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Social dilemma in foraging 
behavior and evolution 
of cooperation by learning
Nahyeon Lee 1, Sunhee Chae 1, Seung Ki Baek 2* & Hyeong‑Chai Jeong 1*

We consider foraging behaviors in a two‑dimensional continuum space and show that a cooperative 
chasing strategy can emerge in a social dilemma. Predators can use two different chasing strategies: 
A direct chasing strategy (DCS) and a group chasing strategy (GCS). The DCS is a selfish strategy with 
which a chaser moves straight toward the nearest prey, and the GCS is a cooperative strategy in the 
sense that the chaser chooses the chasing direction for the group at a cost of its own speed. A prey 
flees away from the nearest hazard, either a chaser or the boundary, within its recognition range. We 
check the capturing activities of each strategy and find a social dilemma between the two strategies 
because the GCS is more efficient for the group whereas the DCS is better individually. Using a series of 
numerical simulations, we further show that the cooperative strategy can proliferate when a learning 
process of nearby successful strategies is introduced.

Behavioral ecologists have investigated cooperative hunting in species like lions, dolphins, and wolves, as well as 
implemented  robots1–8. Theoretically, extensive research has focused on learning and co-evolution of strategies 
of predators and  prey9–13. Recently, statistical physicists are looking at the problem of group chase and escape 
with great interest so as to study systems of interacting active  agents14–25. One of the findings in this direction is 
that the collective effect of group chase and escape is sometimes nontrivial, e.g., in that lazy chasers who more 
or less keep their own positions with performing random walks can improve the overall efficiency by helping 
other chasers to form the pincer movement  spontaneously22.

How to catch a moving target efficiently in group is also an important topic in differential game  theory26–28. 
Game theory has long considered a group hunt to be a prominent example of a social  dilemma29–31. Real-world 
observations provide examples of these dilemmas, where individual interests during hunting often conflict with 
the collective aims of a group. For example, a single predator may prefer to chase an individual target separate 
from the group’s objective or might opt for a free-riding  approach32,33.

Whereas group hunting is common in nature, agent-based simulations have shown that the transition from 
solitary to cooperative behavior requires a complex process and is often difficult to  achieve34,35. Moreover, we 
currently lack empirical evidence of populations where both solitary and group hunting strategies coexist for the 
same target. Nonetheless, the absence of such evidence does not diminish the importance of studying models 
that encompass both solitary and group hunting behaviors. It is conceivable that in historical natural settings, 
populations practicing both strategies might have, due to evolutionary dynamics, converged or fixed onto one 
predominant approach-either solitary or group-based. Such evolutionary trajectories could elucidate the present-
day rarity of populations exhibiting both strategies. Thus, understanding the emergence of group hunting strate-
gies remains intriguing, especially when solitary hunting is individually favored, even though group hunting 
might be more effective collectively.

In the context of group hunting, a social dilemma arises when an individual’s cooperative behavior can 
benefit all the others in the group, whereas it may incur a cost to him or her. A similar dilemma is also found in 
soccer if players are rewarded only for scoring goals. This incentivizes players to prioritize individual success by 
shooting for the goal rather than passing to a better-positioned teammate, hindering the emergence of coopera-
tive behaviors aimed at team success. Some might argue that a passing strategy could emerge through group 
 selection36, whereby a team that uses a more cooperative and altruistic approach to scoring end up with scoring 
more goals on average and thus have a higher payoff. However, as long as group selection operates on a longer 
time scale than that of individual selection, it is hard to suppress the invasion of free-riders who receive passes 
but never make passes. Therefore, without a discriminator strategy such as passing only to those who have also 
passed to others, it will be challenging to maintain an altruistic passing strategy.
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Note that the term ‘cooperative behavior’ in predator-prey models has been used with two related yet distinct 
meanings. In some literature, it refers to ‘coordinated behavior’ where predators or prey work together towards 
a common goal. However, this is not the exactly same as the concept of cooperation in game theory. In game 
theory, particularly in the context of social dilemmas, cooperation entails an agent paying a cost for the benefit 
of other agents. Although many papers have shown cooperative behaviors in the coordinated  sense37–40, it has 
been difficult to demonstrate the game-theoretic cooperation in predator-prey models.

