapping quality 
(length and percent identity of the alignment) to the Silver fir genome. Consequently, the MaS-assembly was 
selected.

In addition to the MaS-assembly, a draft genome from a closely related species, Silver fir (Abies alba), version 
Abal.1_1.fa, was used as a  reference12. The four haploid individual read files were mapped to the two references 
using  BWA38.  Samtools39 flagstat was used to generate descriptive statistics of the alignment.

Mapping the entire haploid individual reads to the MaS-assembly resulted in unrealistic mapping and SNP 
frequency over estimation. Up to 53.2% of the reads from the individual haploid samples were aligned to the 
low-copy assembly that constitute less than 3% of the genome in size. This indicates that BWA found the best 

Figure 1.  Schematic workflow showing the de novo short read assembly approaches used with respective 
quality control, filtering and assembly tools indicated in brackets.
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possible alignment for each read or read pair in the low-copy assembly, even though the read may not have 
originated from that particular region of the genome when the sequencing library was constructed. The expected 
depth of coverage of each of the haploid samples is 5x, considering the Nordmann fir genome size. Meanwhile, 
the average depth based on mapping to the Silver fir genome is 7x. This implies that each contig in the low-copy 
assembly would align to about 7x coverage of reads, with some variation due to random sampling. However, the 
depth of coverage value in the BAM files was up to ten times higher (average = 39), with more than 90% and 60% 
of the regions having a depth higher than the  expected (based on mapping to the Silver fir genome) and higher 
than twice the expected, respectively.

To overcome this, we carried out the following steps:

The MaS-assembly was mapped to the Silver fir genome to produce BAM files;
BEDtools  intersect40 was used to produce a list of read identifiers for each haploid sample aligned to the subset 
of the Silver fir genome where contigs from the low-copy assembly align;
The seqtk  toolkit41 was used to subset those reads from the original haploid samples;
The subsets of reads from each haploid sample were mapped to the low-copy assembly.

Another solution to the excessive depth issue is to exclude regions with unrealistically high depth, either 
from the BAM files or later at variant filtering stage. However, given the small size of the de novo assembly and 
a highly repetitive nature of the Nordmann fir genome, reads originating from similar regions (e.g., paralogous 
sequences) could map on top of each other and still pass a filtering threshold of maximum depth ( d + 4

√
d,42 

for instance, where d is the average depth). 

SNP calling
Both reference-based (calling SNPs from alignment) and reference-free approaches were used to call SNPs 
(Fig. 2). Bcftools mpileup43 was used to call SNPs from the alignments. Meanwhile,  ebwt2InDel23 was used as a 
reference-free SNP calling approach. Ebwt2InDel discovers SNPs/indels inside one set (heterozygous sites) or 
between sets of reads (fasta/fastq) without aligning them to a reference genome.

To call SNPs without a reference using ebwt2InDel, the BCR_LCP_GSA program was first used to create a 
Burrows Wheeler Transform (BWT) of the reads, from which ebwt2InDel calls SNPs. To enable comparison 
with SNPs identified with the reference based approaches, the ebwt2InDel calls were converted to a Variant Call 
Format (VCF) using the Silver fir genome and MaS-assembly.

Raw VCF‐files across the four haploid genomes were filtered through several steps. First, only the biallelic 
SNPs were retained. SNPs with < 5x coverage, < 15 genotype quality, and < 30 mapping quality were excluded. 
Because haploid megagametophyte tissue was used as a source of DNA, all loci showing heterozygosity at the 

Figure 2.  Schematic workflow showing the major steps in the three different SNP calling approaches used (two 
reference-based and one reference-free). The first two columns colored peach, and yellow indicate reference-
based approaches using MaS-assembly, and A. alba (Silver fir) references, respectively. The third column 
indicates a reference free approach using ebwt2InDel. The right most column illustrates the SNP filtering 
pipeline used.
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individual level were filtered out. In addition, because of the haploid sequence and only four individuals used 
for SNP identification, any polymorphic SNP has an alternative allele frequency (AF) of at least 0.25, and as a 
result, only SNPs with AF ≥ 0.25 were kept at this filtering stage.

