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First application of data 
assimilation‑based control 
to fusion plasma
Yuya Morishita 1*, Sadayoshi Murakami 1, Naoki Kenmochi 2,5, Hisamichi Funaba 2, 
Ichihiro Yamada 2,5, Yoshinori Mizuno 2, Kazuki Nagahara 2, Hideo Nuga 2, Ryosuke Seki 2, 
Masayuki Yokoyama 2,5, Genta Ueno 3,4,6 & Masaki Osakabe 2,5

Magnetic fusion plasmas, which are complex systems comprising numerous interacting elements, 
have large uncertainties. Therefore, future fusion reactors require prediction‑based advanced 
control systems with an adaptive system model and control estimation robust to uncertainties in the 
model and observations. To address this challenge, we introduced a control approach based on data 
assimilation (DA), which describes the system model adaptation and control estimation based on the 
state probability distribution. The first implementation of a DA‑based control system was achieved 
at the Large Helical Device to control the high temperature plasma. The experimental results indicate 
that the control system enhanced the predictive capability using real‑time observations and adjusted 
the electron cyclotron heating power for a target temperature. The DA‑based control system provides 
a flexible platform for advanced control in future fusion reactors.

Magnetic confinement fusion is a promising next-generation power source. To generate fusion-based power, the 
fusion plasma should be heated to attain and maintain a good state of confinement. However, fusion plasma is 
a typical complex system in which various physical quantities interact with each other to determine the overall 
 behavior1. Therefore, a large number of variables should be considered for controlling the fusion plasma. An 
adaptive system (predictive) model is required to account for the latent variables that are difficult to observe or 
model (e.g., wall  conditions2) along with uncertain elements related to stability, abrupt termination events, and 
energy and particle transport. These challenges exist in common with the control of complex systems.

Conventional controllers (e.g., proportional-integral-derivative (PID) controllers) exert simple control over 
systems with few variables. However, various controllers and observers should be combined to control nonlinear 
complex systems with large uncertainties and numerous variables. Consequently, the control system becomes 
extremely complicated and considerable effort is required to construct a well-coordinated control system. For 
such nonlinear systems, adaptive model predictive control is computationally expensive and difficult to  achieve3.

Aiming to overcome these challenges, we developed a control system based on data assimilation (DA) 
 techniques4,5. In the DA framework, the state of the system is expressed as a probability distribution of the state 
vector (state distribution), which enables the calculation of the time evolution and conditional probability dis-
tribution (information imposition) of the system. Here, the state vector expresses the state of the target system 
and includes physical quantities and model parameters as components. In general, DA is employed to estimate 
unobservable variables and  models6–9 and optimize the model parameters for higher prediction  accuracy10–12. 
This study used DA for state estimation (including the model parameters) and control estimation to achieve 
adaptive model predictive control. This approach facilitates the representation of multiple state variables, observa-
tions, and control objects within a single framework, thereby simplifying the control system. In addition, control 
constraints and domain knowledge can be incorporated into the system model and state variables. The proposed 
DA-based control system describes the system model adaptation and control estimation from a unified perspec-
tive based on state distribution and offers a flexible control platform for the advanced control of fusion reactors.

Recently, methods implementing data-driven approaches for predicting and controlling fusion plasmas, 
including the use of deep and reinforcement learning, have been  investigated13–15. The data-driven approach 
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is an inductive approach that constructs predictive and control models based on the given data. It facilitates 
flexible modeling and highly accurate approximations of target systems within the training data. Contrarily, it 
requires a large amount of training data and often has low prediction accuracy outside of the data. In addition, 
the training process is performed again for different scenarios. The physics-based approach, which is a deductive 
approach based on governing equations, is understandable and tractable by humans. However, it often fails to 
approximate real systems, particularly complex systems, with high accuracy. The DA-based control approach has 
the properties of both the data-driven and physics-based approaches. It can improve the prediction performance 
of the physical model using observation data and capture the internal state and control processes of the system. 
The proposed approach also enables the construction of a device-independent control system.

