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Mass spectrometry in cerebrospinal 
fluid uncovers association 
of glycolysis biomarkers 
with Alzheimer’s disease in a large 
clinical sample
Matthijs B. de Geus 1,2, Shannon N. Leslie 3,4, TuKiet Lam 5, Weiwei Wang 5, 
Florence Roux‑Dalvai 6, Arnaud Droit 6, Pia Kivisakk 1, Angus C. Nairn 3, Steven E. Arnold 1 & 
Becky C. Carlyle 1,7,8*

Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder with 
contributions from multiple pathophysiological pathways. One of the long‑recognized and important 
features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains 
unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, 
comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild‑cognitive 
impairment or dementia from AD (MCI‑AD, n = 95; DEM‑AD, n = 72), or other causes (MCI‑other, n = 77; 
DEM‑other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes 
related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) 
and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to 
those with other neurological conditions. Increases in full‑length PKM and ALDOA levels in CSF were 
confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with 
CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly 
available brain‑tissue data. These results indicate that ALDOA and PKM may act as technically‑robust 
potential biomarkers of glucose metabolism dysregulation in AD.

Alzheimer’s disease (AD) is the most prevalent form of dementia affecting over 6 million people in the United 
States in  20221. The diagnostic pathological findings of AD in the brain are amyloid-beta (Aβ) plaques and paired 
helical filaments of hyperphosphorylated tau which reflect a disorder of  proteostasis2. However, the causes and 
consequences of AD pathology are complex with varying degrees of  inflammation3, neurovascular  dysfunction4, 
and altered brain  metabolism5 contributing to neurodegeneration and resultant dementia.

Multi-omic studies have suggested changes in several markers of glucose metabolism in both cerebrospinal 
fluid (CSF) and tissue from AD  patients6–8. Moreover, a recent study of familial early-onset AD showed that 
elevation of glucose metabolism markers occurs early in AD disease progression, before elevation of inflamma-
tory and neurodegenerative  markers9. Recently, Traxler et al., (2022), reported a shift from aerobic to anaerobic 
glucose metabolism in an induced neuronal model of AD, indicating functional metabolic changes occurring 
within neurons in AD.

CSF is in continuous exchange with the interstitial fluid of the brain and is enriched with a host of proteins 
secreted, excreted, or otherwise released from neurons and glia. Thus, CSF remains the most accessible and 
informative matrix to measure biochemical changes occurring in the brain, whereas fluids like blood plasma 
struggle with low analyte concentration of neuronal and glial  origin10.
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Despite an identified association between altered brain glucose metabolism and AD, specific mechanistic 
biomarkers of altered glucose metabolism in AD have not been identified. Unbiased screening of protein and/
or peptide levels in CSF, in relation to changes of the traditional Aβ and tau biomarkers in a clinically diverse 
cohort, could help identify distinct markers related to glucose metabolism that are altered in AD as opposed to 
other neurological processes.

Liquid chromatography coupled with tandem mass spectrometry (LC–MS) is a widely used and efficient 
method for the unbiased quantification of peptides and proteins in biofluids. Previous studies have used MS-
based techniques to investigate the proteomic landscape of AD in both brain tissue and  CSF7,11–15, highlighting 
multiple proteomic modules affected in AD, including energy metabolism. With technological advances over the 
last decade, data-independent acquisition MS (DIA-MS) methods can now be employed at a much larger scale, 
yielding increased depth of proteome coverage with high quantification  accuracy16–20.

In this study, we performed DIA-MS on CSF collected during a patient’s clinical evaluation in a neurology 
clinic, for suspected AD and a wide variety of other neurological disorders. Age matched cognitively unimpaired 
control samples were also obtained from clinic attendees. Utilizing a neurology clinic cohort, as opposed to a 
well-defined high-contrast cohort, more closely aligns with a real-life diagnostic situation, and demonstrates the 
potential applicability of our findings to a clinical setting.

The results show upregulation of multiple glycolytic enzymes in AD CSF. We highlight two key enzymes, 
PKM and ALDOA, as robust potential novel biomarkers for AD. We show that these enzymes are present as 
full-length proteins in CSF and that levels of these enzymes negatively correlate with CSF glucose levels, but 
not with a peripheral measure of long-term glucose dysregulation. Finally, we compared our CSF data to a well 
powered publicly available tissue dataset and showed that a similar elevation pattern of glycolytic enzymes in 
AD was observed in tissue. The data presented here expand upon previous findings of broad dysregulation of 
the glucose metabolism machinery in AD and highlight targets for further study.

Results
Cohort results
The cohort analyzed by DIA-MS consisted of 400 different patient samples. The samples in this cohort reflected a 
diversity of patients from a neurology clinic spanning various non-dementia diagnoses and diagnoses of patients 
with cognitive impairments of varying degrees of severity. The cohort was selected to reflect a large age range 
(56–94 years). The samples in the AD groups were defined by a low Aβ42/40 ratio below the in-house determined 
threshold of 0.0818, to establish AD as the major pathophysiology for dementia, although mixed pathologies 
could not be ruled out. Nine CU samples were observed to be Aβ42/40 positive, reflecting "asymptomatic", 
"pre-clinical" or "AD resilient" status. These samples were included in the evaluation of the technical variability 
between injections and batches in MS but excluded from the downstream linear regression (Table 1, Fig. 1A).

