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A pilot study on the immune cell 
proteome of long COVID patients 
shows changes to physiological 
pathways similar to those 
in myalgic encephalomyelitis/
chronic fatigue syndrome
Katie Peppercorn , Christina D. Edgar , Torsten Kleffmann  & Warren P. Tate *

Of those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ~ 10% develop 
the chronic post-viral debilitating condition, long COVID (LC). Although LC is a heterogeneous 
condition, about half of cases have typical post-viral fatigue with onset and symptoms that are very 
similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A key question is whether 
these conditions are closely related. ME/CFS is a post-stressor fatigue condition that arises from 
multiple triggers. To investigate the pathophysiology of LC, a pilot study of patients (n = 6) and healthy 
controls (n = 5) has used quantitative proteomics to discover changes in peripheral blood mononuclear 
cell (PBMC) proteins. A principal component analysis separated all long COVID patients from healthy 
controls. Analysis of 3131 proteins identified 162 proteins differentially regulated, of which 37 were 
related to immune functions, and 21 to mitochondrial functions. Markov cluster analysis identified 
clusters involved in immune system processes, and two aspects of gene expression-spliceosome and 
transcription. These results were compared with an earlier dataset of 346 differentially regulated 
proteins in PBMC’s from ME/CFS patients (n = 9) analysed by the same methodology. There were 
overlapping protein clusters and enriched molecular pathways particularly in immune functions, 
suggesting the two conditions have similar immune pathophysiology as a prominent feature, and 
mitochondrial functions involved in energy production were affected in both conditions.

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a post-viral condition, 
long COVID (LC), in a significant proportion (~ 10%) of those  affected1. With now over 772 million cases of 
SARS-CoV-2 infection worldwide as at November 22nd  20232 there will be an estimated ~ 80 million cases of 
LC. Long COVID is a chronic debilitating disease arising from this unique viral trigger. The diagnosis of LC is 
made three months from initial infection when the condition persists for more than eight  weeks3. Although LC 
is recognized as heterogeneous, with some patients suffering from ongoing organ damage, at least 50% have a 
post-viral fatigue  condition4,5 with onset and symptoms very similar to myalgic encephalomyelitis/chronic fatigue 
syndrome (ME/CFS), the collective term for the post-viral or post-stressor fatigue condition arising from such 
multiple  triggers6. A recent paper has defined four clinical phenotypes amongst LC patients with the ME/CFS-like 
fatigue condition the dominant  phenotype5. Children, adolescents, and adults can all be affected by ME/CFS and 
LC with impacts including the inability to pursue education, work or normal life  activities7,8. In contrast to LC, 
ME/CFS is diagnosed formally with a clinical case definition if symptoms persist for at least six  months9 while 
LC is diagnosed after three  months3, but for most ME/CFS patients diagnosis has been made much later, when 
their condition has become well established and other illnesses have been  eliminated10. For those patients with 
ongoing ME/CFS, the debilitating condition is  lifelong11 with a resulting heavy burden on families and with severe 
economic and social impacts. For both conditions, symptoms reported are numerous (estimated to be > 100) 
and the vast majority of those of LC overlay with those of ME/CFS, with only a small number of differences, 
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perhaps relating to the unique effects from the triggering SARS-CoV-2 virus. Nevertheless, the key commonest 
symptoms identified by the WHO when deriving a clinical case definition for LC: fatigue, brain fog (cognitive 
defects), activity related post exertional malaise, unrefreshing sleep, pain, and other neurological symptoms are 
shared with ME/CFS in the most widely accepted clinical case definitions for this condition.

Onset of several diseases have also been attributed to infection with SARS-CoV-2, such as type 2 diabetes, 
and dysautonomia, especially postural orthostatic tachycardia syndrome (POTS)4,12. Increasingly, with focus on 
LC within the first few months of onset some commentators have proposed that if the post-viral fatigue condi-
tion of LC patients lasts beyond one year it ‘becomes’ ME/CFS. The major clinical phenotype of LC with fatigue 
symptoms may represent either a specific example of ME/CFS facilitated from the single triggering SARS-COV-2 
virus in susceptible people and exhibiting the same dysfunctional physiology generally as in ME/CFS patients, 
or it may exhibit significantly different molecular changes arising from the specific characteristics of the SARS-
C0V-2 infection. This study aims to explore this question. If there were fewer cases of COVID-19 worldwide, as 
with the first SARS CoV-1 outbreak in 2003, LC would most likely have been classified as ME/CFS like the other 
75 boutique outbreaks of probable viral infections reported since about  193013.

We have proposed a model to explain the complex dysfunctional physiology for both ME/CFS and  LC14. A 
key feature is that in susceptible people the normal transitory immune/inflammatory response of the peripheral 
system to infection or stress does not resolve quickly as in most people but becomes chronic and that leads to a 
cascade effect, with involvement of the brain and its immune system, and other components of the central nerv-
ous system. The disturbed functions of the CNS result in multiple neurological symptoms, and in poor brain 
regulation of body physiology. A number of studies have documented chronic dysregulation of the immune 
cell function involving multiple cell types, and cytokines in ME/CFS15–21, and now more recently in  LC22–25. In 
ME/CFS, multiple disturbances have been reported in the molecular homeostasis of the  transcriptomes26–28, 
 proteomes29–31, and DNA  methylomes32–36 of peripheral blood mononuclear cells (PBMC) that include lympho-
cytes (T cells, B cells, NK cells) and  monocytes37, but not as yet in LC.

This current study analysed the PBMC proteomes of post-viral fatigue LC patients whose illness had lasted 
for one year, compared with age/sex matched healthy controls. It aimed to identify specific areas of cellular 
physiology that were still dysfunctional a year on from the patients’ initial SARS-CoV-2 infection. Groups of 
proteins involved with the immune response, and gene expression (spliceosome and transcription) and mito-
chondrial function were shown to be differentially regulated in LC patients. We have previously published data 
on the differentially regulated proteins in a ME/CFS cohort with an average disease duration of 16 years, using 
the same mass spectrometry  strategy29, and here we compared the two datasets to identify common or distinct 
features. We hypothesised that there would be similar molecular pathways affected that would contribute to and 
explain the closely overlapping symptoms and pathophysiology of both long COVID and ME/CFS. Despite the 
significant difference in the disease durations of the two groups of patients (1 year vs an average of 16 years) 
many common effects were identified. Therapeutic targeting of the immune response/inflammatory pathways 
may be beneficial for treatment of both diseases.