The proposed DA-based control system was implemented to control the plasma in the Large Helical Device 
(LHD), which is one of the largest superconducting plasma confinement devices in the  world16,17, located in 
Japan. The effectiveness of this system was verified by performing a simple control experiment. The helical device 
was desirable for the first demonstration experiment because of its stable magnetic field. In the experiment, the 
control system estimated the power of the electron cyclotron heating (ECH) required to deliver the target electron 
temperature. To bridge the gap between the system model and actual behavior, the sequentially observed electron 
temperature and density profiles were assimilated into the system model. This study is the first to demonstrate 
real-time DA and adaptive predictive control based on the DA of fusion plasmas. The proposed control scheme is 
applicable to fusion plasmas and other complex systems (e.g., traffic control, infectious disease control measures, 
and river level control), and is expected to advance complex system control.

Methods
Figure 1 shows a conceptual diagram of the DA-based control system. This system has a simple structure com-
prising a DA system, heating and fuel supply equipment, and measurement devices. This section describes the 
DA-based control system constructed for the LHD plasma control.

DA framework for adaptive predictive control
The DA system, which is the core component of the control system, computes the probability distribution of the 
state vector (state distribution), which is defined at time t as xt = (x̃Tt , u

T
t )

T , where vector x̃t is the part of x that 
includes the system state and model parameters, and vector u is the control input that determines the time evolu-
tion of the system (see Table 1 for an example). The superscript “T” denotes the transpose of a vector and �tz is 
the time interval for estimating the control inputs. The DA system optimizes x̃ based on the observed information 
y (adaptation) and estimates u based on the predicted state distribution and target state z (predictive control).

Figure 1.  Overview of the DA-based control system for fusion plasmas. (a) The state distribution in the DA 
system (ASTI) is expressed as an ensemble. The parallel time evolution of each ensemble member approximates 
that of the state distribution. (b) The control estimation is performed by assimilating the target state into the 
predicted state distribution.
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Consider a control problem in which the control input is adjusted at each time interval �tz and the system 
state is observed as the vector y at each time interval �ty . For simplicity, assume that �ty = n�tz ( n ∈ N ) and use 
the time notation (i, j) = ti,j = t0 + i�ty + j�tz and ti = ti,0 , where t0 denotes the initial time. The DA framework 
for adaptive predictive  control18 is based on the following state-space model:

Equation (1) represents the system model that describes the time evolution of the system x(i,j) → x(i,j+1) , consid-
ering the effect of system noise v(i,j+1) . Assume that the value of ut is constant in the prediction interval �tz , i.e.,

Here, the system noise for the control input vu(i,j+1) is added to u(i,j) before calculating the time-evolution. Equa-
tions (2)–(4) represent the relationship between the state vector x(i,j) and vectors z(i,j) , u∗(i,j) , and yi based on the 
noises wz

(i,j) , w
u
(i,j) , and wy

i  , respectively. The matrices Hz , Hu , and Hy are linear operators for projecting the state 
vector in each corresponding space. The system noise v(i,j+1) is assumed to follow a Gaussian distribution with 
zero mean and covariance matrix Q(i,j+1) , i.e., v(i,j+1) ∼ N(0,Q(i,j+1)) . Similarly, wz

(i,j) , w
u
(i,j) , and wy

i  are assumed 
to follow the probability distributions N(0,Rz

(i,j)) , N(0,Ru
(i,j)) , and N(0,R

y
i ) , respectively. The priority of the 

controlled and observed variables can be adjusted using wz
(i,j) and wy

i .
In the DA system, the state distribution is approximated by an ensemble using parallel computing. Each 

ensemble member represents a simulation with slightly different conditions (e.g., initial conditions, model 
parameters, and control inputs). In this experiment, considering the time required for computation and com-
munication, the prediction and control estimations were performed up to �ty ahead of the real time at n = 3 
( �ty = 3�tz ). The following are the computational steps for the adaptive predictive control:

• Prediction 

• z-filter 

• u-filter 

• y-filter 

here the subscript t1 : t2 denotes all the timings in [t1, t2] . Given the distribution p(x(i,j) | y0:i−1, u
∗
(0,1):(i,j)) , the 

prediction step computes p(x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j)) , the distribution �tz ahead, based on the system model. 

This step can be performed by computing the time evolution of each ensemble member approximating the state 
distribution.