Mass spectrometry search results
Peptide and protein level quantifications were obtained from DIA-NN. To establish a robust dataset, a series of 
quality control steps were completed. First, missing values that were observed in the dataset were filtered to only 
keep peptides that were identified and quantified in at least 80% of all samples (Supplementary Fig. 1). Following 
filtering, the duplicate coefficient of variation (CV) was calculated for pooled samples within each batch. Only 
the peptides with a mean duplicate CV below 25% were retained, resulting in a final dataset consisting of 4415 
unique peptide sequences belonging to 636 unique proteins. By selecting these robustly quantified peptides, the 

Table 1.  Clinical demographics. CU = Cognitively unimpaired and includes 20 with no other specified 
neurological disorders, 18 patients evaluated for immune disease, 9 patients with other non-dementing 
neurodegenerative diseases, 6 patients with vascular disease, 5 with demyelinating disease, 4 patients with 
headache, 3 patients with psychiatric disease, 3 patients with idiopathic intracranial hypertension, and 
1 patient with neoplasm, MCI-AD = mild cognitive impairment due to Alzheimer’s disease; DEM-AD 
= dementia due to Alzheimer’s disease, MCI-other = mild cognitive impairment due to other non-AD causes, 
DEM-other = dementia due to other non-AD causes, NPH = normal pressure hydrocephalus. Only MCI-AD 
and DEM-AD subjects had CSF AD biomarkers with low Aβ42/40 indicating AD. All others had normal 
Aβ42/40 above diagnostic threshold value. Group differences were assessed with ANOVA and p-values 
indicate results from post-hoc Tukey test. * = significantly different compared to CU (p < 0.05). † = significantly 
different compared to MCI-other (p < 0.05). # = significantly different compared to DEM-other (p < 0.05). 
$ = significantly different compared to NPH (p < 0.05).

Diagnosis N

Age Gender Aβ42/40 ratio pTau(181) tTau

Mean (SD) Range Females N (%) Mean (SD) Mean (SD) Mean (SD)

CU 68 64.2 (7.53) 55–85 38 (55.9) 0.112 (0.015) 29.16 (10.61) 212.4 (74.2)

MCI-AD 95 70.7 (7.33) 56–86 44 (46.3) 0.052 (0.016) *,†,$ 89.10 (46.55) *,†,#,$ 442.6 (202.5)*,†,#,$

DEM-AD 72 71.5 (9.26) 56–93 33 (45.8) 0.053 (0.015)*,†,$ 98.76 (50.91) *,†,#,$ 470.3 (255.1)*,†,#,$

MCI-other 77 68.2 (7.59) 55–84 27 (35.1) 0.131 (0.197) 28.03 (18.48) 220.0 (115.1)

DEM-other 23 70.5 (9.51) 57–89 9 (39.1) 0.112 (0.023) 30.94 (21.10) 198.8 (89.8)

NPH 57 75.0 (7.73) 57–94 20 (35.1) 0.102 (0.027) 29.00 (21.66) 204.6 (114.1)
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median duplicate CV decreased from 15.1 to 14.0% (Fig. 1B). Remaining missing values were imputed using the 
mean intensity value for each peptide. Principal component analyses (PCA) revealed a batch-wise clustering of 
the samples (Fig. 1C), and the ComBat batch correction algorithm was applied to the  dataset21. After ComBat 
batch correction one sample was observed as a clear outlier, leading to exclusion from downstream analysis. 
After this, the batch-wise clustering of samples was no longer observed in the PCA (Fig. 1C and data not shown).

Differential abundance analysis.
To be inclusive of potential diagnostically relevant protein fragments or  peptides22,23 in CSF, our initial data 
analysis was performed at the peptide level. After establishing a robust dataset of peptide level quantifications in 
CSF, differential expression of peptides across experimental groups was tested using a linear regression model. 
In total, there were 5452 significant contrasts between any two groups (adjusted p < 0.05). 3552 of these contrasts 
were between NPH and any group. The high number of contrasts that were derived from any group compared 
to NPH reflect a strong differential molecular phenotype of NPH compared to any of the other groups (Supple-
mentary Fig. 2). For this reason, to further investigate the molecular differences between the AD and non-AD 
groups, differential expression in NPH was left out of consideration from subsequent analyses. This resulted in 
1900 contrasts with an adjusted p-value below 0.05 between any non-NPH group, corresponding to 904 unique 
peptide sequences.