In this work, we consider a model in which the reward is exclusively given to chasers who successfully capture 
targets. We then propose and compare two chasing strategies for catching moving targets. One is a direct chasing 
strategy (DCS), moving straight to the nearest target. The other is a group chasing strategy (GCS), which takes 
into account other nearby chasers cooperatively at a cost of speed: GCS chasers are slower than DCS chasers 
because they have to recognize the position of their colleagues and calculate the direction for the group, leading 
to a cognitive load. Therefore, the hunting ability of GCS chasers decreases resulting in a cost to GCS chasers. By 
means of numerical simulation, we first find that the DCS is individually better, whereas the GCS shows better 
performance collectively, hence a social dilemma. Nonetheless, we will demonstrate that GCS can be adopted 
by the entire population of chasers, if each chaser learns the strategy of a nearby chaser that just caught a target. 
In other words, cooperation can emerge even without considering explicit  mechanisms41–46 such as direct and 
indirect reciprocity or the long-term advantages of being part of an altruistic group.

The organization of this paper is as follows: The next section explains our model and numerical procedure. 
We present numerical results in “Results” Section: First, we compare the performance of the DCS with that of 
the GCS by simulating them one by one. Second, we check what happens if these two strategies coexist. Third, 
we include the learning process to see which strategy succeeds in fixation. Then, we discuss its implication in 
terms of evolution of cooperation. Finally, this work is summarized in “Summary and Discussion” Section.

Model
We investigate an agent-based foraging behaviors in a two-dimensional disk of radius R. The population is com-
posed of NT targets and NC chasers, where chasers can adopt either a DCS or GCS strategy.

We consider three different scenarios: Model A, Model B, and Model C, to evaluate and compare the effective-
ness of both DCS and GCS chasing strategies, and to study their evolution.

In Model A, we assume that all chasers employ a homogeneous strategy, resulting in two distinct populations: 
one consisting of targets and DCS chasers and the other consisting of targets and GCS chasers. By contrast, in 
Model B, we assume the coexistence of both DCS and GCS chasers in a population, with half of the chasers 
using each strategy, but without any learning process. Last, Model C is similar to Model B but includes a learning 
process, where each chaser can adopt the strategy of a nearby chaser that successfully caught a target.

Targets
Let us begin by describing the movement of a target. Each specific target is indexed by Ti with i ∈ [1,NT] , and 
similarly, each specific chaser is indexed by Ci with i ∈ [1,NC] . Every target moves at a speed of v

T
 , and it regards 

chasers and the boundary of the disk as hazardous when they are within a certain distance of r
haz

 . If a target per-
ceives no hazard nearby, it moves in random directions. However, if it finds at least one chaser or the boundary 
within r

haz
 , it moves right away from it by taking the following direction:

where rHi is the position of the nearest hazard of Ti . Targets move straight in the specified direction for a duration 
of δt representing inertial motion.

Chasers
Now we consider a chaser’s movement, specifically in hunting mode (for an explanation of hunting mode, see 
below). If a chaser uses the DCS, it moves straight to the nearest target. More precisely, if Tj is the nearest target 
from a DCS chaser Ci , the chaser moves in the direction of

at a speed of v
D
 . Fig. 1 demonstrates the movement of DCS chasers when the targets are stationary. This illustra-

tion is provided to clarify their motion. In the actual simulations, the targets are moving away from the chasers 
as previously described. Additionally, after a target is captured, a new target is randomly added to the simulation.

The GCS is a more sophisticated rule, taking into account other nearby chasers as well as the position of the 
nearest target as illustrated in Fig. 2. A GCS chaser aims to place the nearest target at the center of all chasers 
(including itself) that are not farther than itself to the target. It may move away from the target if necessary to 
achieve this goal.