The z- and u-filter are the control estimation steps, and the y-filter is the adaptation step. These three steps are 
based on the Bayesian filter, which calculates the conditional probability distribution p(x | ξ) using the distribu-
tion p(x) and the model representing the relationship between x and the imposed information ξ , ξ = h(x)+ w . 
Here, h represents the relationship between ξ and x and w represents the associated noise. Generally, ξ denotes 
the observation data, and the Bayesian filter can assimilate the observed information into the state distribution. 
Kalman filter (EnKF)19 and particle filter (PF)20 are typical computational methods for the Bayesian filter that 
use an ensemble.

The z-filter step estimates the control input by assimilating the target z(i,j+1) into the predicted distribution 
based on the Bayesian filter using Eq. (2),

and performing marginalization

(1)x(i,j+1) =f(i,j+1)(x(i,j), v(i,j+1)),

(2)z(i,j) =Hzx(i,j) + wz
(i,j),

(3)u∗(i,j) =Hux(i,j) + wu
(i,j),

(4)yi =Hyx(i,0) + w
y
i .

(5)u(i,j+1) =u(i,j) + vu(i,j+1),

(6)x̃(i,j+1) =f̃(i,j+1)(x̃(i,j), u(i,j+1), ṽ(i,j+1)).

(7)p
(

x(i,j) | y0:i−1, u
∗
(0,1):(i,j)

)

→ p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j)

)

.

(8)p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j)

)

→ p
(

u(i,j+1) | y0:i−1, u
∗
(0,1):(i,j), z(i,j+1)

)

.

(9)p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j)

)

→ p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j+1)

)

.

(10)p
(

x(i+1,0) | y0:i−1, u
∗
(0,1):(i+1,0)

)

→ p
(

x(i+1,0) | y0:i , u
∗
(0,1):(i+1,0)

)

.

(11)p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j)

)

→ p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j), z(i,j+1)

)

,
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We used EnKF as the computational method for the Bayesian filter. This marginalization can be performed by 
removing x̃ from the ensemble of the distribution p(x(i,j+1) | y0:i−1, u∗(0,1):(i,j), z(i,j+1)) . The control input u∗(i,j+1) is 
obtained as the expected value of the z-filtered distribution. The u-filter is applied by assimilating the estimated 
control input u∗(i,j+1) into the predicted distribution using the Bayesian filter based on Eq. (3). The control estima-
tion process can proceed by repeating the following three steps: prediction→z-filter→u-filter.

The y-filter corresponds to the adaptive process and suppresses the uncertainties in the system model by 
assimilating the observations into the state distribution. Because the observation times ti differ from the latest 
u-filtered distribution ti+1,0 , the y-filter is executed by assimilating yi into the joint distribution of the state vectors 
at two time points. The ensemble approximating the joint distribution p(x(i+1,0), x(i,0) | y0:i−1, u

∗
(0,1):(i+1,0)) can 

be obtained by concatenating the u-filtered ensemble at ti+1,0 with the stored ensemble at ti . The filtered distribu-
tion p(x(i+1,0), x(i,0) | y0:i , u

∗
(0,1):(i+1,0)) can be calculated by assimilating yi with the concatenated ensemble using 

Eq. (4). The ensemble of p(x(i+1,0) | y0:i , u
∗
(0,1):(i+1,0)) is obtained by marginalizing x(i,0).

This DA framework can be used to construct an adaptive predictive control algorithm without overlapping the 
prediction intervals. The control procedure for this experiment is summarized in Fig. 2. In ti < t < ti+1 , while 
the real system evolves in time with the inputs u∗(i,1) , u

∗
(i,2) , and u∗(i+1,0) , the predictions and control estimates 

are performed from ti+1 to ti+2 in the DA system, as shown in Fig. 2a. At t = ti+1 , the system state is observed 
as yi+1 , which is assimilated into the latest u-filtered distribution (adaptation), as shown in Fig. 2b. The loops of 
these processes illustrated in Fig. 2 provide an adaptive predictive control.

