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Information encoded in volumes 
and areas of dendritic 
spines is nearly maximal 
across mammalian brains
Jan Karbowski 1* & Paulina Urban 2,3,4

Many experiments suggest that long-term information associated with neuronal memory resides 
collectively in dendritic spines. However, spines can have a limited size due to metabolic and 
neuroanatomical constraints, which should effectively limit the amount of encoded information in 
excitatory synapses. This study investigates how much information can be stored in the population of 
sizes of dendritic spines, and whether it is optimal in any sense. It is shown here, using empirical data 
for several mammalian brains across different regions and physiological conditions, that dendritic 
spines nearly maximize entropy contained in their volumes and surface areas for a given mean size in 
cortical and hippocampal regions. Although both short- and heavy-tailed fitting distributions approach 
90− 100% of maximal entropy in the majority of cases, the best maximization is obtained primarily 
for short-tailed gamma distribution. We find that most empirical ratios of standard deviation to mean 
for spine volumes and areas are in the range 1.0± 0.3 , which is close to the theoretical optimal ratios 
coming from entropy maximization for gamma and lognormal distributions. On average, the highest 
entropy is contained in spine length ( 4− 5 bits per spine), and the lowest in spine volume and area 
( 2− 3 bits), although the latter two are closer to optimality. In contrast, we find that entropy density 
(entropy per spine size) is always suboptimal. Our results suggest that spine sizes are almost as 
random as possible given the constraint on their size, and moreover the general principle of entropy 
maximization is applicable and potentially useful to information and memory storing in the population 
of cortical and hippocampal excitatory synapses, and to predicting their morphological properties.

Many experimental data suggest that dendritic spines (parts of excitatory synapses) in neurons are the storing 
sites of long-term memory (or long-term information), mainly in their molecular components, i.e. receptors and 
 proteins1–11. Spines are dynamic  objects10,12–14 that vary vastly in sizes and  shapes15–17. Small spines can disappear 
in a matter of few days, while large spines can persist for months or even  years2,4,18. Despite this variability, their 
size highly correlates with a magnitude of synaptic current (synaptic weight or strength), which suggests that 
there is a close relationship between spine structure and physiological  function2. Moreover, the variability in 
spine’s size is also strictly associated with a variability in the number of AMPA receptors on spine  membrane19, 
as well as with changeability in the size of postsynaptic density (PSD)20, which is composed of the thousands of 
proteins implicated in molecular learning and memory  storage8,21.

Given high turnover of individual spines it is unclear how precisely the long-term information is stored in 
the  brain4,11,22. Some theoretical models suggest that functional memory is stored on a population level in the 
distribution of large number of synaptic  contacts7,23–26 or in the distribution of molecular switches contained in 
those global  synapses27–29, not locally in single synapses. In this picture, global long-term information of a given 
neuronal circuit is associated with its pattern of synaptic connections (associated with a pattern of spine sizes 
and their internal molecular characteristics), and the appearance or disappearance of a single connection does 
not matter for the global information stability and its persistence. In this study, we also adopt this viewpoint that 
spine population is more important functionally for memory storage than individual spines. Indeed, in support 
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of this view, we show below that the distribution of spine sizes during the whole development in human hip-
pocampus is essentially invariant, despite obvious temporal variability on a single spine level (see also Ref.30).

The tight correlations between spine geometry and spine molecular composition, responsible for encoding 
and maintaining of memory, suggest that one can use the spine size as some measure of its information  content31. 
On the other hand, despite large spine size variability, its population mean diameter is relatively stable in a narrow 
range of a fraction of  micrometer30,32–34. This indicates that the mean spine size may be restricted due to limita-
tions of cortical space associated with dense packing of different neuronal and non-neuronal  components35,36. 
More importantly, the mean spine size should be also constrained by metabolic considerations, since synapses 
use large fractions of brain  energy29,37,38. This is because postsynaptic current is proportional to average spine 
 size2, which means that bigger spines with stronger synaptic strength are generally more energy consuming than 
smaller spines with weaker  strength37–40. These arguments suggest that molecular information encoded in the 
geometry of dendritic spines should be limited by neuroanatomical and metabolic constraints, and both can be 
simply united by a single parameter, which is the population mean of spine size.

The main goal of this study is to investigate the long-term information capacity of dendritic spines related 
to memory, which we quantify by entropy associated with the distribution of their sizes. Consequently, the 
term information is meant below in this particular sense, and we often use entropy and “information capacity” 
(or information content) interchangeably. The specific questions we ask in this study are the following: Is such 
information optimized somehow, given the constraints on mean spine sizes? If so, how large is the deviation from 
the optimality for the parameters characterizing spine distributions? To answer these questions, we collected 
data from published literature on spine (or PSD) sizes (volumes, areas, length, and head width) for different 
mammals and different cortical and subcortical regions (see the "Methods"). These data allowed us to compute 
empirical Shannon entropy (related to information content) associated with spine sizes for species, brain region 
and condition, and to compare it with a theoretical upper bound on the entropy for a given mean spine size. 
Within this theory we can also compute the optimal ratios of spine size variability and compare it with the data.