Let Tk be the nearest target from a GCS chaser Ci . Their distance is denoted as dCi ≡

∣

∣

∣
rTk

− rCi

∣

∣

∣
 . We also 

define Ŵi as the group of chasers, excluding Ci , that are within a distance of dCi from Tk . The GCS chaser Ci moves 
in the following direction:

(1)v̂Ti =
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Figure 1.  Two stationary targets (blue stars) and four DCS chasers (red circles). At time t0 , chaser C1 moves 
towards target T1 , whereas the other chasers move towards target T2 . Once target T2 is caught (at time t1 ), all the 
chasers then pursue target T1 (at times t2 and t3 ). Here, we use stationary targets to explain the motion of chasers 
clearly but in simulations, targets move away and are replaced at a random position after capture.

Figure 2.  Two stationary targets (blue stars), two DCS chasers (red circles), and two GCS chasers (green 
triangles). Each GCS chaser chooses the nearest target and takes into account other chasers that are closer to the 
target (in the green dotted circles). At time t0 , C3 chooses its movement direction so that the center of C2 and C3 
moves toward T2 . Likewise, C4 takes into account the centers of all four chasers in determining its movement 
direction, resulting in it moving away from T2 . Once target T2 is caught (at time t1 ), T1 becomes the new target of 
GCS chasers C3 and C4 . At times t2 and t3 , GCS chasers consider the positions of other chasers within the green 
dotted circles around T1 in order to determine their directions of movement.
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where XCi
 is defined as

where ni ≡ |Ŵi| . If Ci is the nearest chaser from Tk , Eq. (3) reduces to Eq. (2) because Ŵi = ∅ and ni = 0 . A GCS 
chaser moves at a speed of v

G
 , and we assume that v

G
< v

D
 to penalize chasers for the cognitive load required by 

the GCS. We also assume that a target moves faster than a chaser, i.e., v
C
< v

T
 where v

C
 is v

D
 or v

G
 depending on 

the chaser’s strategy. This is because a slower prey would be easily captured without cooperative hunting in the 
first  place23. The inequalities in the speeds are summarized as follows:

Moreover, a chaser can change its strategy between the DCS and GCS in the following way: When a chaser suc-
ceeds in catching a target, other chasers within the distance of r

learn
 adopt the focal chaser’s strategy.

Hunting and rest
A chaser has two modes: One is the hunting mode and the other is the rest mode. In the hunting mode, the 
chaser’s moving direction is determined by its strategy as defined above. In the rest mode, on the other hand, 
the chaser moves in random directions. The maximum amount of time in the hunting mode is denoted as Thunt : 
If a chaser has been hunting continually for a period of thunt , the probability to switching to the rest mode is set 
as follows:

Likewise, if a chaser has rested for trest , it starts the hunting mode again with probability

where Trest is the maximum amount of time in the rest mode.

Simulation  procedure47

Our numerical simulation goes as follows: 

1. Randomly distribute NC chasers and NT targets in a two-dimensional disk of radius R.
2. Calculate the new attempted positions for all chasers.

• Determine the chaser’s mode using Eqs. (6) and (7).
• In the rest mode, the attempted position is calculated in a random direction.
• In the hunting mode, the attempted position depends on the nearest target’s position. If this target is 

within a distance of v
C
δt from the chaser, the attempted position is given by the target’s position. Oth-

erwise, the chaser’s attempted position is determined by moving v
C
δt in the direction specified by either 

Eqs. (2) or (3).

3. Calculate the new attempted position for all targets.
• When the nearest chaser or boundary is within distance of r

haz
 , the target’s attempted position is calculated 

by moving v
T
δt in the direction specified by Eq. (1). Otherwise, the attempted position is calculated in a 

random direction.
4. Update the chasers’ position.

• Choose a chaser in random order, and update its position to the attempted position unless another chaser 
exists within distance r

min
 from it.

5. Update the targets’ position.

• Randomly select a target.
• If the target is located at the updated position of the chasers, it is considered captured and removed. 