The number of shared SNPs detected among each of the reference-based and reference-free approaches was 
identified using the Bcftools isec. This allowed us to select SNPs identified by different SNP calling methods. 
However, because two different references were used in the reference-based approaches, it was impossible to 
carry out direct intersection analysis and identify which SNPs from the whole genome alignment were present in 
the assembly generated by MaSuRCA. Thus, an indirect approach was used. The alignment of the MaS-assembly 
to the Silver fir genome was used to obtain the bed file with the exact coordinates (scaffold ID, alignment start, 
and alignment end) where the assembly was aligned. The coordinates were used to obtain a subset of variants 
that were identified within the coordinates that were polymorphic among the four samples. Figure 2 shows an 
overview of the SNP-calling pipeline.

SNP genotyping primer design and targeted sequencing
Primer3 v2.5.044 was used to design targeted amplicon sequencing primers (200 pairs) for a selected subset of 
the identified SNPs. Out of the 200 tested SNPs, 50 were detected by all methods, while 50 were shared between 
Silver-based and reference-free methods. Additionally, 50 SNPs overlapped between MaS-based and Silver-based 
methods, and another 50 were common between MaS-based and reference-free methods. The selected SNPs are 
located on different contigs. We used needles as a source of DNA for amplicon sequencing. Targeted amplicon 
sequencing of 342 Nordmann fir individuals from FP.266 was accomplished using the Hi-Plex  approach45 at 
Floodlight Genomics LLC, and the resulting amplicons (80–100 bp) were sequenced on the Illumina NovaSEQ 
6000 according to the manufacturer’s instructions at Admera Health LLC, Plainfield, NJ, USA. The 342 indi-
viduals comprised 88 clones with three ramets per clone, 26 clones with two ramets, and 26 where the ortet (the 
original plant from which a clone is started) was represented by a single ramet only. The amplicon sequences were 
first processed using  Fastp32 to remove adapter sequences and reads with a Q score below 20. The filtered reads 
were mapped to references—Silver fir for the 150 SNPs at an intersection of Silver-based SNPs and the other two 
methods: MaS-assembly for the 50 SNPs common between MaS-based and ebwt2InDel SNPs. We used ANGSD 
v. 0.94046 for genotype calling. The filtering criteria used in ANGSD include discarding bad reads (flag ≥ 256); 
discarding reads that did not map uniquely, and keeping only those with mapQ > 20. Moreover, only truly variable 
SNPs (p values less than 0.001) were kept. Posterior genotype probability calculation was also enabled to keep 
sites with > 0.95 posterior genotype probability. The selected SNPs were tested in the context of identity analysis.

SNP validation
Reproducibility of the SNPs was evaluated by determining whether any two or three ramets had identical geno-
types across all the tested SNPs. For this purpose, we calculated the percentage of mismatches between the 83 
ramet trios with confirmed identity and an equal number (83) of randomly assigned unrelated trios. In addi-
tion, to evaluate the change in number of mismatches between trios and duos, we compared an equal number 
of pairs (83 pairs randomly selected from the 83 ramet trios). To make a group of unrelated pairs, we randomly 
assigned 83 pairs and trios of unrelated individuals across clonal groups. We compared the mismatch profile 
of the ramets with that of unrelated individuals. Secondly, we conducted identity analysis in CERVUS v. 3.0.7 
 software47. Finally, we computed a genomic relatedness  matrix48 for all tested clones.

Plant guidelines
The collection and performance of experimental research on Nordmann fir samples in this study complied with 
the national guidelines of Denmark.

Results
Quality status of the sequencing reads
The number of paired-end reads of the four individuals before quality filtering ranged from 556.8–602.1 million 
(M) reads. The number of reads remained almost the same after filtering (556.3–601.6). Overall, 99.9% of reads 
passed quality filtering. The minimum mean quality value across each base position in the read across the four 
clones before filtering was 34.9, while the maximum was 36.6.

Sequencing coverage
The k-mer analysis did not show a second peak corresponding to k-mers that occur once in the genome and 
resolves errors from single-copy k-mers. To explore this, different k-mer lengths were tried in different k-mer 
counting programs, including KMC v3, Jellyfish, and kmercountexact.sh from BBmap. However, the histograms 
from all these programs showed a steady and consistent decrease in k-mer abundance distribution, without any 
sign of the second peak. To ensure that this issue was not the result of contamination of the sequencing reads 
with other species, we carefully analyzed the quality of the reads. We also mapped the filtered reads to the Silver 
fir genome and analyzed the alignment for mapping quality and percent identity. This enabled us to rule out 
contamination as the reason for the absent peak. This might be an indication that the rate of variation is very 
high in the genome.