The proposed control system for LHD comprises a DA system “ASTI” (Assimilation System for Toroidal 
plasma Integrated simulation)21, which uses an integrated transport simulation code  TASK3D22,23 as the system 
model for helical fusion plasmas and implements the EnKF and PF as DA techniques. TASK3D computes the 
heat and particle transport in a toroidal fusion plasma as a one-dimensional (1D) problem for the normalized 
minor radius. In this study, ASTI computed 256 ensemble members (TASK3D simulations) on a vector computer 
(NEC SX-Aurora TSUBASA, 16VE) connected to the LHD experimental system, and EnKF was used to perform 
the Bayesian filters. The computer had a maximum of 128 parallel processes, each of which was responsible for 
two ensemble members, thereby computing the 256 ensemble members. The control performance reached its 
maximum with 200 ensemble members in numerical  experiments18 to control the virtual LHD plasma generated 
by TASK3D using noise values similar to those in the LHD experiments. Although the behavior of the virtual 
plasma is different from that of the actual plasma, the system model and state vector are almost the same as in the 
experiment. Therefore, the effect of the number of ensemble members on the control performance is considered 
to be sufficiently small in the LHD experiment.

System model for LHD plasmas
We employed the TASK3D  code22,24 as the time evolution model f in Eq. (1). TASK3D is an integrated simula-
tion code for helical fusion plasmas that solves the 1D diffusive transport problem in the radial ρ-direction. The 
parameter ρ is given by the magnetic flux surface, where 0 and 1 correspond to the center and edge of the plasma, 

(12)
p
(

u(i,j+1) | y0:i−1, u
∗
(0,1):(i,j), z(i,j+1)

)

=

∫

p
(

x(i,j+1) | y0:i−1, u
∗
(0,1):(i,j), z(i,j+1)

)

dx̃(i,j+1).

Figure 2.  Control procedure of the LHD experiment ( �ty = 3�tz ). The control is performed by repeating the 
control estimation ( a ) and DA of the observation into the latest u-filtered distribution ( b).
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respectively. We solved the heat transport equations for each electron and ion species in the LHD experiment. 
Assume that the electron and ion density profiles are similar, i.e., n = ne = ni . The radial profile in TASK3D was 
defined at 60 grid points. The geometric parameters required in the 1D transport simulation were evaluated by 
an equilibrium magnetic field precomputed using the VMEC  code25 for the typical LHD magnetic configura-
tion. The major radius of the magnetic axis in vacuum was 3.6 m and the magnetic-field strength at the plasma 
center was 2.75 T. In TASK3D, changes in the geometric parameters were not considered in the time evolution 
calculation due to the computational cost.

For the electron and ion thermal diffusivities, the following gyro-Bohm models were employed: 
χe = C

gB
e (Te/eB)(ρi/a) and χi = C

gB
i (Ti/eB)(ρi/a) . where B, ρi , and a are the magnetic field strength, ion Lar-

mor radius, and plasma minor radius, respectively. We set CgB
e = 1.5 and CgB

i = 0.1 as reasonable values based on 
previous  studies24,26. The heating power source comprised the externally applied ECH, power exchange between 
species, and loss term by interaction with neutrals. ECH only contributes to the heating term of the electron and 
the following ECH model was employed in the experiments:

where µECH = 0.15 and σECH = 0.04 are obtained from the ray-tracing  calculations27. The coefficient A is deter-
mined from the total ECH input power, which is given by

where V is the plasma volume and V ′ = dV/dρ.

ECH control experiment
To demonstrate real-time adaptation and control estimation using the developed system, we considered a sim-
ple LHD experiment to control the central electron temperature by adjusting the ECH  power28,29. Table 1 lists 
the state ( ̃x and u ), target state ( z ), and observation variables ( y ) used in the experiment. The radial profiles 
of the state variables were defined on 11 grid points ( ρ = 0, 0.1, 0.2, . . . , 1 ) in the state vector, and B-spline 
 interpolation30 was used to transform the radial profiles to those on the TASK3D grid (60 grid points)21. The 
factors for the thermal diffusivities ce and ci were introduced to optimize χe and χi with large uncertainties. In the 
prediction step, ceχe and ciχi were used instead of χe and χi in the TASK3D simulation. The ECH used the four 
gyrotrons: 330, 400, 600, and 600 kW for 5.5 s; thus, ASTI controlled the injection power by selecting a subset 
of these gyrotrons by switching the individual gyrotrons on or off. ASTI sends the estimated control signals to 
the gyrotrons every �tz = 0.1 s and receives the observed radial profiles of the electron temperature and density 
every �ty = 0.3 s from the real-time Thomson scattering measurement system.