There were 399 contrasts between any diagnostic group compared to DEM-AD with an adjusted p-value < 0.05 
(Fig. 2A, Supplementary Table 1). 33 peptides were differentially abundant between DEM-AD and all non-AD 
groups (CU, MCI-other and DEM-other). All these peptides were upregulated in DEM-AD compared to the 

Figure 1.  Experimental workflow and MS processing. (A) Overview of cohort numbers and a schematic 
overview of the sample processing. (B) Distribution of duplicate CV before (red) and after (blue) filtering of 
peptides that were measured in over 80% of all samples. After filtering the median duplicate CV dropped from 
15.1 to 14.0%. (C) Principal component analyses before and after ComBat batch correction of the data. Dots 
represent individual samples and are colored by their corresponding batch. Before ComBat batch correction, a 
clear separation by batch can be observed in the first two principal components. This batch effect was mitigated 
after batch correction indicated by an overlap of the samples between batches.
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Figure 2.  General upregulation of glycolytic enzymes is observed in AD CSF. (A) UpSet plot showing an 
overview of the differentially expressed peptides between DEM-AD and any non-AD group. The 33 peptides 
that were differentially abundant between DEM-AD and all non-AD group is highlighted in light blue. (B) 
Schematic representation of the peptide coverage of ALDOA and PKM in the MS data. Boxplots indicate 
the MS-intensity levels of 2 selected peptides from ALDOA and PKM each that were differentially expressed 
in an AD enriched pattern. Red lines indicate the mean. (C) Selected cluster from the STRING-DB analysis 
highlighting the enrichment of proteins involved in energy metabolism in AD CSF. Blue indicates proteins from 
the GO-term “canonical glycolysis”.
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non-AD groups. These peptides belong to the following 11 proteins: ALDOA, ALDOC, BASP1, ENO1, GDA, 
GOT1, LDHA, MDH1, NAXE, PKM and SMOC1 with various peptides belonging to each protein. Figure 2B 
highlights the peptide coverage and abundance of two peptides for both ALDOA and PKM. For both proteins, 
peptide coverage across the entire protein was observed.

Protein interaction network
To further explore the proteomic differences, present in CSF in AD, a list of 120 proteins was assembled from 
the peptides that were found to be differentially abundant between DEM-AD and any other diagnostic group 
(Supplementary Table 1). This list was then used to perform a functional network analysis using STRING-DB24. 
A k-means clustering with seven clusters was applied on the network (Supplementary Fig. 3) and resulting 
clusters were functionally annotated with Gene Ontology (GO) biological process terms. One main cluster that 
was found to be annotated with GO terms for “glycolytic process” or “canonical glycolysis”, contained the pro-
teins ALDOA, ALDOC, ENO1, ENO2, LDHA, PGK1, PKM and TPI1 (Fig. 2C). Other clusters were annotated 
with GO terms relating to neuronal signaling, immune response or lipid metabolism. The cluster annotated 
with immune response contained proteins such as C6, C9 and NPY. The neuronal signaling clusters contained 
multiple synaptic markers such as NPTX1, NPTX2 and NPTXR as well as VGF (nonacronymic), which were 
found to be downregulated in DEM-AD compared to CU and MCI-AD. The lipid metabolism cluster contained 
APOE, which is genetically associated to AD, and APP, the precursor that produces the peptides found in amyloid 
plaques. One APOE peptide was downregulated in DEM-AD compared to CU, whereas one APP peptide was 
upregulated in DEM-AD compared to MCI-other.

Determining the presence of full‑length protein in CSF
With the upregulation of multiple peptides for various glycolytic enzymes in DEM-AD, we aimed to confirm 
these peptides were derived from full-length proteins, present in CSF, through immunoblotting. A balanced 
subset of the samples that were used for MS was randomly selected to verify the MS peptide level quantifica-
tions (Supplementary Table 4). Two of the main glycolytic enzymes that were found to have multiple peptides 
that were specifically elevated in AD compared to other experimental groups, ALDOA and PKM, were assessed 
by immunoblot for protein level quantifications. Expected full-length protein sizes of 40 kDa and 60 kDa for 
ALDOA and PKM, respectively, was confirmed using recombinant protein (Supplementary Fig. 4B). A double 
banded pattern was detected for ALDOA at the expected 40 kDa size, suggesting the presence of two variants 
of full-length ALDOA in CSF. For PKM, a single band was detected at the expected 60 kDa size indicating the 
presence of full-length protein in CSF (Fig. 3A).

Relative band intensity compared to a pooled sample was measured across diagnoses for all targets (Fig. 3A; 
Supplementary Fig. 4A). For both ALDOA and PKM, the normalized band intensities followed a similar abun-
dance pattern to their tryptic peptides in MS and non-parametric Kruskall–Wallis tests indicated significant 
differences between groups. For ALDOA, post-hoc Dunn-test showed that both MCI-AD and DEM-AD band 
intensities were significantly increased compared to both MCI-other and DEM-other (p < 0.05). PKM normal-
ized band intensities were also significantly elevated in both MCI-AD and DEM-AD compared to MCI-other 
(p < 0.05).

To further establish that the measured MS-intensities for these markers reflected the levels of full-length pro-
teins in CSF, correlations between normalized band intensity and the protein-level MS-intensity for the glycolytic 
enzymes ALDOA and PKM were determined (Fig. 3B). For PKM a significant positive correlation was observed 
(r = 0.56, p = 1.1 ×  10–7). For ALDOA a significant positive correlation was observed (r = 0.49, p = 5.8 ×  10–6).