The sequencing coverage was determined using data from the Kew  database49 regarding Nordmann fir DNA 
content. This data was combined with information on the average number of reads per sample and the average 
read length. Specifically, the total sequence per individual was calculated by multiplying the average number of 
reads per individual (592.9 million reads) by the average read length (149 bases), resulting in 88 gigabases (Gb). 
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The expected coverage was then obtained by dividing this total sequence per individual by the expected haploid 
DNA content of 17.3 Gb, yielding an approximate coverage of 5x.

De novo assembly and mapping
The filtered reads of the four individuals were merged into a single file to obtain around 20x coverage. To obtain 
a collection of reads to be assembled, the merged read files were filtered using the kmc_tools filter program to 
keep only reads that contained 90% to 100% k-mers with coverage between 10x (one-half the expected coverage) 
and 40x (twice the expected coverage).

Assembly of the filtered low copy reads using MaSuRCA and SOAPdenovo2 resulted in total assemblies of 
399 Mb and 676 Mb, respectively (Table 1).

The percentage of mapped reads varied between an average of 97.7% in reads mapped to the MaS-assembly 
and an average of 99.7% in reads mapped to the Silver fir draft genome (Table 2). It should be noted that only a 
subset of reads originating from the 1−2x copy regions were mapped to the MaS-assembly.

Proportion of SNPs
The number of raw SNPs detected from the reads mapped to the MaS-assembly and the Silver fir reference was 
6.8 M and 464 M, respectively (Table 3). After filtering, the SNP numbers decreased to 2.07 M and 98.1 M in reads 
mapped to MaS-assembly, and Silver fir references, respectively. The reference-free approach using ebwt2InDel 
detected 8.1 M SNPs.

Table 1.  Assembly statistics for the two de novo assemblies (Mb = Megabase).

Assembler Sum contig length Mean size of contigs N50

MaSuRCA 399 Mb 569 bp 593 bp

SOAPdenovo2 676 Mb 469 bp 464 bp

Table 2.  Alignment summary statistics (Mapped = proportion of reads aligned to a reference; Properly 
paired = both mates of a read pair map to the same contig, oriented towards each other, and with a reasonable 
insert size; With itself and mate mapped = total mapped reads including those that are not properly paired; 
Singletons = only one mate in a pair is mapped). The alignment names include the reference used followed by 
the individual ID.

Alignment Reads passed QC (M) Mapped (%) Properly paired (%) With itself and mate mapped (M) Singletons (%)

Silver_9 611.9 99.8 82.5 599.3 0.1

Silver_12 603.1 99.7 82.7 590.3 0.1

Silver_13 631.5 99.7 82.8 618.2 0.1

Silver_15 566 99.8 83.7 554.7 0.1

SOAP_9 37.4 97.7 80.2 29.0 0.7

SOAP_12 36.7 97.7 80.3 28.5 0.7

SOAP_13 38.9 97.7 80.2 30.2 0.8

SOAP_15 35.0 97.8 80.3 27.2 0.7

MaS_9 20.5 97.0 88.9 16.5 0.9

MaS_12 20.2 97.0 88.9 16.3 0.9

MaS_13 21.4 96.9 88.8 17.2 0.9

MaS_15 19.2 97.0 89.0 15.5 0.9

Table 3.  Number of SNPs identified in different approaches.

Approach SNP caller Reference Raw SNPs (M) Filtered SNPs (M)  > 50 bp apart (M)

Reference-based Bcftools-mpileup
MaS-assembly 6.8 2.07 1.3

A.alba 464 98.1 49.5

Reference-free ebwt2InDel – 8.1 8.1 6.6
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Shared SNPs
The two reference-based approaches detected 2.05 million SNPs in common (Fig. 3). Of these, only 250 were 
found among the SNPs detected by the reference-free (ebwt2InDel) approach. However, Silver-based SNP call-
ing and the reference-free approach detected 136.7 K SNPs in common, while MaS-based and reference-free 
approach detected 3.4 K SNPs in common.

Figure 3.  Venn diagram showing the proportion of shared SNPs among the different SNP identification 
approaches.