To ensure that the behavior of the system model resembles that of the real system at the beginning of control, 
observation assimilation was performed with a fixed heating power of 731 kW during the first phase t < 2.1 s. 
ASTI assimilates the observations up to 1.8 s, after which the control estimation begins. Subsequently, the ECH 
power control commences at 2.1 s to produce the target electron temperature (4 keV) at 3.9 s and maintain it. 
The electron density at the plasma center was maintained at 1.5× 1019 m−3 using the PID control to focus on 
the temperature control.

The covariance matrices for the noises Q(i,j+1) , Rz
(i,j) , R

u
(i,j) , and Ry

i  are the key parameters affecting the overall 
control performance. In addition to them, the ensemble mean x̂(0,0) and covariance matrix V(0,0) are required 
to generate the initial ensemble members. Diagonal matrices were used for these covariance matrices, i.e., the 
covariance component of the matrices was not considered.

The covariance matrix for the system noise, Q(i,j+1) , controls the uncertainty of the system state, including the 
model parameters and control inputs. System noise was added before each prediction step, and x̃ was assigned a 
slightly larger value of noise after processing by the y-filter to prevent the distribution from shrinking. The stand-
ard deviation of the system noise was fixed at the values listed in Table 2. The values of the standard deviation for 

(13)pECH(ρ) = A exp

(

−
1

2

(µECH − ρ)2

σ 2
ECH

)

,

(14)PECH =

∫ 1

0
pECH(ρ)V

′(ρ)dρ,

Table 1.  State, target, and observation variables with their dimensions in the vectors ( Mi).

Variable Mi

x̃

n Density 11

Te Electron temperature 11

Ti Ion temperature 11

ce Factor for electron thermal diffusivity 11

ci Factor for ion thermal diffusivity 11

u PECH ECH input power 1

z Te,ρ=0 Electron temperature at plasma center 1

y
n Density 11

Te Electron temperature 11



6

Vol:.(1234567890)

Scientific Reports |          (2024) 14:137  | https://doi.org/10.1038/s41598-023-49432-3

www.nature.com/scientificreports/

Te , Ti , ce , and ci were determined based on a previous study on data assimilation for the LHD  plasmas18,21. The 
noises for ne were set to large values because ASTI did not compute the density transport. In control estimation, 
system noise for u is an important parameter determining the range of control inputs considered in a single 
control estimation and the change rate of u . In this experiment, the standard deviation of the noise for PECH was 
set to a sufficiently large value to track the rate of change of the target temperature.

The covariance matrix Rz
(i,j) affects the performance of the z-filter and determines the proximity of the system 

state to the target state after the z-filter step. The diagonal components of Rz
(i,j) were determined at each z-filtering 

step as follows:

where V(i,j) denotes the covariance matrix of the ensemble that approximates the predicted distribution at ti,j and 
rz = 0.518. The subscript ( )ll and superscript T denote the l-th diagonal component and matrix transposition, 
respectively.

The covariance matrix Ru
(i,j) considers the uncertainty in the control input. In the experiment, the standard 

deviations of the control input noise were set to a sufficiently small value of 0.05 MW for PECH.
The covariance matrix Ry

i  affects the performance of the y-filter and determines the effect of the observed 
information on the state distribution. The standard deviation of the observation noise is assumed to be propor-
tional to the difference between the observation and mean of the state  distribution18,

where ry = 0.8 , x̂(i,0) is the mean of the ensemble approximating p(x(i,0) | y0:i−1, u
∗
(0,1):(i,0)) , and ( )l represents 

the l-th element of the vector. This assumption prevents the control instability caused by overfitting of the system 
model to noisy observations and maintains the variance of the y-filtered ensemble at an adequate magnitude.

The initial ensemble means of Te and Ti are set to the steady-state radial profiles calculated by the TASK3D 
simulation for the initial ECH. The initial mean profile of n is set to n(ρ) = 1.0− 0.8ρ8 [ ×1019m−3 ] and those 
of ce and ci are set to 1. The initial ensemble variances are assigned the values listed in Table 2.