A new target is then added at a random position separated by at least r
min

 from any other agent in the 
habitat.

• Otherwise, update its position to the attempted position unless another target exists within distance r
min

 
from it.

6. (Model C only) Update the chasers’ strategies.
• Update the strategies of chasers within distance r

learn
 from the captured target to the strategy of the chaser 

who caught the target.
7. Increase time t by δt.

(3)v̂Ci =
XCi

− rCi
∣

∣

∣
XCi

− rCi

∣

∣

∣

,

(4)XCi
≡ rTk

+
∑

j∈Ŵi

(

rTk
− rCj

)

= (ni + 1) rTk
−

∑

j∈Ŵi

rCj
,

(5)v
G
< v

D
< v

T
.

(6)p
rest

= min

(

thunt

Thunt

, 1

)

.

(7)p
hunt

= min

(

trest

Trest

, 1

)
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8. Repeat the above steps from 2 to 7, until t exceeds Tmax = 106.

The parameters in our simulation are listed in Table 1. The reasoning behind our procedures and parameters is 
as follows. For process 1, we select a disk-shaped habitat instead of a square habitat because a high proportion 
of targets are observed to become trapped in corners in the latter. We believe that the shape of the habitat does 
not have a significant impact on the results as long as it does not contain singular points such as corners. In 
process 2, the inclusion of a rest mode is implemented to reflect the reality that a chaser cannot hunt the target 
indefinitely. Furthermore, the absence of a rest mode resulted in unnatural movement patterns for chasers, such 
as constantly circling the edge of the habitat. Here, the distance vδt is the basic step distance an agent travels in 
the simulation. It is given by v

D
δt for the DCS and v

G
δt for the GCS. The time interval δt should be interpreted 

as the minimum time of linear motion due to inertia, rather than the finite time required for numerical integra-
tion. In processes 5, we introduce r

min
 to prevent collisions between members of the same species. The minimum 

separation distance, rmin = 0.15 exceeds the basic step distance, v δt , which is less than or equal to 0.1.

Results
In this section, we first present numerical evidence that the GCS is better for the group, but the DCS is better 
for individuals using Models A and B, indicating a social dilemma between the two strategies. In Model C, we 
demonstrate that the whole chaser population can evolve towards the GCS despite this dilemma through a simple 
dynamics of learning from successful chasers in the neighborhood. The figures in this section are based on aver-
age results over 1000 independent simulations with different random initial distributions of targets and chasers. 
The video of a single simulation for each model can be found on the platform of  YouTube48.

Model A: DCS and GCS population comparison
Model A assumes that all chasers in a population employ the same strategy, leading to the formation of two 
distinct populations labeled as G and D. Population G has NC = 100 GCS chasers, while population D has 
NC = 100 DCS chasers. Initially, both populations have NT = 50 targets, and this number remains constant 
because a new target is introduced to the population whenever a chaser captures a target. For population D, 
we consider three different speeds of chasers: v

D
= 0.072 , v

D
= 0.084 , and 0.098. The speed of targets is set to 

v
T
= 0.1 . For population G, we study only one case with a speed of v

G
= 0.07 . This means that the GCS chasers 

in population G are always slower than the DCS chasers in any population D. Figure 3 shows h(t) , hunting per-
formance at time t for both population G and population D which is defined by the number of targets captured 
during (t −�t/2, t +�t/2) per chaser with �t = 2× 104 . The data is obtained by averaging 5000 independent 
Monte Carlo simulations with different initial configurations. This result demonstrates that the GCS performs 
better than the DCS when applied globally, as mutual cooperation leads to better payoffs than mutual defection.