Changes in metabolic markers in CSF and periphery
Following the potential indication of altered glucose metabolism in the CSF of AD patients, the levels of selected 
metabolites in the same CSF samples were investigated across the whole cohort. In a group level comparison, 
CSF glucose levels were only elevated in MCI-other compared to MCI-AD (p < 0.05), but not in any other con-
trast. In a balanced subset of the cohort (Supplementary Table 4), no significant changes in lactate levels were 
observed between groups (Fig. 4A). CSF glucose levels were found to be significantly negatively correlated with 
the protein-level MS-intensity of both ALDOA (r = − 0.11, p = 0.025) and PKM (r = − 0.13, p = 7.7 ×  10–3). Both MS 
protein abundances of ALDOA and PKM showed a negative trend with CSF lactate levels, but these trends did 
not reach significance (p > 0.05) (Fig. 4B). Hemoglobin A1C (HbA1c) values, a measure of long-term peripheral 
glucose dysregulation were obtained from clinical records for 207 individuals (Supplementary Table 4). Neither 
ALDOA nor PKM showed a significant correlation with HbA1C (Fig. 4C).

Levels of glycolysis markers in CSF and tissue
With the peptide level enrichment of the two key glycolytic enzymes ALDOA and PKM in DEM-AD, alongside 
an indication of general glycolytic dysregulation from STRING analysis, we investigated protein level changes 
in the levels of all glycolytic enzymes using the same linear regression model used for the peptide level. The first 
three enzymes in glycolysis, HK2, GPI and PFK1, along with GAPDH and PGAM1 were not robustly measured 
in CSF in this analysis. The other enzymes, ALDOA, PGK1, ENO1, and LDHA were all significantly upregulated 
in DEM-AD compared to CU, MCI-other and DEM-other (adjusted p-value < 0.05; Fig. 5). TPI1 was significantly 
upregulated in DEM-AD compared to MCI-other and DEM-other but not CU (adjusted p-value < 0.05). ENO2 
was significantly upregulated in DEM-AD compared to MCI-other. Additionally, all proteins were significantly 
upregulated in MCI-AD compared to CU, MCI-other and DEM-other, with the exception of PGK1 (Supple-
mentary Table 3).
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Figure 3.  Immunoblotting of ALDOA and PKM indicate the presence of full-length proteins in CSF. (A) 
Western blot bands at the expected sizes of 60 kDa for PKM and at 40 kDa for ALDOA indicate the presence full 
length protein. Normalized band intensities of ALDOA and PKM follow similar AD enrichment pattern across 
groups as the protein level quantifications for ALDOA and PKM (*: Post-hoc Dunn test p < 0.05). Original 
blots are presented in Supplementary Fig. 4A. (B) Protein level MS-intensity of both ALDOA and PKM are 
significantly correlated with the normalized western blot band intensity. This positive correlation indicates the 
presence of full-length ALDOA and PKM proteins in CSF.
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To gain insight into the possible source of the changes of glycolytic enzymes in CSF, publicly available pro-
tein abundance data from brain tissue was  investigated7. Here, AD brain tissue from the dorsolateral prefrontal 
cortex was compared to tissue from healthy controls and subjects without dementia but with postmortem AD 

Figure 4.  Levels of glucose, lactate and HbA1c in CSF in relation to glycolytic enzymes. (A) Levels of glucose 
and lactate in CSF across groups. CSF glucose levels were only found to be downregulated in MCI-AD 
compared to MCI-other. CSF lactate levels were not found to be significantly differentially abundant between 
any diagnostic group (*: Pearson’s correlation p < 0.05). (B) Protein level MS intensities for ALDOA and 
PKM showed a significant negative correlation with the CSF glucose levels. A negative trend was observed 
between CSF lactate and ALDOA and PKM protein abundance, but this trend did not reach significance. (C) 
No correlation was observed between peripheral glucose metabolism marker HbA1c and MS intensities for 
ALDOA and PKM proteins.
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Figure 5.  General elevation of glycolytic enzymes in AD is observed in both CSF and brain tissue. Heatmap 
representation of protein abundance of glycolytic enzymes measured in our CSF dataset and from a publicly 
available tissue dataset. Levels of ALDOA, PGK1, ENO1, PKM and LDHA were significantly upregulated 
in DEM-AD compared to CU in CSF. In tissue, GPI, PGK1 and PKM were significantly upregulated in AD 
compared to Controls (*: post hoc Tukey test p < 0.05). Protein abundances were scaled within each dataset and 
colors represent relative protein abundance. Gray boxes indicate proteins that were not robustly quantified in 
CSF or tissue.
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pathology (AsymAD). The mean scaled abundances for each group were plotted and significance was annotated 
using the author’s significance values generated from post hoc Tukey tests (Fig. 5). The enzymes, GPI, PGK1 and 
PKM were elevated in AD compared to controls (p < 0.05). GPI, PGK1 and TPI1 were elevated in AD compared 
to AsymAD (p < 0.05), suggesting their elevation is related to cognitive dysfunction as opposed to amyloid 
pathology. HK2, ENO1 and ENO2, and LDHA were not robustly measured in brain tissue, as defined by being 
quantified in less than 50% of all samples. Although the changes of specific glycolytic enzymes do not necessarily 
correspond between tissue and CSF, a general elevation of multiple glycolytic enzymes in both matrices indicate 
general disturbance of glycolysis in the AD brain.