Results
Fitting of dendritic spine sizes to lognormal, loglogistic, and gamma distributions, and empir-
ical Shannon entropy
Previous empirical studies on dendritic spines have shown that their sizes (or synaptic weights) can be fitted well 
to either lognormal or gamma  distributions13,33,34,41–49. However, these two types of the probability distributions 
differ significantly in terms of their asymptotic behavior: for very large spine sizes the former displays a heavy 
tail, while the latter decays exponentially with a short tail. Our first goal is to determine which distribution, with 
heavy or short tail, can better describe experimental data. In our analysis, we also added an additional probability 
density, not tried by previous studies, the loglogistic distribution that has a heavy tail (but see also Ref.17, for a 
special case of loglogistic distribution, which unfortunately has infinite mean and variance). This distribution 
has an interesting property, because for small sizes it behaves similar to the gamma distribution, whereas for 
large sizes it resembles the lognormal distribution, although it has a longer tail. For this reason, the loglogistic 
function is an alternative to the two extreme choices used in the  past13,33,34,42,45–49.

In Figs. 1 and 2 we present histograms for the empirical spine volume and length from human cingulate 
cortex of two individuals (40 and 85 years old), taken  from34. These histograms can be well fitted to the three 
mentioned theoretical distributions. The goodness of these fits was conducted using the Kolmogorov-Smirnov 
test with cumulative distribution function CDF, which confirms that all three distributions can be used (Sup-
plementary Figs. S1 and S2). The quantitative agreement between the theoretical CDF and the empirical CDF 
depends on the number of bins Nb used for sampling, but in all studied cases the fits to the three theoretical 
distributions are always statistically significant at 95% level of confidence (Supplementary Table T1). For exam-
ple, for spine volume the best fits, as specified by the Kolmogorov-Smirnov distance DKS , are for lognormal and 
gamma distributions, but the latter distribution is a better choice for the larger Nb (Supplementary Table T1). 
Similarly, for spine length the best fits are mostly for gamma distributions, except in one case where lognormal 
is slightly better (for maximal possible Nb = 412 ). Nevertheless, it should be said that the differences between 
DKS for these two dominant distributions are rather small, which suggests that it may be difficult to precisely 
pin-point which distribution, either with short or heavy tail, is a better fit.

Next, we want to determine how stable are the distributions of spine sizes across the whole developmental 
period (Fig. 3 and Supplementary Fig. S3). To address this, we use another collection of data on spine length and 
spine head diameter from human hippocampus (30, and private comm.). It is important to emphasize that the 
histograms for these two parameters seem visually invariant from the early age of 2 years to 71 years old, possibly 
with an exception for spine length of 5 month old for which the histogram is broader though with essentially the 
same mean (Fig. 3 and Supplemental Fig. S3). All empirical distributions of spine length and spine head diameter 
can be significantly described (at 95% level of confidence) by all three theoretical distributions, however, the best 
fits (with the smallest DKS ) are provided predominantly by gamma distribution (Supplementary Figs. S4 and S5; 
and Table T2). Essentially, this result agrees with the other fits of spine length from cingulate cortex (Figs. S1 
and S2), for which gamma distribution is also slightly superior.

Our next goal is to find empirical Shannon entropies associated with the discrete histograms of spine sizes 
in Figs. 1, 2 and 3 (and Supplementary Fig. S3), and to compare them to continuous entropies associated with 
the three fitting probability distributions. This is conducted using Eq. (1) in the Methods for the continuous 
fitting distributions, and using a discrete version of this equation for the histograms. Both entropies depend on 
spine size resolution, or equivalently, intrinsic noise amplitude �x related to subspine molecular fluctuations 
associated with elementary changes in spine size (Eq. 2). Calculations reveal that the continuous distributions 
provide theoretical entropies ( Hth ) that very well approximate the empirical entropies ( Hem ) from the histograms 
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for all fits in Figs. 1, 2 and 3 and S3, with small differences between the two mostly no more than 5 % (Table 1). 
Overall, the gamma distribution provides the best approximations, which in many cases deviate by less than 
1 % from the empirical entropies. The heavy-tailed lognormal distribution also gives very good approximations 
(mostly 1− 3% ), while the loglogistic distribution yields a little less accurate numbers but still sufficiently close 
(mostly 4− 5% of deviation).

To summarize, our fitting analysis reveals that the empirical data on spine sizes can be described well by the 
three different continuous distributions, either with short or heavy tails (gamma, lognormal, and loglogistic). 
However, slightly better fits are provided mostly by gamma and occasionally by lognormal, which suggests that 
spine sizes distributions do not have too heavy tails. Furthermore, the entropies associated with these distribu-
tions give reasonably good approximations to the empirical entropies, again primarily gamma and secondary 
lognormal.