Model B: coexistence of DCS and GCS without learning
We now study the relative performance of the DCS and GCS chasers when both strategies coexist in a population. 
Initially, we randomly distribute NC/2 = 50 GCS chasers, 50 DCS chasers, and NT = 50 targets in the habitat. 
Although the total number of chasers in the population using each strategy remains constant, the number of 
chasers pursuing a specific target may change over time. Therefore, the relative performance of the two strategies 
depends on the specific composition of chasers around the target at any given time. To analyze this dependency, 
we introduce the concept of ‘set’, which means a group of chasers that are pursuing the same target. Sets are 
divided into two categories, i.e., homogeneous ones, which consist chasers of only one strategy, and heterogene-
ous ones, which contain chasers of both strategies.

We compare the hunting performance of chasers in both homogeneous and heterogeneous sets separately. 
As before, we use the hunting performance h(t) , which represents the average number of captured targets per 

Table 1.  Parameters employed in the simulations.

Symbol Definition Value

R Disk radius 500

NC Number of chasers 100

NT Number of targets 50

v
G

A GCS chaser’s speed 0.07

v
T

A target’s speed 0.1

v
D

A DCS chaser’s speed [0.072, 0.098]

δt Time interval 1

r
min

Minimal distance between chasers or targets 0.15

r
haz

Maximal distance for recognizing hazard 50

r
learn

Maximal distance for learning 200

Thunt Maximum amount of time for the hunting mode 103

Trest Maximum amount of time for the rest mode 103
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chaser within a time interval of (t −�t/2, t +�t/2) . However, differently from Model A, we must now track 
the numbers of GCS and DCS chasers in each set, in addition to the number of captured targets because the 
numbers of GCS and DCS chasers are also changing over time. Figure 4 displays the hunting performance of 
GCS and DCS chasers. As expected from the results of Model A, in homogeneous sets, the GCS chasers (green 
triangles) demonstrate superior hunting performance compared to DCS chasers (red triangles). However, in 
heterogeneous sets, the performance of DCS chasers (red circles) surpasses that of GCS chasers (green circles). 
If we use h(t) as a metric of the payoff, it can be concluded that GCS chasers are better off than DCS chasers in 
homogeneous sets, but the DCS chasers have greater payoffs than the GCS in heterogeneous sets.

We observe that the hunting performance remains constant after an initial period of time t < tini ≈ 2× 105 . 
We regard it as a steady state, characterized by the hunting performance remaining stable within statisti-
cal fluctuations. To ensure accuracy, we measure the average hunting performance between time intervals 
5× 105 ≤ t ≤ 9× 105 to determine the hunting performance in the steady state, hss.

In Fig. 5, we present h ss , hunting performance in steady state as a function of v
D
 . The figure shows that 

GCS chasers outperform DCS chasers in homogeneous sets, while DCS chasers are better in catching targets 
in heterogeneous sets when v

D
� 0.08 . Yet, this does not necessarily imply a social dilemma in the strict sense 

of game theory. If a chaser in a homogeneous set of GCS chasers changes its strategy to DCS, the set becomes 
heterogeneous. Therefore, to understand the strategy evolution, we need to compare the payoffs of the strategies 

Figure 3.  The hunting performance comparison of two chasing strategies, represented by h(t) , during a time 
interval of (t −�t/2, t +�t/2) , where �t = 2× 104 . The green triangles represent Population G, which 
consists of NC = 100 GCS chasers with a speed of v

G
= 0.07 , while the red circles, squares, and diamonds 

represent Population D, which consists of NC = 100 DCS chasers with speeds of v
D
= 0.072 , v

D
= 0.084 , and 

0.098 respectively. Despite the fact that chasers in Population G are slower, they capture more targets. In all 
cases, the target speed is set at v

T
= 0.1.