Results
We first analysed the proteomes of six LC patients and five age/sex matched healthy controls (HC) by Sequential 
Window Acquisition of all Theoretical Fragment Ion Spectra-Mass Spectrometry (SWATH-MS) to identify pro-
teins differentially regulated in LC patients. We then compared these data with a study of nine ME/CFS patients 
and age/sex matched controls that were also analysed by SWATH-MS. The ME/CFS patients were all recruited 
and analysed before the onset of the pandemic in New Zealand in 2020. The demographics and characteristics 
of both cohorts are shown in Table 4.

The spectral library
A comprehensive spectral library containing the peptide spectra of all of the identified proteins in a pool of the 
samples from all LC and HC subjects was generated through data-dependent acquisition (DDA) mass spec-
trometry. The pooled sample contained an equal amount of sample from each patient and control subject. The 
DDA mass spectrometry of the pre-fractionated pooled sample identified 3566 protein groups at a confidence 
interval of ≥ 99 and an FDR of q ≤ 0.01, which were integrated into the spectral library. After aligning the Data 
Independent Acquisition (DIA) SWATH-MS data to the spectral library, 3131 proteins and 11,127 individual 
peptides were used for subsequent quantification between the patient and control groups based on an FDR for 
a peak matching of q ≤ 0.01 in at least one sample.

Differentially regulated proteins in long COVID patients
A principal component analysis (PCA) on all quantitative protein data and all samples detected sufficient dif-
ferences to segregate all LC patients from the HC group in principal component 3 (Fig. 1A). Using the average 
of all the peptide intensities of each protein for quantification, 162 of the 3131 proteins in the spectral library 
were identified as being differentially regulated in the LC samples (minimum 1.5-fold change (log2(FC) ≤  − 0.58 
or ≥ 0.58) and a significance threshold of p ≤ 0.05 (− log10(p-value) ≥ 1.3). The fold change decision for inclusion 
may vary according to the biological system (cell or human patients) and whether such a fold change is likely 
to affect the biology—particularly relevant for human studies. A fold change minimum of 1.5 was selected here 
based on our previously published proteomic studies on samples from human patients and human neural and 
mammalian neural  cells29,38,39. This inclusion limit returned enough proteins to perform a network analysis on 
proteins of interest biologically.
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There were 79 proteins down-regulated (green) and 83 up-regulated (red), as illustrated in the volcano plot 
(Fig. 1B). A list of all the proteins that were significantly differentially regulated is found in Supplementary 
Table S1.

A STRING (v12) functional network  analysis40 on the 162 differentially regulated proteins showed numer-
ous protein nodes with direct and indirect connections (edges) to other proteins within the set of differentially 
regulated proteins (Fig. 2A) and highlighted enrichment of proteins associated with a number of Gene Ontology 
(GO) terms (Table 1, and supplementary Table S2).

The full network of the 162 differentially regulated proteins (Fig. 2A) comprised 16 protein nodes with first 
level connections to ten or more differentially regulated proteins. These 16 protein nodes listed here are indicated 
by their protein symbol and their number of first level interactions is shown in brackets; B2M (16), BCL2 (20), 
CD4 (22), GFM1 (14), HLA-DRB1 (10), HNRNPM (10), LCK (12), NMP1 (16), NRAS (12), PLCG2 (10), PSMB9 
(12), SNRPB (10), SNRPD1 (12), SYK (14), TLR2 (10) and UBQLN2 (11) (see Supplementary Table S1 for protein 
names). This demonstrates a high level of functional association and intra connectivity (betweenness centrality) 
among the regulated proteins. An enrichment analysis shown in Table 1 highlights a selection of the Reactome 
and KEGG pathways that suggest the correlations of subsets of these proteins in immune system  functions41. 
DAP12 is a DNAX-activating protein of 12 kDa that acts as a signaling adapter protein expressed in Natural 
Killer (NK) cells and myleoid cells participating in innate immune  responses42. Terms related to responses to 
SARS-COV-2, Epstein-Barr virus and HIV infections were prominent (see supplementary Table S2 for the full 
list of enriched GO terms).

Table 1 indicates that changes in immune system-related proteins feature significantly in the data from LC 
patients. The STRING network analysis tool returns the number of proteins/genes from the set of significantly 
differentially regulated proteins, that are associated with any given GO term. This is the ‘observed gene count 
(OGC)’, and the ‘background gene count (BGC)’ is the total number of proteins/genes for that category. The broad 
generalised Reactome (HSA-168256) category ’Immune System’ was significantly enriched with 37 or 23% of the 
differentially regulated proteins (strength 0.36, FDR 0.00045). The immune system’s 37 differentially regulated 

Figure 1.  Abundance profile of long COVID patients differed from healthy controls. (A). A principal 
component analysis detected sufficient differences in the dataset to segregate the long COVID patient group 
from healthy controls in principle component (PC) 3 (6.8% of differences). (B). Volcano plot showing 
significantly down- (green) and up-regulated (red) proteins. Unchanged or non-significantly changed proteins 
are blue. The significance thresholds were a fold change of at least 1.5 (log2(fold change) ≤ -0.58 or ≥ 0.58) at a p 
value of 0.05 or lower (-log10(p value) ≤ 1.3) are indicated by the black lines. Abbreviations; LC—long COVID, 
HC—healthy control.
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proteins are listed here: AP2S1, ATP6V1G1, B2M, BCL2, CD300LF, CD4, DOK3, DYNC1I2, FGR, GMFG, HLA-
B, HLA-DRB1, HLA-E, IRF5, KPNA3, LCK, MAPK9, MNDA, NDUFC2, NRAS, NUP93, PAFAH1B2, PLCG2, 
POLR2H, PSMB9, PSMF1, PTGES2, RAB6A, RAF1, RIPK1, SERPINB10, SYK, TIMP1, TLR2, TRIM22, TRIP12 
and UBA3. The more specific term ’cytokine signaling in immune system’ (Reactome HSA-1280215) included 
19 proteins (strength 0.51, FDR 0.001) listed here: CD4, BCL2, B2M, HLA-DRB1, LCK, NRAS, PSMB9, PLCG2 
and SYK (all first level interactors for ≥ 10 other differentially regulated proteins), while TIMP1 (6), KPNA3 (4), 
NUP93 (4), PSMF1 (1), UBA3 (3), HLA-E (9), TRIM22 (2), MAPK9 (5), HLA-B (5) and IRF5 (4) also interact 
with multiple proteins (numbers of interacting proteins shown in brackets), giving weight to the association of 
immune system dysregulation in LC.