Figure 1.  Fitting of spine volume to lognormal, loglogistic, and gamma distributions. Empirical histograms of 
spine volumes from human cingulate cortex (rectangles; combined spines from apical and basal dendrites taken 
 from34) were fitted to three different distributions (solid lines). Number of bins Nb = 20 for all plots. Below we 
provide mean values of the fitted parameters and corresponding 95% confidence intervals in the brackets. ( A) 
Fits for 40 years old yield the following parameters: µ = −1.56 CI = [– 1.58, – 1.53], σ = 0.87 CI =  [0.85, 0.88] 
(lognormal); a = 0.22 CI = [0.21, 0.23], b = 2.03 CI = [1.94, 2.12] (loglogistic); and α = 1.67 CI = [1.61, 1.73], 
β = 5.72 CI = [5.51, 5.93] (gamma). (B) Fits for 85 years old give: µ = −1.50 CI = [– 1.53, – 1.46], σ = 0.91 CI 
= [0.88, 0.93] (lognormal); a = 0.24 CI = [0.23, 0.25], b = 1.93 CI = [1.83, 2.03] (loglogistic); and α = 1.56 CI = 
[1.49, 1.63], β = 4.91 CI = [4.66, 5.18] (gamma).
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Entropy associated with spine sizes is nearly maximal for spine volume and area
We collected a large data set of dendritic spine sizes from different sources (Tables 2, 3, 4 and 5; and Methods). 
These data contain values of mean and standard deviations of spine (or PSD) volume, surface area, length, and 
spine head diameter in different brain regions of several mammalian species (mostly cerebral cortex and hip-
pocampus). Next, we make an assumption, based on the results and conclusions in Figs. 1, 2 and 3 and S1–S5, 
and Tables 1 and T1, T2, that all the collected data on spine sizes can be described well by the three discussed 
above distributions, and additionally that the entropies of these continuous distributions are good approxima-
tions of the empirical entropies related to empirical, mostly unknown, distributions of the collected data in 
Tables 2, 3, 4 and 5. With this logic in mind, we are able to estimate the entropy associated with each spine size 
parameter for the three distributions (Eq. (1) in the Methods), using only the means and standard deviations 
of the data. This is possible because Shannon entropy for these distributions can be expressed unambiguously 

Figure 2.  Fitting of spine length to lognormal, loglogistic, and gamma distributions. Empirical histograms of 
spine length from human cingulate cortex (rectangles; combined spines from apical and basal dendrites taken 
 from34) were fitted to three different distributions (solid lines). Number of bins Nb = 20 for all plots. Below we 
provide mean values of the fitted parameters and corresponding 95% confidence intervals in the brackets. (A) 
Fits for 40 years old yield: µ = 0.34 CI = [0.33, 0.35], σ = 0.52 CI = [0.51, 0.53] (lognormal); a = 1.46 CI = 
[1.23, 1.69], b = 3.44 CI = [2.85, 4.03] (loglogistic); and α = 4.31 CI = [3.61, 5.01], β = 2.71 CI = [2.48, 2.96] 
(gamma). ( B) Fits for 85 years old yield: µ = 0.33 CI = [0.32, 0.34], σ = 0.52 CI = [0.51, 0.53] (lognormal); 
a = 1.44 CI=[1.20, 1.68], b = 3.42 CI = [2.80, 4.04] (loglogistic); and α = 4.26 CI = [3.49, 5.03], β = 2.70 CI = 
[2.42, 3.02] (gamma).
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Figure 3.  Similarity of spine head diameter distributions across human lifespan. Empirical data for human 
hippocampal spine head diameter (rectangles; taken  from30) ranging from infancy, through maturity, to senility 
look very similar. These data were fitted to three different distributions (solid lines). (A) Fitting parameters 
for lognormal: µ = −1.08 CI = [– 1.11, – 1.05], σ = 0.47 CI = [0.44, 0.50], (5 months); µ = −1.07 CI = [– 
1.09, – 1.05], σ = 0.48 CI = [0.46, 0.50], (2 years); µ = −1.05 CI = [– 1.07, – 1.03], σ = 0.47 CI = [0.45, 0.48], 
(23 years); µ = −1.05 CI = [– 1.06, – 1.03], σ = 0.49 CI = [0.47, 0.50], (27 years); µ = −1.06 CI = [– 1.07, 
– 1.04], σ = 0.49 CI = [0.48, 0.50], (38 years); µ = −1.05 CI = [– 1.06, – 1.03], σ = 0.48 CI = [0.47, 0.49], (45 
years); µ = −1.05 CI = [– 1.06, – 1.03], σ = 0.48 CI = [0.46, 0.49], (57 years); µ = −1.06 CI = [– 1.07, – 1.04], 
σ = 0.48 CI = [0.46, 0.49], (58 years); µ = −1.06 CI = [-1.07, -1.04], σ = 0.48 CI = [0.47, 0.49], (68 years); 
µ = −1.06 CI = [-1.07, -1.05], σ = 0.49 CI = [0.48, 0.50], (70 years); µ = −1.06 CI = [-1.07, -1.04], σ = 0.49 
CI = [0.48, 0.50], (71 years). (B) Fitting parameters for loglogistic: a = 0.35 CI = [0.24, 0.46], b = 3.85 CI = 
[2.55, 5.14], (5 months); a = 0.35 CI = [0.30, 0.40], b = 3.70 CI = [3.11, 4.28], (2 years); a = 0.35 CI = [0.31, 
0.38], b = 3.85 CI = [3.40, 4.30], (23 years); a = 0.36 CI = [0.32, 0.39], b = 3.70 CI = [3.29, 4.10], (27 years); 
a = 0.35 CI = [0.32, 0.37], b = 3.70 CI = [3.37, 4.02], (38 years); a = 0.36 CI = [0.33, 0.38], b = 3.70 CI = [3.40, 
3.99], (45 years); a = 0.36 CI = [0.33, 0.38], b = 3.85 CI = [3.56, 4.13], (57 years); a = 0.35 CI = [0.32, 0.37], 
b = 3.85 CI = [3.58, 4.11], (58 years); a = 0.35 CI = [0.33, 0.37], b = 3.70 CI = [3.45, 3.94], (68 years); a = 0.35 
CI = [0.33, 0.37], b = 3.70 CI = [3.47, 3.92], (70 years); a = 0.35 CI = [0.33, 0.36], b = 3.70 CI = [3.48, 3.91], (71 
years). (C) Fitting parameters for gamma: α = 5.03 CI = [3.14, 6.90], β = 13.44 CI = [10.90, 16.80], (5 months); 
α = 4.82 CI = [3.90, 5.74], β = 12.68 CI = [11.40, 14.30], (2 years); α = 5.01 CI = [4.28, 5.73], β = 12.98 CI = 
[11.96, 14.30], (23 years); α = 4.77 CI = [4.12, 5.41], β = 12.19 CI = [11.30, 13.38], (27 years); α = 4.59 CI = 
[4.11, 5.06], β = 11.80 CI = [11.03, 12.70], (38 years); α = 4.80 CI = [4.34, 5.25], β = 12.27 CI = [11.54, 13.01], 
(45 years); α = 4.90 CI = [4.45, 5.34], β = 12.55 CI = [11.84, 13.38], (57 years); α = 4.88 CI = [4.47, 5.28], 
β = 12.68 CI = [12.01, 13.40], (58 years); α = 4.73 CI = [4.36, 5.09], β = 12.21 CI = [11.56, 12.85], (68 years); 
α = 4.63 CI = [4.30, 4.96], β = 11.96 CI = [11.47, 12.55], (70 years); α = 4.59 CI = [4.28, 4.90], β = 11.79 CI = 
[11.25, 12.28], (71 years).
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only by their first two moments (without the knowledge of higher moments), i.e. by their means and standard 
deviations (see the "Methods").