Discussion
Heterogeneity amongst AD patients necessitates the stratification of patients to specific molecular targets for 
effective therapeutic intervention. The complex and heterogeneous nature of AD and its intersecting biological 
pathways have made it difficult to specify these targets. Here, we present a deep CSF proteomic survey of a large 
clinically diverse patient cohort. Differential expression indicated a strong enrichment of glucose metabolism 
markers in AD compared to non-AD groups. Specifically, the glycolytic enzymes ALDOA, ALDOC, ENO1, 
LDHA and PKM were found to be elevated following an upregulated expression pattern in DEM-AD compared to 
all non-AD groups. Through immunoblotting, both ALDOA and PKM were verified to be present as full-length 
proteins in CSF. Protein level quantifications from these glycolytic enzymes negatively correlated with glucose 
levels and showed a negative trend with lactate levels in the corresponding CSF sample. Finally, we showed that 
other glycolytic enzymes follow a similar pattern of enrichment in AD in CSF and brain tissue homogenate, 
although there are sample type specific effects.

Glucose is the primary fuel that powers the vast synaptic activity in the human brain and is measured by 
fluorodeoxyglucose positron emission tomography (FDG-PET)25–27. Decreases in cerebral glucose consumption, 
measured with FDG-PET correlate strongly with decreased levels of the pre-synaptic protein synaptophysin in 
post-mortem  tissue28, and is a central biomarker of  disease27,29, 30. Neurons require efficient metabolism of glucose 
through glycolysis and oxidative  phosphorylation26,31. Alternatively, in events of brain injury, lactate can be used 
as an alternative source of  energy26,32. Evidence of neuronal insulin resistance, as measured in postmortem tissue 
research, is also well  described33–35, with one of the major risk factors for AD being type 2 diabetes mellitus, a 
disease characterized by insulin resistance. Previous studies demonstrated changes in proteins involved in energy 
metabolism in CSF from patients with AD; specifically, both PKM and ALDOA were upregulated in patients with 
AD  dementia6,7, 9. Our findings validate these reports and indicate, through immunoblotting, that both ALDOA 
and PKM are present as full-length proteins in CSF. Recently published data has also shown that pyruvate kinase 
is present in CSF as a functional protein and its activity is increased in AD highlighting its potential as a mecha-
nistic biomarker of dysregulated glucose  metabolism36. This study used an enzymatic assay that was not able to 
distinguish between isoforms of pyruvate kinase, but it would make intuitive sense that the elevation of activity 
that they observe correlates with the increase in PKM levels that we observe. Altered glucose metabolism in the 
brain has long been observed as a key pathophysiological feature of AD. Brain hypometabolism as measured 
by FDG-PET indicates a decreased uptake of glucose into the cell through the glucose transporters GLUT1 
and  GLUT337. Reduced cerebrovascular blood flow in AD can lead to hypoxic conditions in the  brain38, which 
induces an upregulation of hypoxia induced factor 1 (HIF1)39. This transcription factor directly upregulates the 
transcription of GLUT1 and GLUT3 as well as multiple glycolytic enzymes, inducing glycolytic  metabolism39. 
The glycolytic enzymes, ALDOA and PKM, presented here may be reactive markers of this process in CSF.

PKM is a critical rate-limiting enzyme in glycolysis that regulates the generation of pyruvate, and as such 
it has been widely studied in cancer cells, a cell type with high metabolic  activity40. Aerobic glycolysis occurs 
when pyruvate is processed through the tricarboxylic cycle, resulting in a high energy yield. By contrast, tumor 
cells anaerobically convert pyruvate into lactate via LDHA in a phenomenon termed the Warburg  effect40. The 
changes in neuroenergetics occurring in AD have previously been described as an inverse Warburg  effect41,42. 
In an AD patient-derived induced neuronal model, it was shown that one specific PKM isoform, PKM2, regu-
lates an anaerobic glycolytic shift, similar to the Warburg effect, whereas PKM1 regulates aerobic  glycolysis43. 
A PKM2-specific targeting anti-cancer drug was shown to ameliorate this effect. PKM2, has also been directly 
linked to Ab plaque promotion by positively regulating gamma-secretase in the cytosol in hypoxic  conditions44. 
The peptides identified by DIA in this study could not distinguish between the PKM1 and PKM2 isoforms, and 
immunoblotting with a PKM2 specific antibody in CSF samples showed no quantifiable signal (data not shown). 
However, the results presented here potentially indicate that the changes in PKM levels we observe in patient-
derived CSF may be related to the changes described by Traxler et al43 who show widespread increases in most 
glycolytic enzymes in response to elevation of metabolically inactive PKM2.

ALDOA has previously been associated with AD and other neurological  disorders45,46, including its identifi-
cation as a possible autoantigen in  AD46. While overlapping pathology between AD and other groups suggested 
ALDOA was a non-specific biomarker for AD and thus a poor candidate for  immunotherapy45,47, the utility of 
ALDOA as a biomarker for stratification within defined AD patients has not been fully explored.