Figure 2.  Differentially regulated proteins in long COVID patients clustered into three groups. (A). Graphical 
representation of a STRING (v12) network of 162 differentially regulated proteins after Markov Cluster 
Algorithm (MCL) analysis with an inflation parameter of 1.5. The colours in the full network (A) indicate the 
clusters of functionally associated proteins. The three main clusters shown in (B–D) are enriched in proteins 
associated with the following functional GO annotations: B. immune system (Reactome HSA-168256), 
Epstein–Barr virus infection (KEGG hsa05169), Natural killer cell mediated cytotoxicity (KEGG hsa04650) and 
Cytokine Signaling in Immune system (Reactome HSA-1280215); (C). gene expression (GO molecular process 
GO:0,010,467) and RNA splicing (GO:0,008,380); (D). gene expression and RNA Polymerase II Transcription 
(GO molecular process HSA-73857). The protein symbol is used to identify each protein and the full names can 
be found in supplementary material Table S1.
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Then Markov Cluster Algorithm (MCL)  analysis43 with an inflation parameter of 1.5 was performed to high-
light modules of associated protein nodes within the complex network that show stronger edge interactions to 
each other than to the rest of the network and therefore allow a more sensitive pathway enrichment analysis 
by reducing network complexity. Three major clusters were identified that contained 10 or more protein nodes 
among the 162 differentially regulated proteins in the LC patients (Fig. 2A). One cluster (Fig. 2B) is broadly 
associated with the immune response, and the other two with gene expression (spliceosome—Fig. 2C), and 
transcription (Fig. 2D). See supplementary Table S3 for complete cluster analysis with the protein names and 
their predicted functions.

Interestingly, 17 proteins (out of a possible 411 in the category) in Table 1 are enriched from the Reac-
tome (HSA-9679506) category ’SARS-CoV Infections’ (Strength 0.7, FDR 6.37E-05); RIPK1, TLR2, MAN2A1, 
CSNK1A1, NPM1, SNRPD1, NUP93, SYK, HLA-E, RBBP7, HLA-B, SNRPB, CHMP2A, AP2S1, PTGES3, PLCG2 
and B2M. The changed regulation of some of the proteins discussed above that are associated with ‘Immune 
System’ in general may have originated first in response to infection, in this case infection with the ’SARS-CoV-2 
virus’, but persisted with the onset of LC.

To identify potential specific pathways involved in LC, a search was made for any specific GO terms where 
at least 25% of proteins from the small background gene counts (BGC) were differentially regulated in the LC 
dataset. More highly specialised GO terms describe specific molecular functions that involve fewer proteins 
i.e. these terms have lower BGC. Examples of GO terms where there are ≥ 25% proteins differentially regulated 
(OGC/BGC) include ‘antigen processing and presentation exogenous peptide antigen via MHC class 1b (2/4), 
‘protection from NKC mediated cytotoxicity’ (2/6) and CD4 receptor binding (2/8). The GO terms satisfying this 
criterion and representing specific immune cell functions have been included along with the relevant protein 
symbols in supplementary Table S4.

Comparison with an earlier study of ME/CFS patients
We reported a similar proteome study with a well characterized group of pre-pandemic ME/CFS patients in 2020 
compared with age/sex matched healthy  controls29. By contrast this patient cohort had been affected by ME/
CFS on average for 16 years compared with each of the LC cohort for only 1 year. Although the female to male 
ratios were different in the ME/CFS study compared with the LC cohort used in this study, we found no PCA 
separation on the basis of gender or age in the ME/CFS  cohort29, and the one male patient in the LC cohort here 
was within the centre of the LC patient cluster shown in Fig. 1A.

In the ME/CFS study, there were 346 differentially regulated proteins compared with the 162 proteins identi-
fied in the current LC study that met the same criteria (minimum 1.5-fold change and p-value ≤ 0.05) used for 
the selection in the LC study (Supplementary Table S5). Of these 153 were up-regulated and 193 down-regulated.

Using the most recent version of the STRING tool (v12) for consistency, an updated STRING functional 
network MCL cluster analysis of the regulated proteins from the previous ME/CFS study was carried out and 
revealed five clusters with 12 or more proteins (Fig. 3); two clusters were broadly associated with the immune sys-
tem—antigen presentation and cytokine signalling (63 proteins—Fig. 3B) and immune system process—platelet 
activation, signalling and aggregation (20 proteins Fig. 3C), one with gene expression and metabolism—transla-
tion, RNA metabolism, protein metabolism and cellular response to stress (119 proteins—Fig. 3D), and smaller 
clusters associated with the mitochondria—oxidative phosphorylation (13 proteins—Fig. 3E and vesicle-mediated 
transport (12 proteins—Fig. 3F).

A comparison of the STRING pathway enrichment analysis outputs for the LC data against the ME/CFS 
dataset (re-analysed here at FC ≥ 1.5 with p ≤ 0.05) allowed for the identification of both common and distinct 
enriched functional categories or pathways between the two datasets. Twenty-two Reactome pathways and 5 

Table 1.  Reactome and KEGG pathways most significantly represented by protein nodes with a high level of 
connectivity (10 or more first level edges to other nodes). OGC observed gene count, BGC total background 
gene count in that category, FDR-false discovery rate. Strength measures the confidence score of interactions 
between proteins or genes calculated by the STRING database tool. It quantifies the reliability of associations, 
reflecting the likelihood of true functional connections > 0.4 is considered significant.