We denote the values of the continuous entropies as Hg ,Hln,Hll (Eqs. 10, 17, 27), and they provide a good 
measure of the empirical information content in dendritic spines. Additionally, we compute a theoretical upper 
bound on the entropy for a given mean spine size for each distribution ( Hg ,m,Hln,m,Hll,m ; Eqs. 12, 19, 29). The 
bound Hg ,m for gamma distribution is the highest possible bound Hmax for all existing distributions, not only 
for the three considered here (see the Methods; Eqs. (4) and (12)). Since mean spine sizes are generally differ-
ent in different brain regions (and even different for the same region in different studies), the upper theoretical 
bounds of entropy are also generally different, as they depend on the mean size S (Eqs. 12, 19, 29). Moreover, 
the upper bounds for lognormal and loglogistic distributions are slightly smaller than the bound Hmax for the 
gamma distribution. The latter bound is reached for a specific type of the gamma distribution with α = 1 , cor-
responding to an exponential distribution, for which an optimal ratio of standard deviation to mean spine size 
is equal to 1 (see the "Methods"). However, it should be stressed that none of our spine data can be fitted by an 
exponential distribution, since α > 1 in all fitting figures (Figs. 1, 2 and 3). This in turn suggests that real spine 
distributions deviate to some extent from the theoretically optimal exponential distribution. By comparing 
data driven continuous entropies H ( Hg , Hln , Hll ) for all three distributions to the maximal entropy Hmax , we 
can assess how close to the theoretical optimum is the entropy contained in spine sizes for each distribution. 
That closeness is quantified by an entropy efficiency η defined as the ratio η = H/Hmax (Eq. 30 in the Methods).

Another relevant quantity that we compute is deviation from the optimality D ( Dg ,Dln,Dll ), which measures 
a deviation of the two parameters characterizing a given distribution from their optimal values defining a cor-
responding upper bound entropy (Eqs. 38, 39 and 40 in the Methods). This quantity is analogous to a standard 
error, which means its smallness is an indicator of the closeness of the empirical parameters to their optimal 
values.