Figure 4.  Hunting performance h(t) of the GCS (green symbols) and that of the DCS (red symbols) in the 
heterogeneous sets (circles) and the homogeneous sets (triangles) for v

D
= 0.082 with v

G
= 0.070 and v

T
= 0.1.
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in sets with different numbers of GCS and DCS chasers. For this reason, we classify sets based on the numbers 
of GCS and DCS chasers present in each set and denote the set as (n

G
, n

D
)-set when it has n

G
 GCS and n

D
 DCS 

chasers. We then count the number of (n
G
, n

D
)-sets in the steady state every δt , and sum up the total observed 

(n
G
, n

D
)-sets to obtain N(nG , nD ) . We also count the total numbers of targets captured by GCS ( HG(nG

, n
D
) ) and 

DCS chasers ( HD(nG
, n

D
) ) in (n

G
, n

D
)-sets during this steady state. Then we define the fitness fG (nG , nD ) and 

fD (nG , nD ) of GCS and DCS chasers in (n
G
, n

D
)-sets as their relative hunting performances,

where NG(nG , nD ) = n
G
N(nG , nD ) and ND(nG , nD ) = n

D
N(nG , nD ) are the total numbers of GCS and DCS chasers 

counted in (n
G
, n

D
)-sets, respectively, H total is the total number of targets caught, and N total

C  is the total number 
of chasers measured in the steady state. Note that the values of fG (nG , nD ) and fD (nG , nD ) will be equal to one if 
all chasers have the same hunting ability regardless of their strategy and set, because 
H total =

∑

n
G
,n
D

[

HG(nG
, n

D
)+HD(nG

, n
D
)
]

 and N total
C =

∑

n
G
,n
D

[

NG(nG , nD )+ ND(nG , nD )
]

.
Figure 6 displays the average fitness of GCS and DCS chasers for v

D
= 0.082 (with v

G
= 0.07 ) in (n

G
, n

D
)

-sets. In principle, the number of chasers in a set can be up to 50 for each type because all GCS or DCS chasers 
in the population can chase a single target. However, for clarity, the figure only shows the fitness for sets with 
small numbers of chasers ( 0 ≤ n

G
≤ 9 and 0 ≤ n

D
≤ 9 ), because sets with large numbers of chasers are less 

common. In each cell, the average fitness of GCS and DCS chasers are represented by numbers at the lower 
right and the upper left halves, respectively. Note that the x-axis shows n

G
 in the descending order while the 

y-axis shows n
D
 in ascending order, so that the cells along the diagonal axis have equal numbers of chasers. If 

a GCS chaser in a (n
G
, n

D
)-set switches its strategy to DCS, the set becomes a (n

G
− 1, n

D
+ 1) set. Therefore, 

we need to compare fG (nG , nD ) and f
D
(n

G
−1, n

D
+1) so as to study the strategy evolution. Red arrows are 

shown from the lower right halves of the (n
G
, n

D
) cells to the upper left halves of the (n

G
− 1, n

D
+ 1) cells when 

fG (nG , nD ) < f
D
(n

G
−1, n

D
+1) . These arrows indicate that a GCS chaser can improve its fitness by switching its 

strategy to DCS. Similarly, blue arrows indicate instances where a DCS chaser can improve its fitness by switch-
ing its strategy because fD (nG , nD ) < f

G
(n

G
+1, n

D
−1).

In Model B, chasers are not allowed to change their strategies. However, if they could, they would choose the 
direction indicated by the arrows to increase their payoffs when they stay in the same cell. The yellow shaded cells 
in Figure 6 correspond to these arrow directions and represent the Nash equilibrium in the sense that a chaser in 
a yellow cell cannot increase its payoff by switching its strategy when a fixed number of chasers, nc = n

G
+ n

D
 , 

are chasing a target. For instance, consider chasers in a (n
G
, n

D
) = (1, 2)-set. If the GCS chaser changes its strat-

egy to DCS, the set becomes a (0,3)-set, and the fitness of the chaser reduces to 1.2 from 1.4. If a DCS chaser in 
the (n

G
, n

D
) = (1, 2)-set switches to GCS, the set becomes a (2,1)-set, and its fitness reduces to 1.2 from 2.0. It 

is worth noting that the yellow cells have the property that their n
D
 value is slightly greater than their n

G
 value. 

This indicates that there would be more DCS chasers than GCS chasers in every set if chasers could change their 
own strategies to maximize the payoffs.