Reactome ID Term description OGC BGC Strength FDR

HSA-168256 Immune System 37 1979 0.36 4.50E-04

HSA-168249 Innate Immune System 27 1041 0.50 6.81E-05

HSA-1280215 Cytokine Signaling in Immune system 19 706 0.51 1.60E-03

HSA-2172127 DAP12 interactions 7 39 1.34 6.37E-05

HSA-5663205 Infectious disease 31 917 0.61 6.86E-08

HSA-9679506 SARS-CoV Infections 17 411 0.70 6.37E-05

KEGG ID

hsa04650 Natural killer cell mediated cytotoxicity 8 120 0.91 1.70E-03

hsa04664 Fc epsilon RI signaling pathway 6 65 1.05 2.80E-03

hsa05169 Epstein-Barr virus infection 9 192 0.76 3.50E-03

hsa05170 Human immunodeficiency virus 1 infection 12 203 0.86 6.93E-05
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Figure 3.  ME/CFS MCL cluster analysis of differentially regulated proteins. (A). Graphical representation of 
a STRING (v12) network of 346 differentially regulated proteins after MCL cluster analysis using an inflation 
parameter of 1.5. A. Entire protein network, each colour represents a cluster of functionally associated protein 
nodes. (B). 63 proteins involved with the immune system (Reactome HSA-168256), Antigen Presentation 
(Reactome HSA-983170) and Cytokine Signaling in Immune system (Reactome HSA-1280215). (C). 20 
proteins associated with immune system process associated with Immune system process (Molecular 
process GO:0,002,376) and Platelet activation, signaling and aggregation (Reactome HSA-76002E). (D). 119 
proteins associated with Translation (Reactome HSA-72766), RNA metabolism (Reactome HSA-8953854), 
Protein metabolism (Reactome HSA-392499) and Cellular responses to stress (Reactome HSA-2262752). 
(E). 13 proteins associated with the mitochondria (GO cellular component GO:0,005,739) and Oxidative 
phosphorylation (GO cellular process GO:0,006,119). F. 12 proteins associated with vesicle-mediated transport 
(GO biological process GO:0,016,192). Networks in A and D are too large to include protein symbols. The full 
protein names can be found in supplementary Table S5.
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KEGG pathways were common to both LC and ME (Supplementary Table S6). Supplementary Figure S1 shows 
a Venn diagram of these Reactome pathways and KEGG pathways that were common to the two datasets.

For a comparison of the proteins differentially regulated between the LC and ME/CFS datasets we first evalu-
ated the overlap of proteins in the quantitated proteins dataset of both studies. As shown in the Venn diagram 
in Fig. 4A there were 2032 proteins identified in both datasets, with 1084 only in the LC study, and 915 only in 
the ME/CFS study. Of the differentially regulated proteins within the 2032 proteins common to both datasets, 
there were 47/83 of the LC up-regulated and 56/79 of the down-regulated proteins, and 40/153 of the ME/CFS 
up-regulated and 26/193 of the down-regulated proteins. Nine were up-regulated and six down-regulated com-
mon to both LC and ME/CFS data sets, as shown in the Venn diagrams in Fig. 4B and C.

The characteristics of those differentially regulated proteins that were detected in both data sets are shown 
in Table 2.

For example, HLA-B, a protein that helps the immune system distinguish self-proteins from those of exog-
enous viruses and bacteria was significantly down-regulated in both LC group and the ME/CFS group. C16orf54, 
a transmembrane protein that is suggested to regulate homeostasis of cell energy supply was highly up-regulated 
in both LC and ME/CFS study groups. In addition to those that were regulated in the same direction for LC 
and ME/CFS, there were also proteins significantly regulated but in the opposite direction in the two datasets 
(not recorded in the Venn diagrams in Fig. 4 as overlapping because of their up/down directions). They are 
also shown in the table. For example, S100A4, a  Ca2+binding protein expressed in CD4 + CD25 + lymphocytes 
is almost fourfold upregulated in the LC study group but 1.5 fold downregulated in ME/CFS study group. 
 CD4+CD25+ immunoregulatory T cells represent a unique lineage of thymic-derived cells that potently sup-
press both in vitro and in vivo effector T cell function and allow tolerance to endogenous antigens to modulate 
an autoimmune response. Two glial maturation factors (GFM-B & CFM-G) are almost twofold up-regulated 
in the LC study group but 2–fourfold down-regulated in the ME/CFS group. GMFB, considered a growth and 
differentiation factor for both glia and neurons and associated with neuroinflammation is up-regulated, while 
GFMG is a cytokine responsive protein mainly expressed in inflammatory cells and regulates the chemotaxis of 
neutrophils and lymphocytes.

An important outcome of the original ME/CFS published study was that many mitochondrial proteins were 
identified. They were involved in both general functions, metabolism, electron transport complexes, and the 
reactive oxygen species stress response. The re-evaluated MCL cluster analysis of the ME/CFS differentially 
regulated proteins here identified a mitochondrial cluster of 13 proteins (Fig. 3E).

When the differentially regulated proteins from the LC dataset were searched against the Human Mito-
Carta3.044 database of human mitochondrial associated proteins, 21 of the 162 proteins were identified as mito-
chondrial (Table 3). The LC differentially regulated proteins in the current study identified a small six protein 
cluster of mitochondrial proteins (Cluster 7, Supplementary Table S3).

From the 83 up-regulated proteins in the LC dataset (Fig. 1B) the 16 up-regulated mitochondrial proteins 
shown in Table 2 represent an enrichment that does not occur by chance. A binominal test using the binomial 
distribution range function (BINOM.DIST.RANGE) in Microsoft Excel resulted in a probability of p = 0.018 to 
identify 16 or more mitochondrial proteins from a pool of 83 up-regulated proteins. By contrast, the probability 
of finding the 5 down-regulated mitochondrial proteins shown in Table 3 amongst all 79 down-regulated proteins 
is 0.94, indicating that they could occur by chance. Pathway enrichment analysis of the 83 up-regulated proteins 
using the STRING database tools (https:// string- db. org/) also showed an enrichment of proteins associated with 
the mitochondrion at a strength  (log10(observed/expected)) of 0.41 and an adjusted p-value of 0.023 (Benja-
mini–Hochberg procedure) under the Gene Ontology (GO) aspect of Cellular Compartment, further supporting 
the conclusion that the mitochondrial proteins amongst the up-regulated proteins represents an enrichment.