The results in Figs. 4 and 5, and Tables 2 and 3, for spine volume and area (including PSD volumes and 
areas) indicate that the corresponding data driven continuous entropies essentially reach their upper theoretical 
bounds in a huge majority of cases (the maximal possible bounds are boldfaced and given by Hg ,m ). This fact 
is also evident from 90− 100% of the entropy efficiency η , especially for gamma distribution, as well as from 
a relatively small values of the deviation from optimality D (Tables 2 and 3). Moreover, the empirical ratios of 
standard deviation to mean (SD/mean) for spine volumes and areas are in many cases in the range 0.7− 1.3 , and 
these values are only 30% away from the optimal ratio (1.0) for gamma distribution (Figs. 4B and 5B). There are, 
however, a few exceptions that yield suboptimal entropies, most notably cerebellum for which SD/mean is much 
smaller than 1. There are also some negative values of entropy for gamma distributions (macaque monkey), but 
these cases are only mathematical artifacts (see the Discussion).

The near optimality of entropy for spine volume and area across different species and many cortical and hip-
pocampal regions is a remarkable result. It suggests that regardless of brain size, brain region, age, or neurophysi-
ological condition, the distributions of spine volume and area adjust themselves such that to almost maximize 
their information content subject to size constraint, in most cases. The maximal values of the entropy depend 
logarithmically on the mean spine volume or area, and are in the range 2.3− 3.5 bits per spine, depending on 
average spine size. This means that spines on average contain between 5 and 11 distinguishable structural states.

The results for spine length and spine head (or neck) diameter show that the corresponding entropies are 
more distant to their theoretical optima, especially for head diameter, than those for spine volume or area (lower 
values of the efficiency η , higher deviations D in Tables 4 and 5; Figs. 6 and 7). That is a consequence of higher 
deviations in their ratio SD/mean from optimality, which are mostly below 0.7 (Figs. 6B and 7B). Nevertheless, 
the spine length entropies, although not at the vicinity of the upper bound, are significantly closer to it than 
spine head diameter entropies, since the latter generally correspond to lower size ratios SD/mean (Figs. 6 and 
7; Tables 4 and 5; boldfaced are the maximal upper bounds Hg ,m ). Interestingly, the information contained in 
spine length and head diameter ( ∼ 3− 5 bits) is greater than in spine volume and area, yielding more structural 
spine states between 8 and 30.

It is important to emphasize that the above general trends for entropy maximization across various mammals 
are also consistent with the results for human brain, for which we do know the detailed probability distributions 
of spine sizes (Figs. 1, 2 and 3 and S1–S5). Specifically, for human cingulate cortex, the best fits to spine volumes 
are (mostly) gamma and lognormal distributions (Table S1), which yield entropy efficiency η respectively at the 
level of 97− 99% and 92− 93% , with relatively low deviations from optimality D at 37− 61% and 20− 24% , 
and with SD/mean ≈ 0.8 for spine volumes (Table 2). In contrast, the same cortical region for spine length with 
similar best fitting distributions gives a noticeable lower entropy efficiency about 86− 90% , and much higher 
deviations D in the range 184− 478% , and generally lower ratios SD/mean (Table 4). For human hippocampus, 
spine length is the best described by gamma distribution (Table S2), which yields comparable results: the entropy 
efficiency 88− 90% with deviations 273− 348% (Table 4). On the other hand, for human hippocampal spine 
head diameter, which is best fitted by both gamma and loglogistic distributions, we obtain even lower entropy 
efficiency 82− 86% , and slightly higher deviations for gamma distribution at 344− 410% (Table 5).

Taken together, the results shown in Figs. 4, 5, 6 and 7 indicate that although less information is encoded in 
spine volume and area than spine length or diameter, the former encoding is much more efficient. This means 
that the information capacity associated with volume and surface area is nearly maximal possible for given mean 
values of spine volume and area, across different species and different conditions.

Density of entropy in spines is not optimal
As an alternative to the problem of information maximization in dendritic spines, we consider also the possibility 
that not entropy but the entropy density could be maximized. In particular, we study the ratio F of continuous 
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data driven entropy to mean spine size (volume, area, length, and diameter), as a relevant quantity for maximi-
zation (Eq. 41 in the Methods). From a theoretical point of view, for each of the three considered distributions 
the entropy density F exhibits a single maximum as a function of spine size. The height of that maximum cor-
responds to the upper bound on the entropy density, and our goal is to investigate how much the data driven F 
differs from that theoretical upper bound.

In Fig. 8 we present the data driven values of the entropy density and compare them to the maximal values of 
F. These results show that the densities of entropy F are generally far lower than their upper bounds. Specifically, 
F is ∼ 1000 and ∼ 100 times smaller than its maximal values for spine volume and area, respectively (Fig. 8A,B). 
For spine length and diameter the ratio F is closer to its upper bound, but still only at ∼ 10% (Fig. 8C,D). The 
primary reason for the strong suboptimality of entropy density is that the optimal spine size that maximizes F is 
below the size resolution �x (see the "Methods"). That translates to very high maximal entropy density, which 
is unattainable for empirical spine sizes.

We conclude that the density of entropy is not optimized in dendritic spines, which suggests that this quantity 
is not as relevant as entropy itself for information encoding in synapses.