Figure 4.  Proportion of different types of nucleotide substitution among the 2 million SNPs from the Silver fir 
alignment also found in the MaS-assembly.
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The ratio of transition (Ts) to transversion (Tv) among the shared SNPs is 1.84 (Fig. 4). Among the four 
transversion substitutions, the A–C and T–G were more common than the A–T and C–G substitutions. The 
C–G substitution was the least common.

SNP genotyping of Nordmann fir clones
As a SNP validation step, primers were designed for a subset of 200 SNPs (Supplementary material) identified 
in common among the three approaches (including the reference-free one). The designed primers were used 
for targeted amplicon sequencing and subsequent genotyping of 140 clones from the Ambrolauri gene pool 
(= selected trees grafted in the CSO FP.266). Out of the 200 tested primer pairs, 197 resulted in amplicons with 
an average minimum coverage depth of 21x, which was used for genotype calling. We obtained 193 SNPs with a p 
value of 0.001 and a posterior genotype probability > 0.95 from genotyping. The final set of genotyped individuals 
was 342, including 88 clones that had three ramets per clone, 26 clones with two ramets, and 26 where the ortet 
was only represented by a single ramet. From the 193 genotyped SNP loci, those with ≥ 15% missing data were 
excluded. In addition, minor allele frequency was used as further filtration criteria, where loci with minor allele 
frequency ≤ 0.05 were filtered out. Missing data across each sample was also calculated to exclude individuals 
with missing data in > 20% of the loci. The filtered data had all 342 genotyped individuals representing all 140 
clones and 169 SNPs (87.5% of the successfully genotyped SNPs). From the four categories of tested SNPs, 46 of 
the ones shared by all approaches, 45 of the SNPs shared between MaS-based and ebwt2InDEL, 40 of the SNPs 
in common between Silver-based and ebwt2InDEL, and 38 of the SNPs shared between MaS-based and Silver-
based SNPs constituted the 169 SNPs. Furthermore, 56 SNPs with heterozygosity significantly higher than 0.5 
(according to confidence intervals), where 0.5 is the theoretical expected maximum for the population mean 
heterozygosity in a loci with two alleles, were excluded for the genomic relatedness analysis. Heterozygosity 
within the remaining 113 SNPs ranged from 0.03 to 0.57 with an average of 0.36.

Clone analysis
As a first step in clone analysis, we compared the percentage of mismatches between ramets to the percentage of 
mismatches between unrelated individuals. As expected, there was a large gap in the percentage of mismatches 
between ramets and unrelated individuals. The mismatch between ramet trios ranged from 1.0 to 8.8%, while 
the mismatch between ramet pairs ranged from 0.5 to 7.8% (Fig. 5). The mismatch range was 30.1–43.5% in 
an unrelated pair group and 46.6–60.6% in an unrelated trio group. The largest gap (37.8%) in the number of 
mismatches, i.e., the gap between the maximum mismatch percentage for ramets and the minimum mismatch 
percentage for unrelated individuals, was observed in the trio comparison. The mismatch percentage reported 
here was calculated after the mislabeled ramets were reassigned to the right clone.

Following a comparison of the mismatch profiles, identity analysis was carried out by allowing a fuzzy match 
where all ramets were assigned to a clone. The genomic relatedness matrix computed using the 113 selected SNPs 
confirmed the identity of the ramets per clone (Fig. 6). We were able to reconstruct a similar matrix with just 50 
SNPs. In addition, both identity analysis and the genomic relatedness matrix identified 5 mislabeled individu-
als, four of which were reassigned to another clone and one was unrelated to any other individual. Although 
the clones were mostly unrelated, some showed a degree of relatedness (r =  ~ 0.25) that was close to a half-sib 
relationship.

Figure 5.  Density plot of mismatch percentages for ramets and unrelated groups, where plot A shows the 
mismatch percentage for pairs and plot B shows the mismatch percentage for trios.
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Discussion
We have herein presented our approach for SNP identification in a species without a reference genome. It com-
bined a reference genome from a closely related species with a de novo assembly of low-copy regions to identify 
reliable SNPs. We also employed a reference-free SNP identification approach. The SNPs identified across the 
different approaches were tested in the context of identity analysis.