Figure 4.  Comparison of the total number of quantified proteins and those differentially regulated in LC and 
ME/CFS. (A). Proteins identified and quantified in the LC and ME/CFS datasets that overlap or are present in 
only one dataset. (B). Differentially up-regulated proteins within the common 2032 proteins that are found in 
both LC and ME/CFS datasets or in only either LC or ME/CFS. (C). Differentially down-regulated proteins 
within the common 2032 proteins that are found in both LC and ME/CFS datasets or in only either LC or ME/
CFS.

https://string-db.org/
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Discussion
The changes represented in the differential regulation of the proteins in the immune cells of PBMCs from the 
LC patients determined in this study were significant as indicated from the principal component analysis and 
were predominately focused in clusters whose functions were related to immune function, and gene expres-
sion. Not surprisingly, changes in proteins related to gene expression were highlighted as they would facilitate 
changes in expression that led to higher or lower amounts of proteins being synthesised. The results indicated 
that the immune system activity of LC patients one year after the onset of their COVID infectious illness was 
dramatically different from that of the healthy controls. It reflected a chronic dysfunctional state that had not 
been restored from the expected transient immune/inflammatory response mounted to cope with the original 
infection from the SARS-CoV-2.

The conclusions described here complement emerging studies with LC patients of changes in cellular 
 immunology22,45. Immune profiling of 215 patients in conjunction with machine learning identified key fea-
tures that differed from  controls45. A study using multi-omics and serology compared LC patients with those 
who did not develop LC after their SARS-CoV-2 infection demonstrating systemic inflammation and immune 
dysregulation in the LC group. It was concluded the normal crosstalk between the humoral and cellular arms of 
adaptive immunity had broken down in the LC  patients46. A further study up to 24 weeks post COVID revealed 
differences in innate immune cells natural killer cells, neutrophils, CXCR3 + monocytes, and in adaptive T cell 
 populations47. LC patients have been shown to have reduced CD4 + and CD8 + effector memory  cells48. Somewhat 
conflicting results have been found also in separate cohort studies of cytokines in  LC23,24,49. Interleukin-1β, IL6 
and TNα were elevated in those who did not recover from their viral infection indicating these three cytokines 
may have a significant  role23.

Of the immune system proteins identified in the current study several human leukocyte antigen (HLA) 
proteins were identified as differentially regulated in both LC and ME/CFS datasets. HLA proteins are trans-
membrane proteins that bind and present peptide antigens for detection and appropriate immune response by T 
cells, macrophages and natural killer cells (NK)50 and their role is to aid distinguishing between self and non-self. 
HLA genes are highly polymorphic and some immunological diseases arise from genetic  variation51. Class I and 
Class II HLA proteins are expressed on antigen presenting cells (B cells, macrophages, dendritic cells). Differ-
ential regulation of HLA-B (Class I) and HLA-E (Non-classical Class I) were common to LC and ME/CFS, but 
HLA-DRB1 (Class II) was differentially regulated in the LC data alone, and HLA-A (Class I), HLA-DQB1 and 
HLA-DPB1 (both class II) were also differentially regulated in the ME/CFS study. HLA-B was down-regulated 
in both LC (sixfold) and ME (1.7-fold) suggesting altered T cell recognition and reduced inhibitory signaling 
in Natural Killer (NK) cells in both disorders. By contrast HLA-E was down-regulated in ME (1.6-fold) but 

Table 2.  Common proteins differentially regulated in the LC and ME/CFS groups. The differentially regulated 
proteins from the LC and ME/CFS study were compared to identify matches using protein name, GI number 
and protein symbol. While 1.5 was the fold change cut off PRDX2 and FIS1 were included as they are close to 
1.5 fold.

Differentially regulated proteins in ME/CFS and long COVID patients Fold change Regulation

Protein symbol Protein name ME-CFS study LC study ME-CFS/LC

DNAJB11 dnaJ homolog subfamily B member 11 precursor 0.49 0.61 Down

HLA-B major histocompatibility complex, class I, B precursor 0.61 0.17 Down

TPM1 tropomyosin alpha-1 chain 0.53 0.15 Down

GUCY1A1 guanylate cyclase soluble subunit alpha-3 0.5 0.60 Down

TST thiosulfate sulfurtransferase 0.65 0.64 Down

PAFAH1B2 platelet-activating factor acetylhydrolase IB subunit beta 0.2 0.49 Down

PSMB9 proteasome subunit beta type-9 proprotein 1.68 1.82 Up

TMA7 translation machinery-associated protein 7 1.69 1.70 Up

RPL28 60S ribosomal protein L28 1.85 1.83 Up

PRDX2 peroxiredoxin-2 1.36 1.70 Up

ARHGDIB rho GDP-dissociation inhibitor 2 1.54 1.83 Up

C16orf54 transmembrane protein C16orf54 2.34 2.89 Up

FIS1 mitochondrial fission 1 protein 1.48 1.54 Up

RALY RNA-binding protein Raly 1.5 1.91 Up

NPM1 nucleophosmin 1.59 1.64 Up

S100A4 protein S100-A4 0.67 3.51 Down / Up

HLA-E HLA class I histocompatibility antigen, alpha chain E precursor 0.57 1.67 Down / Up

GMFG glia maturation factor gamma 1.72 0.26 Up / Down

GMFB glia maturation factor beta 1.82 0.55 Up / Down

PPP1R18 phostensin 1.71 0.39 Up / Down

SGPL1 sphingosine-1-phosphate lyase 1 1.8 0.53 Up / Down

ISYNA1 inositol-3-phosphate synthase 1 1.82 0.57 Up / Down
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up-regulated in LC (1.7-fold). HLA-E specifically recognises CD94 expressed on Natural Killer (NK)  cells52. 
HLA-E overexpression has been shown to negatively interfere with innate immune responses protecting cells 
from susceptibility to lysis by NK cell-mediated  cytotoxicity53.

Cluster of Differentiation markers (with the prefix CD) are a plethora of antigens on the cell surface of leuco-
cytes. For example, CD5 is a T-cell surface glycoprotein that negatively regulates T cell receptor signaling from 
the onset of T-cell activation. CD4, 5, 84 and 300LF were differentially regulated in the LC dataset. Upregulated 
in both LC and ME/CFS datasets, CD4 is involved in the early phase of T cell activation, CD5 regulates T cell/B 
cell interactions and inhibits T cell receptor mediated signaling from the onset of T cell activation. Downregu-
lated in both datasets, CD84 enhances T cell and NK cell activation and cytokine activation, and CD300LF is an 
inhibitory receptor of myeloid cells.