In this study, both ALDOA and PKM were observed to be significantly negatively correlated with CSF glucose 
levels and followed a negative trend with CSF lactate levels. Glucose and lactate levels in CSF have been studied 
before as markers of glucose metabolism dysregulation in AD, however the direction of changes have remained 
 inconclusive48–51. Higher CSF glucose levels have been found to be associated with less tau pathology in the 
 brain48. A reduction in CSF lactate has been observed in AD which was suggested to be linked to  tauopathy49. 
In our data, we observe that increased abundance of glycolytic enzymes is correlated with lower CSF glucose, 
potentially indicating an increased cellular uptake of glucose through upregulated glucose transporters. One 
result of increased glycolysis is the increase in production of lactate, which can be transported out of the cell 
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through monocarboxylate transporter 2 (MCT2)52. We report no significant correlation between abundance of 
glycolytic enzymes and CSF lactate, but a negative trend was observed. Lactate is known to channel between 
different cells and cell types through lactate  shuttles52, indicating increased lactate might be taken up by glial 
cells instead of being released into CSF, providing a potential explanation why lactate is not increased in CSF in 
relation to upregulated glycolytic enzymes.

This leads to the question how the glycolytic enzymes are upregulated in CSF. Potentially, these increases 
comes from the neurodegenerative process occurring in the AD brain where the enzymes are simply released 
into the CSF upon cell death. Alternatively, an in-vitro model of iPSC-derived choroid plexus cells that produce 
CSF has been shown to release glycolytic enzymes into the extracellular  space53. Conceivably, these cells also 
experience a HIF1 induced upregulation of glycolytic metabolism through hypoxic stress, subsequently leading 
to an increased release of these enzymes into the CSF. However, mechanistic confirmation remains necessary 
to address this.

Limitations
Despite the technological advances in DIA-MS that allow for experiments on large numbers of samples, the 
downstream analysis of such experiments is still a subject of ongoing development. Analyses on a large-scale 
cohort, as presented here, require a batch-wise division in MS scanning. Advances in batch-correction meth-
ods specifically developed for MS data is expected to improve the analyses of such large-scale  datasets54,55. To 
overcome these issues in this study, very robust cutoffs were applied when curating the dataset, resulting in high 
confidence on the identification and quantitation of the peptides and proteins presented here. However, this 
could implicate that some informative peptides and proteins were excluded from our analyses. Furthermore, 
this analysis only included peptides originating from 2 tryptic cleavages. Peptides derived from non-tryptic 
cleavages have been shown to be present and active in the brain and  CSF56. Expanding the peptide identification 
search to include semi-tryptic peptides that include only one tryptic cleavage at the N-terminal or C-terminal 
site in CSF would create a more representative picture of the endogenous peptide and fragment  landscape57,58 
but the expansion of the search space and need for FDR correction of peptide identifications generally means 
computational detection of these peptides is limited, and it is best to perform an experiment which enriches 
specifically for non-tryptic  peptides56,59.

The publicly available tissue data used here only included data on the DLPFC. Johnson et al.7 showed that 
the changes of protein modules they observed to be upregulated in AD in the DLPFC were highly conserved in 
other brain regions they studied, like the temporal cortex and the precuneus. However, it would still be interest-
ing to see how the levels of these enzymes behave across various brain regions affected at different Braak stages 
by pathology in AD.

Although the large sample in this study yields a better understanding of a real-world clinically diverse cohort, 
it is limited by the absence of longitudinal cognitive data and samples. Measurements of better biomarkers over 
time are imperative to better describe disease progression from early stages to further developed  disease60.

In conclusion, this study applied DIA-MS on CSF from a large-scale cohort, spanning a variety of neurologi-
cal and dementia related diagnoses, confirming previous findings of dysregulated glucose metabolism in AD. 
We find an enrichment of two glycolytic enzymes, ALDOA and PKM, in AD and highlight these enzymes as 
putative biomarkers for impaired brain metabolism in the AD brain.

Methods
Study cohort
CSF samples were obtained according to standardized collection and processing protocols through the Massa-
chusetts General Institute for Neurodegenerative Disease biorepository, following written informed consent for 
research biobanking (IRB: 2015P000221). All methods were performed in accordance with the ethical standards 
of the Declaration of Helsinki. This repository consists of CSF samples from diagnostic lumbar punctures at the 
Department of Neurology at Massachusetts General Hospital, with the inclusion criterion for this study of anyone 
over the age of 55. CSF levels of Aβ1–40, Aβ1–42, pTau (181) and total tau (tTau) were measured by commercially 
available ELISA assays (Euroimmun, Lubeck, Germany). Clinical diagnoses were established through review of 
all available clinical data (including symptom history, diagnoses of treating neurologist, laboratory data, neuro-
imaging and neuropsychological testing, as available) by an experienced neurologist (SEA) and AD status was 
corroborated with CSF AD biomarkers showing Aβ42/40 ratio below the in-house threshold of 0.0818. At this ratio 
sensitivity is 91.6% and specificity is 91.3%. Samples were subdivided into six groups based on clinical diagnosis: 
cognitively unimpaired (CU; n = 68), mild cognitive impairment due to AD (MCI-AD; n = 95), mild cognitive 
impairment due to other causes (MCI-other; n = 77), dementia due to AD (DEM-AD; n = 72), dementia due to 
other causes (DEM-other; n = 23) and normal pressure hydrocephalus (NPH, based on positive “tap-test” gait 
outcome after large volume lumbar puncture; n = 57) (Table 1). Cognitively unimpaired individuals with CSF 
Aβ positivity (n = 9) were excluded from the study.