Real‑time observation and control system
The DA system ASTI was connected to the real-time measurement system and ECH  system28,29 via the real-time 
communication system in  LHD31. The temperature and density profiles along with their measurement errors 
obtained from the Thomson scattering measurement  system32,33 were sent from the Thomson data analysis PC to 
the vector engine server (SX-Aurora TSUBASA, NEC Inc.) via socket communication. The digitizers of the high-
repetition-rate Thomson scattering  system34 were used for real-time measurements (10 Hz). In the vector engine 
server, ASTI considers the time delay relative to real time, which is tens of milliseconds. This is attributed to the 
temperature computation, density analysis, and communication delay. The electron density and temperature were 
observed at 144 radial points, of which 66 data points were available for real-time measurement. After removing 
the obvious outliers based on measurement errors, a mapping model was used to transform the observed data in 
the real space coordinate (major radius R) into a form suitable for DA (profiles on 11 points of the ρ-coordinate).

The mapping model acted as coordinate transformation, outlier removal, data smoothing, and data point 
extraction for DA, providing the observation vector y to ASTI. The mapping model was based on a multilayer 
perceptron with five hidden layers containing 500 units each using ReLu as the activation function. The mapping 
model was trained using data on the LHD experimental database (profiles observed by the Thomson scattering 
system and the mapped data obtained from the equilibrium calculations). The training data comprised 58 dis-
charges (7769 time points) of the ECH plasma, of which a quarter were used as the test data. For all discharges in 
the training data, equilibrium magnetic fields were calculated and used to evaluate the density and temperature 
profiles in the ρ-coordinate for the teacher data. Before training, the mapped data were fitted with even-order 
polynomials up to the 8th order to smooth the profiles and extract the data points required for DA. An even 
function was used for fitting because the Neumann boundary condition ∂/∂ρ = 0 was imposed on ρ = 0 in 
TASK3D. The variations of the magnetic surfaces were considered in this mapping model, and the observations 
in the ρ-coordinate were provided to ASTI. Since TASK3D did not solve for the magnetic equilibrium, errors 
occurred in the geometric parameters required for the 1D transport simulation (e.g., dρ/dR ). In this experiment, 

(15)
(

Rz
(i,j)

)

ll
= r2z

(

HzV(i,j)(H
z)T

)

ll
,

(16)
(

R
y
i

)

ll
= r2y

(

yi −Hy x̂(i,0)
)2

l
,

Table 2.  Standard deviations of the initial state distribution ( σinit ) and system noise ( σQ). The values in 
parentheses represent the additional system noise added after the y-filter. The values with% as the unit 
represent the rate for determining the standard deviation in proportion to the state distribution mean.

Variable σinit σQ

x̃

n 20% 2% (10%)

Te 15% 2% (3%)

Ti 15% 2% (3%)

ce 0.2 0 (0.1)

ci 0.2 0 (0.1)

u PECH 0 0.5 (0)
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these errors were considered small for helical devices and allowed. However, the real-time computation of the 
magnetic field, which is essential for tokamak control, will be addressed in future studies.

After the prediction and control estimation in ASTI were completed, the generated ECH control signals were 
sent to the computer (Jetson AGX Orin, NVIDIA Inc.) via socket communication. The digital signal for ECH 
control, which was converted to an analog signal using a D/A converter (EVAL-AD5686RSDZ, Analog Device 
Inc.) connected to a computer, was input to the ECH system to control the ON/OFF state of the ECH injection.

Results
Figure 3 shows the control results of the LHD experiment and Fig. 4 shows the prediction error (the absolute 
difference between “Prediction” and “Observation” in Fig. 3). The electron temperature increases to that of the 
target (4 keV) and is maintained beyond  3.9 s. The prediction error, shown in Fig. 4, increases to 2 keV in the 
transient section (2.1 s ≤ t < 3.9 s) and decreases to approximately 0.2 keV in the steady-state section (3.9 s ≤ t ). 
These results demonstrate the effectiveness of real-time adaptation and control estimation using the DA-based 

Figure 3.  Results of a control experiment (#186500). ( a ) Control result of Te at the plasma center. The plotted 
values labeled “Prediction” correspond to the expected values of the predicted distribution for t ≤ 2.1 s and 
those of the u-filtered distributions for t > 2.1 s. The shaded areas represent a single standard deviation of the 
distributions. The plotted values labeled “Observation” are those obtained by the mapping model from the 
Thomson scattering measurements. ( b ) ECH power adjusted using ASTI. ( c ) and ( d ) Distribution (expected 
value and one standard deviation) of ( ce ) at ρ = 0.2 and 0.4 used in the prediction step (“Prediction”) and 
y-filtered distribution (“y-filtered”).