Since LC is a specific example of a post-viral fatigue syndrome that develops from a specific triggering virus 
and has a symptom profile and clinical case definition very similar to ME/CFS, the collective term that has been 
given to post-viral fatigue syndromes from multiple triggers, we compared the LC dataset with an ME/CFS data-
set we had derived earlier using the same mass spectrometry approach, re-analysing the dataset with the same 
statistical parameters used in the current study. Data from supplementary Table S4 in the ME/CFS proteomic 
 study29 that listed all identified differentially regulated proteins was filtered to give the same stringency (p-value 
and fold change) as was used in this LC study. With these parameters there were ~ twofold more differentially 
regulated proteins (346) compared with the LC data set (162) and thereby a somewhat more complex pattern in 
their clustering patterns (compare Fig. 3 to Fig. 2). Cluster analysis from the ME/CFS data set (Fig. 3) identified 
two separate clusters related to the immune system and its processes, a large cluster related to gene expression/
metabolism, and two smaller clusters related to mitochondrial energy production, and vesicle mediated transport 
as the LC data set.

Of the 34 Reactome categories enriched in the LC data, 22 were also enriched in our earlier ME/CFS data, 
whereas of the 32 enriched KEGG pathways in the LC data, five were also enriched in ME/CFS (supplementary 
Figure S1). This highlights pathways that are similarly affected while showing there are distinctions.

A feature of the original ME/CFS study had been the number of differentially regulated mitochondrial pro-
teins. A search of the LC dataset for significantly differentially regulated mitochondrial proteins identified 21 

Table 3.  Differentially regulated mitochondrial proteins in the LC data. The human MitoCarta3.0 database 
was accessed to search for proteins associated with the mitochondria within the LC data set. FC fold change.

Peak Name Symbol Protein name FC p-value Activity (MitoPathways)

Mitochondrial Metabolism

gi|373,251,164 GLS Glutaminase 1.53 0.028 Glutamate metabolism

gi|937,827,788 LDHB L-lactate dihydrog. B chain 1.57 0.011 Glyoxylate metabolism

gi|23,618,867 SFXN1 sideroflexin-1 1.70 0.002 Serine and Vitamin metabolism

gi|578,829,057 PDPR pyruvate dehydrogenase (PDH) phosphatase regula-
tory subunit 2.85 0.013 Pyruvate metabolism

gi|767,969,704 DLAT dihydrolipoyllysine-residue acetyltransferase (PDH 
complex) 1.64 0.042 Pyruvate metabolism

gi|32,189,392 PRDX2 peroxiredoxin-2 1.70 0.024 ROS and GSH metabolism

gi|8,923,001 ABHD10 mycophenolic acid acyl-glucuronide esterase 1.60 0.035 Xenobiotic metabolism

gi|395,394,071 TST thiosulfate sulfurtransferase 0.64 0.010 Sulfur metabolism

gi|13,376,617 PTGES2 prostaglandin E synthase 2 1.75 0.027 Eicosanoid metabolism

gi|15,277,342 HSD17B8 estradiol 17-beta-dehydrogenase 8 2.43 0.018 Type II fatty acid Cholesterol, bile acid,
steroid synthesis

gi|37,594,464 NUDT5 ADP-sugar pyrophosphatase 0.64 0.028 Nucleotide synthesis and
processing

Mitochondrial Translation

gi|38,683,855 PTCD3 pentatricopeptide repeat domain-containing protein 
3, mitochondrial precursor 1.84 0.029 Mitochondrial ribosome;

gi|8,923,421 SARS2 seryl-tRNA synthetase 2, mitochondrial 2.07 0.008 mt-tRNA synthetases

gi|46,852,147 IARS2 isoleucyl-tRNA synthetase 2, mitochondrial precursor 1.51 0.040 mt-tRNA synthetases

gi|815,890,954 GFM1 elongation factor G, mitochondrial 0.45 0.044 Translation factors

Mitochondrial dynamics and surveillance

gi|767,999,127 BCL2 apoptosis regulator Bcl-2 2.20 0.044 Apoptosis

gi|151,108,473 FIS1 mitochondrial fission 1 protein 1.54 0.025 Fission

Oxidative Phosphorylation—Complex I

gi|7,661,786 NDUFAF4 NADH dehydrogenase [ubiquinone] 1 alpha subcom-
plex assembly factor 4 1.97 0.008 OXPHOS assembly factors

gi|4,758,784 NDUFC2 NADH dehydrogenase [ubiquinone] 1 subunit C2 0.48 0.015 OXPHOS subunits

gi|7,706,351 PTRH2 peptidyl-tRNA hydrolase 2, mitochondrial 0.46 0.001 none

gi|767,902,514 CRYZ quinone oxidoreductase 1.56 0.010 none
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that were involved in mitochondrial metabolism, translation, dynamics, and oxidative phosphorylation. Of the 
54 differentially regulated mitochondrial proteins identified in the ME/CFS data set, 14 formed a cluster in the 
string analysis here (Fig. 3E), whereas there was no cluster with at least 10 proteins in the LC string analysis from 
the 21 mitochondrial proteins identified. Thirty-five of the differentially regulated mitochondrial proteins in the 
ME/CFS dataset were detected in the 3131-protein spectral library used to analyse the LC data set. Despite the 
fewer differentially regulated proteins in the LC dataset 17 of these had very similar fold changes in both LC and 
ME/CFS datasets (supplementary Table S7), despite only some meeting the statistical criteria for significance, 
with the others trending towards significance. This may reflect a wider variation among the LC patient in the 
levels of differential regulation among some of the mitochondrial proteins.

Peroxiredoxin-2 (PRDX2) is a mitochondrial antioxidant enzyme upregulated in both LC and ME/CFS data-
sets. PRDX2 reduces reactive oxygen species (ROS) by hydrolysing  H2O2. Elevated levels of PRDX2 in our studies 
suggests there is increased ROS generation in both LC and ME/CFS immune cells. PRDX2 has been implicated in 
neurological disease due to aberrant management of  ROS54. Peroxisomes are an independent organelle that meta-
bolically interact with mitochondria but also play a role in ROS production and scavenging, and dysfunctional 
effects on mitochondria can affect peroxisomal  physiology55. Peroxisomal dysfunction is linked with decreased 
levels of plasmalogens (a class of glycerophospholipids in cell membranes) that have been reported in ME/CFS56.