Up to now, our comparison of DCS and GCS strategies has been based on average target captures. However, 
if more individuals in one strategy consistently fail to catch any targets, its individual superiority, despite its 
higher average, becomes debatable. To investigate this, we analyzed the hunting variation between DCS and GCS. 

(8)

fG (nG , nD ) =
HG(nG

, n
D
)/H total

NG(nG , nD )/N
total
C

,

fD (nG , nD ) =
HD(nG

, n
D
)/H total

ND(nG , nD )/N
total
C

Figure 5.  Hunting performance in steady state, hss is plotted against the speed of DCS chasers, v
D
 for 

v
D
= 0.072, 0.074, · · · , 0.098 . In heterogeneous sets (circles), DCS (red symbols) captures more targets for 

v
D
� 0.08 while the GCS (green symbols) outperforms the DCS in homogeneous sets (triangles) for all v

D
 

considered in here. In all cases, v
G
= 0.07 and v

T
= 0.1.
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We find no significant disparities in the variation between the two strategies. Additionally, we observe a strong 
correlation between a decline in average performance and an increased fraction of unsuccessful chasers. This 
suggests that higher performance can also serve as a survival marker amid such variations.

Model C: coexistence of DCS and GCS with learning
In this model with learning process, chasers update their own strategies based on successful captures. Whenever 
a target is captured by a chaser, the strategies of other chasers within a certain distance r

learn
 from the captured 

target are updated to the strategy of the successful chaser. As a result, the proportion of chasers using DCS and 
GCS strategies change over time and the population will eventually consist of only one type of chasers, which 
is referred to as “fixation”.

The GCS (DCS) fixation probability is defined as the number of the GCS (DCS) fixations divided by the total 
number of simulations. Figure 7 presents the comparison of fixation probabilities of the GCS (green triangles) 
and the DCS (red circles), at different values of the DCS chasers’ speed, v

D
 . The results show that the GCS has a 

higher fixation probability compared to the DCS when v
D
≤ 0.084 . It may appear contradictory that our results 

for Model C indicate a higher probability of fixation for the GCS compared to the DCS, while in Model B, the 
DCS chasers have higher average payoffs than the GCS in heterogeneous sets when v

D
≥ 0.08 , as shown in Fig. 5. 

Figure 6.  Average fitness of GCS, fG (nG , nD ) and DCS, fD (nG , nD ) for all combinations of n
G
 and n

D
 for 

0 ≤ n
G
≤ 9 and 0 ≤ n

D
≤ 9 . The x-axis displays n

G
 in descending order and the y-axis shows n

D
 in ascending 

order, with the diagonal axis indicating equal numbers of chasers (n
G
+ n

D
 ). fG (nG , nD ) and fD (nG , nD ) values 

are represented by numbers in the lower right and upper left halves of the (n
G
, n

D
) cells respectively. Red 

(blue) arrows indicate a GCS (DCS) chaser can improve its fitness by switching strategies. The simulation uses 
v
D
= 0.082 , v

G
= 0.07 and v

T
= 0.1.

Figure 7.  Fixation probability, Pfix , versus the speed of DCS chasers, v
D
 . Green triangles represent fixation 

to GCS, while red circles represent fixation to DCS. The speeds of GCS chasers and targets are v
G
= 0.07 and 

v
T
= 0.1 , respectively.
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Additionally, according to Fig. 6, more DCS chasers are expected to be present than GCS chasers in the “Nash 
Equilibrium” state, regardless of the number of chasers pursuing a target for v

D
= 0.082.

Summary and discussion
In summary, we have investigated the problem of group chase and escape by introducing two chasing strategies: 
One is to go directly to the nearest target, and the other is to surround a target together with other nearby chas-
ers. We have discovered a social dilemma between these two strategies: That is, if we observe their performance 
separately, the latter clearly outperforms the former through cooperative hunting. However, if both types of chas-
ers are running after a target, it is the direct chaser that usually benefits from the other chaser’s cooperation. The 
dilemma is overcome when cultural transmission is facilitated by learning: The proposed learning rule induces 
competition among strategies, whereas traditional evolutionary dynamics based on biological reproduction 
would naturally lead to individual selection that favors defection.