Figure 4.  Prediction error defined as the absolute difference between “Prediction” and “Observation” in Fig. 3.
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control system. The prediction error in the transient section occurred mainly because the gyro-Bohm model over-
estimated the thermal diffusivities as the electron temperature increased. At the beginning of the control (23 s), 
the ce optimization lagged behind the variation in the actual thermal diffusivities. However, before 4 s, the gap 
between the model and the actual system was bridged, which improved the prediction performance. The predic-
tion error also depends on the Thomson measurement error of 0.2–0.4 keV and accuracy of the mapping model.

In addition, the discrete nature of the control input and expansion of the u-filtered distribution from 3.4 s 
onward also affect the control accuracy. This expansion is attributed to the increase in ensemble members with 
small ce(< 0.3) near the center as shown in Fig. 3c, which increases the range of electron temperature variation. 
Because the state distribution is approximated by finite ensemble members, a large uncertainty in the predicted 
distribution makes it difficult to identify the relationship between the control inputs and the system state and may 
reduce the control accuracy. The expansion of the u-filtered distribution at 3.3 s was triggered by adding system 
noise with the fixed standard deviation of 0.1 to ce , despite the small mean of ce near the center. This expansion 
can be avoided by introducing a method to dynamically adjust the system noise by considering the characteristics 
of the system model. The probability distribution of model parameters should be adjusted by considering the 
physical characteristics and control accuracy. This issue will be addressed in a subsequent control experiment.

Change of state distribution in the control process
The ensemble members of the state distributions at 3.0 s are shown in Fig. 5. Figure 5a shows the z-filter process in 
which the target temperature is assimilated into the predicted ensemble. The z-filtered ensemble approximates the 
distribution p(x3.0 | y0.3:2.4, u∗2.1:2.9, z3.0) , where the subscript number indicates the time (s) and t1 : t2 denotes the 
values in [t1, t2] . As shown in Fig. 5b, the u-filtered ensemble is computed after the control input u∗3.0 is obtained 
as the expected value of this distribution. The distribution approximated by the u-filtered ensemble corresponds 
to the predicted distribution with zero or small uncertainty in the control input. The remaining uncertainties 
originate from the uncertainties in the model parameters and system state before time evolution calculation. 
The u-filtered ensemble is modified by assimilating the observation y2.7 (y-filter), as shown in Fig. 5c. This filter 
optimizes the state variables, including the model parameters, to adapt the system model to the real system. The 
control process proceeds to the subsequent prediction from the y-filtered ensemble.

The filtering steps were performed using EnKF in the simple control experiment. Strongly nonlinear relation-
ships among the state variables and a significantly non-Gaussian state distribution (e.g., a multimodal distribu-
tion) necessitate the use of other filters (e.g., PF) and another definition of u∗ (e.g., mode).

Real‑time adaptation to the real system
The upper panels of Fig. 6 show the radial profiles of the predicted electron temperature (u-filtered distribution) 
and observed profiles at three different points in time. The radial profiles of the electron thermal diffusivity are 
shown in the lower panels. The thermal diffusivity can be estimated from the observed density and temperature 
profiles as

where 〈 〉 represents the magnetic flux surface average. This estimate is less valid near the center where the tem-
perature gradient is smaller.

After the first phase (observation assimilation), the temperature profile was predicted with high accuracy at 
the beginning of control estimation (t = 1.8 s), as shown in Fig. 6a,d. In the transient phase (2.1 s ≤ t < 3.9 s), 
insufficient modeling of the electron thermal diffusivity (Fig. 6e) underestimated the profile around the plasma 
center, as shown in Fig. 6b. These prediction errors contribute to the control error in the transient phase, as 

(17)χ(ρ) ∼
− 1

V ′

∫ ρ

0 pECHV
′dρ

�|∇ρ|2�n ∂T
∂ρ

,

Figure 5.  Variations in the ensembles that approximate the state distributions at t = 3.0 s in the control 
experiment. (a) Estimation of the control input (z-filter). (b) Predicted distribution modified by the estimated 
control input (u-filter). (c) Adaptation to the actual LHD plasma by assimilating the observation at t = 2.7 s 
(y-filter).
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shown in Fig. 3. However, in the steady-state phase (3.9 s ≤ t ), the temperature profile was predicted with high 
accuracy by optimizing the thermal diffusivity model, as shown in Fig. 6c,f.