Another up regulated protein in both studies is PSMB9 (proteasome subunit beta type-9 proprotein) that 
has been linked to autoinflammation and  immunodeficiency57. Expression of this gene is also increased in 
COVID-19  patients58.

Limitations of the study
It should be noted the average duration time of the condition in the ME/CFS group was 16 years (Table 4), 
whereas the long COVID patients had a much shorter duration of their post-viral condition (1 year) so the two 
groups are at different stages of their ongoing conditions. Now, with so many LC cases synchronized in time as a 
result of the pandemic longitudinal studies will be possible to follow the course of the dysfunctional pathology 
of the conditions with time. This has not occurred with ME/CFS as there has been a continuous ‘drip feed’ of 
cases from endemic viruses like Epstein-Barr virus, and stressor triggers affecting individuals, as well as cases 
from boutique infectious disease outbreaks. It may be, despite the many similarities of the result from the two 
cohorts indicated in this study, that differences reflect the different timepoint since onset of the conditions in 
the respective cohorts.

These analyses are pilot studies with small cohorts of patients. Nevertheless, these patients are very well 
characterised and diagnosed by an ME/CFS expert clinician using the same clinical case definition. Our growing 
experience is that with appropriate statistics meaningful significant data can be obtained about the pathophysi-
ology of the post stressor diseases for such small cohorts. Different molecular analyses have repeatedly shown 
consistent changes to biochemical pathways relating to the same dysfunctional physiology. Longitudinal studies 
with individual ME/CFS patients acting as their own controls have also been definitive. For example, in a relapse 
recovery cycle study molecular changes occurred during a relapse but then were restored to pre-relapse levels 
on  recovery32.

p-value false discovery adjustment has not been included with the data presented here due to the low num-
ber of n (subjects) and a high biological variability between the subjects. A false discovery estimation using 
the Benjamini–Hochberg procedure resulted in only nine significant differences (adjusted p ≤ 0.05) between 
the study groups indicating a large number of false negatives after p-value adjustment. The scope of this study 
was to draw conclusions about biological effects and gain insights into potential mechanisms underlying LC 
in comparison to ME/CFS by performing a discovery proteomics approach. It was important to consider that 
false negative identifications from such comparisons would be lost for any data interpretation and may not be 
considered for any follow up studies, whereas potential false positives can be further tested for their significance 
by orthogonal methods.

Conclusion
While this is a pilot study with only a small number of LC cases, we have found with multi-omic studies of well 
characterized ME/CFS patients that significant and meaningful results are forthcoming from such small cohorts 
when compared with age/sex matched controls, and the observed molecular changes are consistent across dif-
ferent molecular classes to detect common and expected  pathophysiology26,29,32. Subgroups have been suggested 
for ME/CFS patients in multiple  publications59–62. Indeed, we have examined individual patients by a precision 
medicine approach within a well characterized homogeneous small subgroup (age/sex, length of illness, rela-
tive functional activity levels) and have found individual patient differences in the molecular changes that still 

Table 4.  Cohort characteristics.

Clinical characteristics Long COVID cohort Long COVID control ME/CFS cohort ME/CFS control

Number 6 5 9 9

Median age 39 40 49 38

Sex M = 1, F = 5 M = 1, F = 4 M = 4, F = 5 M = 3, F = 6

Median illness duration 1 year N/A 16 years N/A

Initial trigger SARS-Cov-2 N/A Infection (6), other (3) N/A
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results in a very similar  pathophysiology6,21. We believe this reflects the individual’s health history and genetic 
background that makes them susceptible to mount an inappropriate but immune response with individual 
variations to an external stressor that becomes chronic and spreads to involve the brain and  CNS14, resulting in 
the ongoing neurological symptoms that characterise the condition. LC is known to be heterogeneous in that 
it contains those with ongoing organ damage from their SARS-CoV-2 infection as a well as a significant cohort 
of a classic post-viral fatigue syndrome like ME/CFS. Recently, four clinical phenotypes have been defined in 
a large LC cohort analysis, the major chronic fatigue-like condition (42%), a respiratory syndrome (~ 23%), a 
chronic pain syndrome (22%), and a neurosensorial syndrome (~ 11%)5.

This may help to explain conflicting results from the study of different cohorts of ME/CFS in the literature 
if there are different proportions with these phenotypes. It complicates understanding the holistic pattern of 
changes in the chronic immune system in LC (and in ME/CFS if there are indeed clinical phenotypes).

How does the occurrence of clinical phenotypes interfere with obtaining an accurate understanding of how 
closely related LC and ME/CFS are and on developing therapeutic strategies to improve the health of patients? 
Multiple papers have documented changes in both peripheral immune cell numbers and their activities, and 
the up or down regulation of  cytokines21. While there may be individual differences dependent upon the viral 
trigger in LC or heterogeneous triggers in ME/CFS, this is likely also to reflect variations among the individual 
patients themselves according to their genetic background. The complexity is compounded as regulation can 
be in either direction according to the state and severity of the illness. Further coherence and integration to 
the myriad of changes is still required to provide more informed insight into what opportunities there are for 
therapeutic immune modulation in patients aimed at reversing the cascade of events that have led many to an 
ongoing severely debilitated state of health with LC, and for many years with ME/CFS. Potential therapeutic 
strategies to target immune mediated inflammatory diseases like LC and ME/CFS have progressed from broad 
specificity approaches to highly specific targeting of cytokines and their receptors and to small molecule drugs 
targeting the inflammatory pathways. Improving the quality of life for LC and ME/CFS patients generally might 
still be possible if the patient-to-patient variability in immune dysfunction is not too diverse.

Methods
Cohort recruitment
New Zealand LC patients who contracted the SARS-Cov-2 virus with the first wave of infection in March/April 
of 2020, and who had an ongoing fatigue illness with classical symptoms that were consistent with the clinical 
case definitions of ME/CFS63,64 were recruited with the help of a social media group of LC- affected and blood 
was collected between 8/3/21 and 12/4/21 together with age and sex matched healthy controls. The LC patients 
had contracted the virus ~ 12 months prior to sampling and been diagnosed with long COVID by an expert ME/
CFS clinician (Dr. Rosamund Vallings) or their own doctor. The ME/CFS cohort from the previously published 
 study29 were a well characterized group clinically who had been diagnosed also by Dr Vallings, and recruited 
pre-COVID pandemic for the study. Characteristics of the two groups are shown in Table 4.