We could ask ourselves to which our mechanism belongs among the five representative ones for evolution of 
 cooperation43. We have neither reciprocity or kin recognition in our dynamics, so the connection can be made to 
group selection. It is worth noting that the group structure in this study, dividing the whole population into sets, 
is not fixed but constantly changing, differently from the conventional setting for group  selection36. Nevertheless, 
the inter-set interaction plays a crucial role. If a chaser were to learn the successful strategies only within its own 
set, the population would fix to DCS more often. However, our model allows chasers to learn from successful 
neighbors, even outside their set. We observe that allowing both intra-set and inter-set learning leads to a more 
prevalent fixation on GCS strategies. Notably, sets where GCS chasers are dominant tend to be more effective 
hunters compared to those dominated by DCS. Consequently, chasers learning from these neighboring sets often 
adopt the more successful GCS strategies, enhancing the wider adoption of GCS across sets. This process, effec-
tively a form of group selection at the set level, tips the balance in favor of GCS strategies across the population. 
As a result, despite the tendency of DCS strategies to spread within their sets, the inter-set learning facilitates 
a broader propagation of GCS strategies. A critical aspect of cooperation evolution in our model is the parallel 
operation of group selection (between sets) and individual selection (within sets). Agents adopt strategies from 
nearby successful agents, ensuring rapid trait spreading both within and between sets and hence the “group 
selection” between sets works on a similar time-scale as the “individual” one within a set.

The social dilemma we examine is milder compared to the classic prisoner’s dilemma. Mapping GCS to Doves 
and DCS to Hawks, our model shares similarities with the Hawk-Dove or Chicken game. However, an essential 
difference exists: the conventional Chicken game revolves around a two-player conflict, whereas our model 
encompasses multiple players. This distinction becomes vital when we aim to elucidate the evolution of coop-
eration within a social dilemma framework. In our model, we have devised an extended version of the Chicken 
game. In this setting, the Nash equilibrium leads to a combination of DCS and GCS strategies, but not in an exact 
half-and-half proportion. The key finding of our work is that, through learning, the population can ultimately 
adopt GCS more than DCS, even though DCS appears more frequently than GCS in the Nash equilibrium.

Admittedly, the implicit assumption that the GCS and the DCS can be learned equally fast through observa-
tion could well be an oversimplification because the intellectual capacity required by the GCS in its strict sense 
would be enormous. It is also worth mentioning that cooperation and defection are not always simple choices but 
often coordinated activities that have to be learned over a long time span, even if it is shorter than a time scale of 
generations. Our viewpoint in this work is that the GCS is a mathematical substitute for more practical heuris-
tics to surround a target without excessive cognitive loads, as has been proposed to explain wolf-pack hunting 
 behavior4. In addition, the agent-based model utilized in this study may not entirely capture the complexities of 
actual predator-prey interactions, especially the dynamics of the evolution of chasing strategies in reality. Our 
model is parameter-heavy and includes a complicated step for assigning payoffs to different strategies.

Nevertheless, our model addresses the challenges for demonstrating cooperative evolution through group 
selection when the strategy update procedures and model parameters are not fine-tuned. By introducing learning 
from successful chasers in the surrounding environment, regardless of to which group the successful chasers 
belong, we demonstrate that cooperation can evolve without the need for explicit mechanisms such as direct or 
indirect reciprocity. This finding may cast new light on the ongoing efforts to construct a model incorporating 
group or multi-level selection.

Data availability
The simulation code can be accessed on GitHub at https:// github. com/ Li122 1na/ Preda torPr eyMod el. Addition-
ally, a video of a single simulation for each model is available on YouTube at https:// www. youtu be. com/ watch?v= 
lTGBA lLnQI Y& ab_ chann el= Preda torPr ey. Other datasets used and analyzed during this study are available from 
the corresponding author upon reasonable request.
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