Sensitivity of entropy maximization on uncertainty in the model and in the data
We consider two types of uncertainty which might affect our general result of entropy maximization in spines. 
First type is associated with uncertainty in estimating the theoretical resolution �x in Eq. (2). Second type is 
associated with experimental uncertainty in estimating standard deviations of spine sizes, which relates to the 
fact that spine sizes were collected using different techniques, and each can have a different systematic error.

In Fig. 9A we show the dependence of entropy and information efficiency on the uncertainty in the value of 
�x , which is characterized by the parameter r (see “Uncertainty parameter for intrinsic noise amplitude” in the 
Methods). The value r = 1 is the nominal value taken for estimates in Tables 2, 3, 4 and 5. Values of r different 

Table 1.  Comparison of empirical entropies Hem with theoretical entropies Hth. All the data for empirical 
entropies correspond to Nb = 20 . For cingulate cortex, the data come from combining apical and basal 
dendrites. The numbers in the brackets for theoretical entropies correspond to differences between Hem and 
Hth , i.e. |Hth −Hem|/Hem , given in %.

Spine parameter Age   (yrs)

Empirical entropy

Theoretical entropy Hth (bits)

Hem (bits) Lognormal Loglogistic Gamma

Cingulate cortex

 Volume
40 3.21 3.05 (4.9%) 2.88 (10.3%) 3.23 (0.6%)

85 3.20 3.05 (4.7%) 2.89 (9.7%) 3.23 (0.9%)

 Length
40 4.66 4.61 (1.1%) 4.51 (3.2%) 4.71 (1.1%)

85 4.55 4.64 (2.0%) 4.53 (0.4%) 4.74 (4.2%)

Hippocampus

 Length

5

12
4.58 4.63 (1.1%) 4.52 (1.3%) 4.75 (3.7%)

2 4.68 4.58 (2.1%) 4.47 (4.5%) 4.69 (0.2%)

23 4.68 4.56 (2.6%) 4.45 (4.9%) 4.66 (0.4%)

27 4.70 4.58 (2.6%) 4.48 (4.7%) 4.69 (0.2%)

38 4.69 4.57 (2.6%) 4.47 (4.7%) 4.68 (0.2%)

45 4.70 4.57 (2.8%) 4.47 (4.9%) 4.68 (0.4%)

57 4.70 4.56 (3.0%) 4.46 (5.1%) 4.67 (0.6%)

58 4.69 4.56 (2.8%) 4.46 (4.9%) 4.68 (0.2%)

68 4.69 4.57 (2.6%) 4.47 (4.7%) 4.68 (0.2%)

70 4.69 4.57 (2.6%) 4.46 (4.9%) 4.68 (0.2%)

71 4.69 4.56 (2.8%) 4.46 (4.9%) 4.67 (0.4%)

  Head diam.

5

12
3.63 3.55 (2.2%) 3.45 (5.0%) 3.64 (0.3%)

2 3.71 3.60 (3.0%) 3.50 (5.7%) 3.70 (0.3%)

23 3.67 3.59 (2.2%) 3.50 (4.6%) 3.69 (0.5%)

27 3.67 3.63 (1.1%) 3.53 (3.8%) 3.73 (1.6%)

38 3.74 3.65 (2.4%) 3.54 (5.3%) 3.75 (0.3%)

45 3.72 3.63 (2.4%) 3.53 (5.1%) 3.73 (0.3%)

57 3.71 3.61 (2.7%) 3.52 (5.1%) 3.72 (0.3%)

58 3.71 3.61 (2.7%) 3.51 (5.4%) 3.71 (0%)

68 3.73 3.63 (2.7%) 3.53 (5.4%) 3.73 (0%)

70 3.68 3.64 (1.1%) 3.54 (3.8%) 3.75 (1.9%)

71 3.71 3.65 (1.6%) 3.55 (4.3%) 3.76 (1.3%)
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Table 2.  Information contained in the distribution of spine volumes. a80; b45; c81; d86; e84; f 77; g79; h83; i 32; j62; k64;  
l 87; m50; n96; o94; p93; r95 (and J.H. Morrison, private comm.); s34. Maximal entropy values are in bold.

Species/region (cond.)
Spine volume, mean±SD 
( µm3)

Entropy (bits) Efficiency % (deviation %)

Hln(Hln,m) Hll(Hll,m) Hg (Hg ,m) ηln(Dln) ηll(Dll) ηg (Dg )

Mouse

  Neoctx (wt) 0.152±0.111a 2.81 (3.01) 2.66 (2.92) 2.99 (3.13) 89.8 (25.9) 85.0 (47.8) 95.5 (87.5)

  Neoctx (mut.) 0.144±0.131a 2.92 (3.00) 2.75 (2.91) 3.10 (3.11) 93.9 (16.8) 88.4 (34.5) 99.5 (20.8)

  Neoctx 0.081±0.087b 2.83 (2.86) 2.66 (2.76) 2.96 (2.97) 95.3 (9.2) 89.6 (26.6) 99.7 (13.3)