We used haploid megagametophytes as a source of DNA for the full genome sequencing. Haploid tissues 
are useful for the genomic study of species with large  genomes50. They can be used as a first step in sequence 

Figure 6.  Heatmap of genomic relatedness between the tested clones and their ramets; only part of the heatmap 
is shown. The genomic relatedness matrix was calculated according  to48 using 113 SNPs. The small yellow boxes 
along the diagonal represent ramets of the same clone.
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complexity reduction. Moreover, haploid sequences are easier to assemble than diploid  sequences51. The content 
of chloroplast DNA is also very low in the megagametophyte tissue. As a result, the sequencing capacity is not 
wasted on this DNA type, even when using a standard DNA extraction protocol. We used high-throughput 
next generation sequencing (NGS) technology to obtain a full genome sequence of four individuals/trees rep-
resenting two gene pools. From the four sequenced samples, an average of only 2% of the reads mapped to the 
chloroplast genome of Silver fir. To overcome the challenges associated with assembling a large and complex 
genome, we pooled together the non-repetitive parts from the four individuals to boost coverage to 20x. We 
used the pooled non-repetitive parts as an input for assembly to obtain references for SNP identification. Even 
for Sanger sequencing that produces DNA fragments of up to 1000 base pairs, assemblers often require around 
8x coverage of each piece of the genome to compensate for missing and erroneous  parts52. Next-generation 
sequencing (Illumina sequencing) appears to require a higher read depth compared with Sanger  sequencing53,54. 
This is because assembly results are highly influenced by the amount and distribution of repeats. High repeat 
content results in non-contiguous assembly because the assembly algorithms are unable to discern the proper 
assembly of these  areas55.

The two applied de novo assemblers resulted in assemblies with significant difference in total length, with the 
SOAP-assembly being 676 Mb and the MaS-assembly being 399 Mb. Despite the smaller overall contig length, the 
mean contig length and N50 were higher in the MaS-assembly. This may have been because MaSuRCA collapses 
regions of related sequences into one consensus sequence whereas SOAPdenovo2 keeps them as two separate 
contigs. Collapsing regions of allelic difference into a single contig is ideal for SNP detection, as it would be 
impossible to detect SNPs if each allele aligns to a contig that exactly matches its sequence. On the other hand, 
collapsing related sequences into a single contig would artificially inflate the number of SNPs detected in that 
region. Comparing different assemblies is, however, a challenging operation that necessitates rigorous analysis 
and may require inputs from different assemblies to report a good target  sequence56. However, for the purpose 
of this study, we selected MaS-assembly due to its better contiguity and percent identity to the A. alba genome.

Given the uncertainties associated with using related species as a reference, it is important to ensure the accu-
racy of identified SNPs. The same uncertainty applies to using assemblies made from low coverage sequencing, as 
it is difficult to discern true SNPs from sequencing errors. To solve these problems, we used a combination of two 
different references: the Silver fir genome and a de novo assembly by MaSuRCA, where only low-copy regions of 
the genome (1–2x) were assembled into contigs to identify SNPs from these regions. The two references detected 
two million SNPs in common. We believe these SNPs to be more accurate than SNPs identified by individual 
references, as the probability of the same erroneous SNP being in the two approaches is low.

The number of SNPs identified by the reference-based approaches was high. The 98.1 million SNPs identified 
from the Silver fir alignment corresponds to one SNP every 176 bases when the haploid genome size of Nord-
mann fir is taken into account (or 1 every 185 bases when the haploid genome size of Siver fir, 18.16  Gb12 is taken 
into account), indicating high genetic variation. The presence of many SNPs in the Silver fir alignment could be 
interpreted as a consequence of using a closely related species as a reference. However, only SNPs polymorphic 
between the four Nordmann fir individuals were kept. Despite the relatively small sizes of the MaS-assembly, 
which was only 399 Mb in length, a comparable number of SNPs were identified from the de novo assembly. The 
number of SNPs in the MaS-assembly corresponds to one SNP every 193 bases, likewise indicating the presence 
of high variation in the genome. While there is no report on the level of genetic polymorphism in Nordmann fir 
using SNPs, Hrivnák et al.57, leveraging microsatellites, reported the presence of high genetic variation in their 
study where North-Turkish, Georgian and Russian populations of Nordmann fir were included.