These results demonstrate the real-time adaptation of the integrated transport simulation code to the actual 
LHD plasma. In the transient phase, changes in the circumstances and the discrepancy between the system 
model and real system degrade the prediction performance. Furthermore, in the control procedure used in this 
experiment, the observations obtained at time ti were reflected in the control estimation after ti +�ty , which 
caused a delay in adaptation, especially at the beginning of the control (2.1 s−). This delay can be a critical issue 
for some control problems. Therefore, to achieve a stable adaptive predictive control system, it is important to 
design the control procedure, �ty , and the observation noise to minimize this delay.

Reduction of the control error in the transient phase makes it necessary to improve the assumed transport 
model, adjust the adaptive capacity by controlling the uncertainty in model parameters, and minimize the 
adaptation delay. These limitations will be addressed in the future studies aimed at building a stable control 
system. The DA framework can be applied to construct an advanced control system that can optimize the tim-
ing, physical quantities, and measurement positions. For instance, it would be possible to develop a system that 
allows measurement devices to observe the system state depending on the uncertainty of the model parameters 
and system state.

Discussion
A control system based on DA was developed to control LHD plasmas. A simple experiment to control the elec-
tron temperature demonstrated adaptive predictive control using a nonlinear system model (integrated transport 
model) with large uncertainties. The proposed control framework simplifies the structure of the control system 
to accommodate complex control problems characterized by a large number of variables.

The adaptive capacity of a control system is limited by the assumed models and frequency of  observations18. 
Therefore, the sophistication of the model, computational cost, and amount of information contained in the 
observations must be adjusted depending on the target control problem. Similar to other control systems, obser-
vation errors significantly affect the performance of the proposed DA-based control system. However, this system 
can explicitly account for the uncertainties in observations based on the observation noise. Robust and stable 
control can be achieved by exploiting this uncertainty; however, methods to adjust the uncertainties in observa-
tions and model parameters according to the situation should be developed.

Advanced control systems constructed for future fusion reactors would require models based on data-driven 
approaches, such as surrogate  models35–37, stability  indicators15,38,39, and tomography  methods40,41. To this end, 
the DA-based control system, which expresses the system state as a probability distribution, is highly compatible 

Figure 6.  Time evolution of the radial profiles of electron temperature and thermal diffusivity. (a–c) Radial 
profiles of the predicted electron temperature corresponding to Fig. 3a and the observations (mapped to the 
ρ-coordinate) at three points in time. (d–f) Radial profiles of electron thermal diffusivity calculated in the 
prediction step (“Prediction”) and the values estimated using Eq. (17) from the observed temperature profile at 
the corresponding time points (“Estimated value”). The shaded areas around the radial profiles represent a single 
standard deviation.
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with other data-driven approaches and provides a flexible control platform that links the physics-based and 
data-driven models.

The results of the first application of DA-based control system in LHD do not exceed the control performance 
of conventional controllers (e.g., PID controller). However, the proposed approach has high potential in the con-
trol of future fusion reactors under large uncertainties because it can estimate and control the internal state from 
limited observed information and naturally handle various observed and control variables (e.g., temperature and 
density profiles) and plasma responses with different time scales in a single framework. Thus, the success of this 
demonstration paves the way for addressing challenging control problems in fusion plasma, such as multivari-
ate control, radial profile control, electric field bifurcation control, and avoidance of terminating events using 
relevant alarm rates. DA-based control may become a key technology for solving challenging control problems in 
future fusion reactors and other complex systems by augmenting numerical models with real systems. Beginning 
in 2024, our roadmap includes conducting more sophisticated control experiments with this control system by 
incorporating additional measurement, heating, and fuel-supply devices into the system. Additionally, we are 
actively working on extending our control capabilities to include Tokamak control.

Data availability
The raw data were generated at the LHD facility. Automatic Integrated Data Analysis software and the analyzed 
data are available from the LHD data repository (https://doi.org/10.57451/lhd.analyzed-data). The calculated 
data depicted in the figures of this paper are available from the corresponding author upon reasonable request.
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