  Hippo. 0.076±0.082c 2.82 (2.84) 2.65 (2.75) 2.95 (2.96) 95.3 (8.9) 89.9 (26.4) 99.6 (14.1)

  Hippo. 0.038±0.036d 2.61 (2.67) 2.44 (2.58) 2.78 (2.79) 93.5 (14.5) 87.5 (32.4) 99.8 (11.4)

  Piriform 1a 0.129±0.174d 2.97 (2.97) 2.83 (2.88) 2.86 (3.09) 96.1 (1.4) 91.6 (18.3) 92.8 (45.0)

  Piriform 1b 0.071±0.073d 2.79 (2.82) 2.62 (2.73) 2.94 (2.94) 94.9 (11.1) 89.1 (28.5) 99.9 (5.4)

  Somatosen. 0.06±0.04e 2.52 (2.78) 2.37 (2.69) 2.68 (2.90) 86.9 (28.6) 81.7 (54.5) 92.4 (125.0)

  Visual 0.09±0.07 f 2.72 (2.88) 2.56 (2.79) 2.90 (3.00) 90.7 (23.0) 85.3 (43.6) 96.8 (65.3)

  M1 (wake) 0.164±0.183 g 3.01 (3.03) 2.85 (2.94) 3.12 (3.15) 95.6 (7.7) 90.5 (25.0) 99.2 (19.7)

  M1 (sleep) 0.144±0.156 g 2.98 (3.00) 2.81 (2.91) 3.10 (3.11) 95.8 (9.0) 90.4 (26.2) 99.6 (14.8)

  S1 (wake) 0.165±0.171 g 3.00 (3.03) 2.83 (2.94) 3.14 (3.15) 95.2 (11.1) 89.8 (28.2) 99.9 (6.9)

  S1 (sleep) 0.126±0.131 g 2.93 (2.96) 2.76 (2.87) 3.08 (3.08) 95.1 (10.8) 89.6 (28.0) 99.9 (7.5)

  Striat. (wt, 1m) 0.050±0.075h 2.73 (2.74) 2.61 (2.65) 2.40 (2.85) 95.8 (6.3) 91.6 (15.3) 84.1 (55.6)

  Striat. (mut, 1m) 0.077±0.100h 2.84 (2.84) 2.69 (2.75) 2.80 (2.96) 95.9 (0.4) 90.9 (19.5) 94.5 (40.7)

  Striat. (wt, 3m) 0.074±0.094h 2.83 (2.83) 2.68 (2.74) 2.82 (2.95) 95.9 (1.5) 90.8 (20.3) 95.5 (38.0)

  Striat. (mut, 3m) 0.089±0.162h 2.82 (2.88) 2.77 (2.79) 1.78 (3.00) 94.0 (15.8) 92.3 (10.9) 59.5 (69.8)

  Striat. (wt, 6m) 0.084±0.115h 2.86 (2.86) 2.72 (2.77) 2.73 (2.98) 96.0 (2.1) 91.3 (17.8) 91.7 (46.6)

  Striat. (mut, 6m) 0.088±0.143h 2.85 (2.88) 2.76 (2.78) 2.29 (2.99) 95.3 (10.3) 92.3 (13.3) 76.4 (62.1)

  Striat. (wt, 22m) 0.143±0.211h 2.99 (2.99) 2.86 (2.90) 2.70 (3.11) 96.1 (5.8) 92.0 (15.7) 86.8 (54.1)

  Striat. (mut, 22m) 0.089±0.146h 2.85 (2.88) 2.76 (2.79) 2.25 (3.00) 95.0 (10.8) 92.0 (13.1) 75.2 (62.8)

Rat

  Hippo. 0.062±0.080 i 2.79 (2.79) 2.64 (2.70) 2.75 (2.91) 95.9 (0.7) 90.7 (19.7) 94.7 (39.9)

  Hippo. (ctr) 0.067±0.085 j 2.81 (2.81) 2.66 (2.72) 2.79 (2.93) 95.9 (1.5) 90.8 (20.3) 95.5 (37.9)

  Hippo. (cLTP) 0.080±0.101 j 2.85 (2.85) 2.70 (2.76) 2.84 (2.97) 96.0 (1.8) 90.9 (20.5) 95.8 (37.3)

  Prefro. (ctr) 0.09±0.18k 2.78 (2.88) 2.78 (2.79) 1.20 (3.00) 92.7 (20.4) 92.7 (9.1) 40.0 (75.0)

  Prefro. (stress) 0.08±0.37 k 2.15 (2.85) 2.76 (2.76) – 19.71 (2.97) 72.4 (59.3) 92.9 (1.8) – (95.3)

  Somatosen. (ctr) 0.51±0.35 l 3.06 (3.31) 2.92 (3.22) 3.23 (3.42) 89.5 (32.6) 85.4 (52.3) 94.4 (112.3)

  Somatosen. (LTP) 0.79±0.49 l 3.09 (3.41) 2.96 (3.32) 3.24 (3.53) 87.5 (44.4) 83.9 (60.4) 91.8 (159.9)