The SNP rate reported in the present study (identified by reference-based approaches) is higher than that 
reported for some woody plants, e.g., 2.6 SNPs per kb in Populus trichocarpa58. However, comparable SNP fre-
quencies have been reported in Citrus sinensis (6 SNPs per kb)59, and higher frequencies have been reported in 
different genes of various woody plants, including four Eucalyptus species, i.e., one SNP every 33 bp for E. nitens, 
every 31 bp for E. globulus, every 16 bp for E. camaldulensis, every 17 bp for E. loxophleba60, and one SNP every 
21.9 bp for Olea europaea  L61.

The ratio of transition to transversion can be used as a quality control measurement, as a significant devia-
tion from expected value could indicate bias and false  positives62. Even though the expected ratio might vary 
among species, the identified ratio in this study (1.84) is comparable to the ratios reported in other studies, e.g., 
1.66 in  pear63 and 1.6 in  cucumber64. Despite the existence of twice as many potential transversion mutations as 
potential transitions (8 vs. 4), the more frequent occurrence of transition mutations is a common phenomenon. 
This is because transitions tend to be more conservative in terms of their effect on  proteins65.

We tested a subset of the identified SNPs by clone analysis on 342 individuals representing 140 clones from 
the Ambrolauri gene pool (one of the two gene pools initially used for SNP identification). The capacity of the 
SNPs to find high degree relatedness between individuals was demonstrated by comparing the mismatch profile 
between ramets and unrelated individuals. The mismatch between a pair of ramets in the present study ranged 
from 0.5 to 7.77%. Telfer et al.66 reported a comparable result in their exome capture genotype-by-sequencing 
SNP panel for radiata pine. In their study, the mismatch percentage between pairs of ramets in the most effective 
panel ranged from 0 to 7.87%. Identity analysis and the genomic relatedness matrix further demonstrated the 
effectiveness of the identified SNPs in relatedness analysis. Moreover, it pinpointed the presence of relatedness 
among some of the clones, which are otherwise assumed to be unrelated. The Ambrolauri gene pool material 
used in our study was selected from a stand of around 40,000 Christmas trees produced from a commercial seed 
lot, out of which 200 of the best-performing individuals were initially selected. Out of these, around 140 trees 
are still contained in the FP.266 CSO, while the remaining have been thinned away due to early bud flushing 
(= risk of frost damage), poor post-harvest needle retention, or the bad appearance of shoots/needles. Thus, the 
presence of high relatedness among some individuals might be explained by the possibility of having unknow-
ingly selected the best-performing trees of the same families to establish the clonal orchard, from which the test 
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individuals were selected. This further demonstrates the potential of the identified SNPs in resolving different 
types of relatedness. We believe that the identified SNPs will be of great value in the ongoing breeding program 
of the species. They will enable marker-based pedigree reconstruction or the computation of a genomic related-
ness matrix to perform large scale ad hoc breeding in Nordmann fir. In addition, the developed SNPs will serve 
as an important long-term resource for genetic, ecological, and evolutionary studies of the species. The cost of 
genotyping and/or targeted sequencing in our study was 7.2 USD per sample. Even though the per-sample cost 
is not specified, Lin et al.67 reported that the cost of genotyping per sample of their amplicon-based targeted 
sequencing panel was 70% less than the array-based method in Pinus taeda.

Since the applied references are from a related species or low copy region assembly from Nordmann fir, 
the SNP frequency reported in the present study may deviate from the actual level of SNPs in the genome. The 
polymorphism of some of the SNPs might be limited to the gene pool used to identify them. Thus, individuals 
from both gene pools used in the identification phase should be used to validate the remaining SNPs to avoid 
ascertainment bias. Future genomic studies on the species should focus on the development of a high-quality 
reference genome, ideally a pangenome to capture as much variability as possible.

Conclusions
We have successfully identified a large pool of SNPs in Nordmann fir by exploiting a combination of approaches. 
The study demonstrates how a closely related species’ reference genome, combined with low coverage whole 
genome sequencing, can be used to identify a set of reliable SNPs in a species with a complex mega-genome such 
as that of Nordmann fir. After employing different filtration criteria, 56.5% of the tested SNPs were retained, 
suggesting that a large portion of the identified SNPs could be used for downstream applications such as pedigree 
reconstruction, clone identification, and genomic selection.

Data availability
The whole genome sequencing reads generated and analyzed during the current study, as well as the low copy 
region assembly and identified SNPs, are publicly available from https:// erda. ku. dk/ archi ves/ 750ea a788a 2a7e6 
c3fd4 ad727 77220 7a/ publi shed- archi ve. html.
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