CSF processing
Samples were processed for LC–MS/MS by investigators blinded to clinical status. Aliquots were frozen and 
stored at − 80 °C in low-binding polypropylene tubes and thawed on ice for use. 200 μL samples, when possible, 
were dried in a SpeedVac, and resolubilized in 100 μL 8 M urea/0.4 M ammonium bicarbonate, or half the original 
volume for low volume aliquots. Protein concentration was measured through Pierce BCA assay (Thermo Fisher 
Scientific, Waltham MA, USA) and samples were adjusted to 7.5 µg protein in 50 µL. Samples were reduced with 
a 1:10 dilution of 45 mM DTT and incubated at 37 °C for 30 min. Subsequently, samples were alkylated with a 
1:10 dilution of 100 mM iodoacetamide at room temperature in the dark for 30 min. Urea concentration was 
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then lowered to 2 M using water. Proteins were digested overnight at 37 °C with 1:20 LysC:sample protein fol-
lowed by an additional 1:20 trypsin digestion for 8 h at 37 °C. Samples were then acidified with 20% TFA and 
desalted using Nest Group C18 macrospin columns (HMMS18V) following the manufacturer’s instructions, and 
the eluent was dried for mass spectrometry.

Data‑independent acquisition
DIA LC–MS was performed using a nanoACQUITY UPLC system (Waters Corporation, Milford, MA, USA) 
connected to a Thermo Orbitrap Fusion mass spectrometer (ThermoFisher Scientific, San Jose, CA, USA). Sam-
ples were resuspended in  dH2O with 2% acetonitrile and 0.2% TFA and injected across 22 batches of 24 samples 
at a time, with each sample injected in duplicate and a pooled control sample at the start and end of each batch. 
After injection, the samples were loaded into a trapping column (Waters ACQUITY UPLC M-Class Symmetry® 
C18 trap column, 5 micro, 180 μm × 20 mm) at a flow rate of 5 µL/min and separated with an analytical column 
(Waters ACQUITY UPLC M-Class Peptide BEH C18 column, 1.7 micro, 75 µm × 250 mm). The compositions 
of mobile phases A and B were 0.1% formic acid in water and 0.1% formic acid in acetonitrile, respectively. The 
peptides were separated and eluted with a 120-min gradient extending from 6 to 35% mobile phase B in 85 min 
and then to 85% mobile phase B in an additional 5 min at a flow rate of 300 nL/min and a column temperature 
of 37 °C. Column regeneration and up to three blank injections were carried out in between all sample injec-
tions. The data were acquired with the mass spectrometer operating in a Data-Independent Acquisition mode 
with an isolation window width of 25 m/z. The full scan was performed in the range of 400–1000 m/z with “Use 
Quadrupole Isolation” enabled at an Orbitrap resolution of 120,000 at 200 m/z and automatic gain control (AGC) 
target value of 4 ×  105. Fragment ions from each  MS2 non-overlapping isolation window were generated in the 
C-trap with higher-energy collision dissociation at a collision energy of 28% and detected in the Orbitrap at 
a resolution of 60,000. Gas phase fractionated DIA (GPF-DIA) acquisitions were collected by six injections of 
digested pooled samples from 400 to 500 m/z, 500 to 600 m/z, 600 to 700 m/z, 700 to 800 m/z, 800 to 900 m/z, 
and 900 to 1000 m/z with 4 m/z-wide windows at 100 ms injection time. For MS1 scan, the resolution was set as 
120 K, AGC target value of 4 ×  105. For DIA scan, the resolution was set as 60 K, AGC target value of 1 ×  105 and 
precursor ions were fragmented with higher-energy C-trap dissociation (HCD) of 28%.

Raw files were processed with DIA-NN software (version 1.8.1) for peptide and protein identification and 
 quantification61. DIA-NN was used in two steps as described in the DIA-NN manual (https:// github. com/ vdemi 
chev/ DiaNN). First, a library-free search on the GPF files using the Uniprot Reference Homo Sapiens database 
(UP000005640, 80581 sequences, 14.10.2022) was used to generate an in-silico library. Second, a library-based 
search was carried out on the raw files using the spectral library generated in step one. Search parameters were 
set as follows: Protease: Trypsin/P; Missed cleavages: (1) N-term excision of methionine enabled; Maximum 
number of variable modifications: (2) Variable modification: methionine oxidation; Fixed modification: cysteine 
carbamidomethylation; Peptide length range: 7–30 amino-acids; Precursor charge range: 2–4. Precursor and 
fragment ion m/z ranges were set according to acquisition parameters. Match between runs (MBR) was enabled 
only for the second step. All the other parameters were set as default value. To obtain normalized peptide and 
protein tables from the DIA-NN output, the main report was used with the DIA-NN R Package (https:// github. 
com/ vdemi chev/ diann- rpack age) and peptides.maxlfq and protein.groups tables were generated. Both are normal-
ized with the MaxLFQ algorithm and filtered at 1% FDR at precursor and protein group  levels62.