Although the female to male ratios were different in the ME/CFS study compared with the LC cohort used 
in this study, we had found no PCA separation on the basis of gender or age in the ME/CFS  cohort29, and the 
one male patient in the LC study here was within the PC3 cluster shown in Fig. 1A.

The study conformed to the ethics approval 17/STH/188 for patient studies from the Southern Health and 
Disability Ethics Committee of New Zealand. Patient information sheet was provided and informed consent was 
obtained from all participants. Consultation with Ngai Tahu Research Committee of the University of Otago 
was carried out before the beginning of this research to ensure our research gives effect to Te Tiriti o Waitangi. 
Research involving human research participants was performed in accordance with the Declaration of Helsinki.

Blood collection and PMBC isolation
Blood (20 mL) was collected in BD Vacutainer™ blood collection tubes containing K2 EDTA 2. In a class 2 
biological safety cabinet, blood was diluted twofold in PBS and 4 mL was added to tubes containing 3 ml Ficoll-
Paque Plus. After centrifugation at 400×g in a swinging bucket centrifuge without braking, the plasma layer was 
removed, followed by the PBMC layer which was transferred to a tube, mixed gently with 3 volumes of PBS and 
centrifuged at 100×g for 10 min. The pellet was washed by gentle resuspension in 6 ml sterile PBS and centrifu-
gated at 100×g for 10 min. Finally, the pellet was resuspended in PBS or 6 ml FBS containing 10% DMSO when 
stored in cryovials in liquid nitrogen until required. Then extensive washing of the cells in PBS to remove FBS 
proteins was carried out before subsequent protein analysis.

Sample preparation
Proteins were extracted from PBMCs and digested with trypsin using the S-Trap-mini kit (ProtiFi, Fairport 
NY) according to the manufacturer’s instructions. In brief PBMCs were thawed in 50 μL of lysis buffer (100 mM 
triethylammonium bicarbonate (TEAB) pH 7.5, and 5% (w/v) sodium dodecyl sulphate (SDS) in water). Cells 
were lysed and homogenised by three consecutive vortex (10 s) and sonication (1 min in a sonication bath) 
steps. The homogenate was then supplemented with 100 U of benzonase. After incubation at 37 °C for 30 min, 
the cell lysates were centrifuged at 30,000×g for 30 min at 20 °C to remove insoluble material and cell debris. 
The supernatant containing the soluble protein fraction was recovered and an aliquot of each sample was used 
for the estimation of protein amounts using the BCA Protein Assay Kit (Thermo Scientific). A volume contain-
ing 100 µg of protein was taken from each sample, and subjected to reduction and alkylation of cysteines using 
5 mM tris(2-carboxyethyl) phosphine (TCEP) and 10 mM iodoacetamide (IAM) before loading the samples on 
individual S-Trap mini units following the recommended protocol.
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Protein identification and quantification by SWATH-MS
Data-dependent acquisition (DDA) mass spectrometry of a pooled sample containing an equal amount of every 
sample was used to generate a comprehensive spectral library containing the peptide spectra of all identified pro-
teins from all of the samples. To achieve greater protein identification, the pooled sample was subjected to peptide 
pre-fractionation using a high pH reversed-phase peptide fractionation kit according to the manufacturer’s 
instructions (Thermo Scientific). Each of the 11 fractions was then analysed in two technical replicates using 
DDA mass spectrometry on a 5600 + Triple Time-Of-Flight (TOF) mass spectrometer coupled to an Eksigent 
“ekspert nanoLC 415” uHPLC system (AB Sciex), as previously  described29. For peptide/protein identification, 
the raw data files of all fractions and technical replicates were searched against the human reference sequence 
database (downloaded from https:// www. ncbi. nlm. nih. gov/ on 29/03/2019), which contains 87,570 sequence 
entries, using the Protein Piolet software (version 4.5). Trypsin, carboxymethylcysteine and biological modifica-
tions were selected for a thorough search setup.

Each sample (from five healthy controls and six long COVID patients) was analysed in four technical repli-
cates by data-independent acquisition (DIA) mass spectrometry using the SWATH-MS workflow according to 
the details described  previously29.

Data analysis and statistics
The spectral library was built using the SWATH application (version 2.0) embedded into PeakView software 
(version 2.2, AB Sciex), applying the criteria outlined  in29. DIA spectral data were aligned to the library spectra 
at a false discovery threshold for peak picking of q = 0.01 in at least one sample. The peak area under the curve 
(AUC) was then exported to MarkerView software (version 1.2, AB Sciex) for further statistical analysis. The 
median value of the AUC of the four technical replicates was used to calculate the mean between the biologi-
cal replicates of LC or HC samples for each peptide and protein. The mean peptide/protein values were then 
compared between disease and control groups using a 2-tailed Student’s t-test. The criteria for being considered 
significantly differentially regulated were ≥ 1.5-fold (Log2 fold change ≥ 0.58 or ≤  − 0.58) with a p-value of ≤ 0.05 
(− log10(p-value) ≤ 1.3).

Regulated proteins were analysed by functional association network analysis using the STRING database 
tool version 12 (https:// string- db. org/). MCL cluster analysis with a 1.5 inflation parameter returned clusters of 
functionally proteins and enrichment analysis of Gene Ontology (GO) terms enabled identification of any over-
represented biological processes or pathways within the data. The comparison of disease and control samples 
was performed to find further potentially regulated proteins that are functionally associated.

Re-analysis of the ME/CFS date from Sweetman et al. 2020
A comparison of the LC data with a previously published ME/CFS data set generated using the same methods 
was attempted to ascertain if the two diseases shared any similarity. The list of significantly differentially regu-
lated proteins from Sweetman et al.29 Supplementary Table 4 were filtered to retain only those with a fold change 
minimum of 1.5. These proteins were subjected to a STRING functional network analysis as described for the LC 
data set. Identification of any common differentially regulated proteins was achieved by comparing GI number, 
gene symbol and protein names from both datasets.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 
partner repository with the data set identifier PXD045508.
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