Immunoblotting
A random balanced subset of samples from the mass spectrometry cohort was selected as a sub cohort (Sup-
plementary Table 4). Samples were spun down at 3000 × g for 10 min and the resulting supernatant was used for 
immunoblotting. Total sample protein concentration was determined using the Pierce BCA assay and 20 µg of 
protein per sample was loaded on the gel. A pooled sample was generated from the samples and loaded on each 
gel for between-blot normalization. Novex Wedgewell 4–20% polyacrylamide gels (Invitrogen, Waltham MA, 
USA) were used, and samples were run at 55 mA per gel. Subsequently, samples were transferred to nitrocellulose 
membrane at 300 mA for 90 min (Bio-Rad laboratories, Hercules CA, USA). After transfer, membranes were 
blocked for 1 h using LI-COR PBS intercept blocking buffer. Primary antibody dilutions were prepared using the 
LI-COR Intercept T20 PBS antibody diluent. Antibodies were used for ALDOA (D73H4, Cell Signaling Tech-
nology) at a concentration of 1:500, and PKM (C103A3, Cell Signaling Technology) at 1:1000. Membranes were 
incubated overnight in primary antibody at 4 °C. Membranes were then washed 4 × in PBS-T and incubated for 
1 h in LI-COR goat anti-rabbit secondary antibody diluted 1:1000 in LI-COR Intercept T20 PBS antibody dilu-
ent. Blots were imaged with a LI-COR CLx imager and band intensities compared to background were measured 
using the Image Studio Light and ImageJ. High sensitivity ECL immunoblotting was performed by stripping the 
blot from previous antibodies with OneMinute®Plus Western Blot Stripping Buffer according to manufacturer’s 
protocol (GM Biosciences). Then the blot was blocked for 1 h with LI-COR PBS intercept blocking buffer and 
incubated overnight at 4 °C with primary antibody for ALDOA at 1:500 in LI-COR Intercept T20 PBS antibody 
diluent. Secondary HRP-conjugated antibody was incubated for 2 h at 1:10.000 in LI-COR Intercept T20 PBS 
antibody diluent. Enhanced chemiluminescence was performed with SuperSignal West Femto Maximum Sen-
sitivity Substrate (ThermoFisher Scientific) according to manufacturer’s protocol, and blot was imaged on film.

CSF glucose lactate and HbA1c measurement
CSF glucose levels were assessed in the Pathology Core at Massachusetts General Hospital through clinical 
standard enzymatic hexokinase assay at the same time as the CSF collection. Lactate concentration was meas-
ured on a randomly selected balanced subset of matched samples (Supplementary Table 4) through enzymatic 
assay (ab65331, Abcam), according to the manufacturer’s protocol. Samples were diluted 12 × to fall within the 

https://github.com/vdemichev/DiaNN
https://github.com/vdemichev/DiaNN
https://github.com/vdemichev/diann-rpackage
https://github.com/vdemichev/diann-rpackage
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detectable range. Total glucose and lactate levels between diagnostic groups was determined and concentrations 
were correlated to the MS protein intensity of ALDOA and PKM. HbA1c measurements were obtained through 
electronic health records from matching patients where available. For patients with multiple HbA1c measure-
ments, the highest value was used for analysis.

Statistical analysis
All data analysis was performed in R-studio under R version 4.2.2. Raw MS intensities were imported from DIA-
NN and processed as described in results. Pattern of missingness was determined by counting the number of 
samples per peptide where that peptide was not quantified. Batch correction was performed using the ComBat() 
function from the sva package (version 3.46.0). Linear modeling of the MS data was performed using the lm() 
function adjusting for age and sex as covariates: lm(peptide intensity ~ experimental group + age + sex). Results 
were tidied up using the tidy() function from the broom package (version 1.0.4) and p-values were corrected for 
multiple testing using the Benjamini–Hochberg method. Correlations were calculated with Pearson correlation 
methods using the cor.test() function. Between group differences for immunoblotting and metabolite levels were 
calculated using non-parametric Kruskall–Wallis test using Kruskal.test() and post-hoc analyzed with dunnTest() 
from the FSA package (version 0.9.4). The analysis of publicly available tissue data was done by plotting the 
mean scaled abundances for each group, and significance was annotated using the author’s significance values 
generated from post hoc Tukey tests.

Study approval
This study was approved by the Institutional Review Board of Mass General Brigham (IRB 2015P000221) and all 
study participants or their assigned surrogate decision makers had provided written informed consent for use 
of their samples in biomarker research. All methods were performed in accordance with the ethical standards 
of the Declaration of Helsinki.

Data availability
Normalized MS intensity values of all glycolytic proteins can be found in supplementary table 2. Underlying data 
has been deposited to ProteomeXchange through MassIVE (PXD043216).
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