  Cerebel. 0.12±0.02m 1.06 (2.95) 1.02 (2.86) 1.08 (3.07) 34.5 (60.4) 33.2 (322.7) 35.1 (3500.0)

Macaque

  Prefro. (young) 0.106±0.660n 1.93 (2.92) 2.83 (2.83) – 43.1 (3.04) 63.5 (73.6) 93.1 (0.9) - (97.4)

  Prefro. (old) 0.110±0.527n 2.19 (2.93) 2.84 (2.84) – 21.7 (3.05) 71.8 (62.2) 93.1 (1.7) – (95.6)

  Prefro. 0.102±0.075o 2.72 (2.91) 2.56 (2.82) 2.89 (3.03) 89.8 (25.3) 84.5 (47.3) 95.5 (85.0)

  Visual (young) 0.062±0.173n 2.50 (2.79) 2.69 (2.70) – 2.79 (2.91) 85.9 (35.8) 92.4 (4.9) – (87.2)

  Visual (old) 0.070±0.226n 2.43 (2.82) 2.73 (2.73) – 5.83 (2.94) 82.7 (42.8) 92.9 (3.7) – (90.4)

  Visual 0.066±0.141o 2.68 (2.81) 2.70 (2.71) 0.61 (2.92) 91.8 (23.3) 92.5 (8.1) 20.7 (78.1)

  Cingul. 0.07±0.15 p 2.69 (2.82) 2.72 (2.73) 0.59 (2.94) 91.5 (23.5) 92.5 (8.1) 20.2 (78.2)

  Pariet. (young) 0.196±0.353r 3.02 (3.07) 2.96 (2.98) 2.03 (3.19) 94.7 (16.1) 92.8 (11.1) 63.7 (69.2)

  Pariet. (old) 0.255±1.528r 2.18 (3.14) 3.04 (3.05) – 38.9 (3.25) 67.1 (80.5) 93.5 (0.9) – (97.2)

Human

  Cingul. (40y api.) 0.301±0.245 s 3.04 (3.18) 2.88 (3.09) 3.23 (3.29) 92.4 (22.7) 87.5 (40.8) 98.0 (50.9)

  Cingul. (40y bas.) 0.284±0.232 s 3.03 (3.16) 2.87 (3.07) 3.22 (3.28) 92.4 (22.4) 87.5 (40.6) 98.1 (49.9)

  Cingul. (85y api.) 0.310±0.244 s 3.03 (3.18) 2.87 (3.09) 3.21 (3.30) 91.8 (24.2) 87.0 (42.9) 97.4 (61.4)

  Cingul. (85y bas.) 0.325±0.277 s 3.09 (3.20) 2.92 (3.11) 3.27 (3.31) 93.4 (20.9) 88.2 (38.1) 98.8 (37.7)
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from unity quantify deviations from the assumption of the Poisson distribution for the number of actin mol-
ecules spanning a linear dimension of a typical spine. As can be seen, the 50% deviation from r = 1 (either up or 
down) can change the value of entropy by as much as 40 % equally for all three distributions, but the informa-
tion efficiency η changes only slightly by at most 1.5− 2% (Fig. 9A). The much greater decrease in efficiency η 
is observed only for much bigger deviations when the parameter r is significantly greater than 1, which is the 
case of very high variability in the number of actin molecules. The rate of decrease of η is both distribution and 
spine size parameter specific.

The dependence of entropy H and its efficiency η on the uncertainty q in the standard deviations of spine 
sizes ( SD(q) = q · SD ) is qualitatively different (Fig. 9B). The value q = 1 corresponds to the empirical SD taken 
from Table 2, and q ≪ 1 or q ≫ 1 indicate either much smaller or much larger SD than the empirical value. 

Table 3.  Information contained in the distribution of spine/PSD areas. a63; b33; c86; d77; e78; f 84; g32; h62; i 64; j66;  
k50; l 91; m94; n93; o99. Maximal entropy values are in bold.

Species/region (cond.) Spine area, mean±SD ( µm2)

Entropy (bits) Efficiency % (deviation %)

Hln(Hln,m) Hll(Hll,m) Hg (Hg ,m) ηln(Dln) ηll(Dll) ηg (Dg )

Mouse

  Hippo. (ctr) 1.15±0.68a 3.18 (3.54) 3.05 (3.45) 3.32 (3.66) 86.9 (75.8) 83.3 (64.6) 90.8 (186.0)

  Hippo. (early LTP) 2.78±0.78a 2.67 (3.86) 2.61 (3.77) 2.71 (3.98) 67.1 (80.9) 65.6 (172.3) 68.1 (1170.2)

  Hippo. (middle LTP) 1.90±1.00a 3.25 (3.72) 3.14 (3.63) 3.38 (3.84) 84.6 (191.6) 81.8 (75.8) 87.9 (260.9)

  Hippo. (late LTP) 1.03±0.47a 2.89 (3.50) 2.79 (3.41) 2.99 (3.62) 79.8 (72.9) 77.1 (91.9) 82.5 (380.2)

  Hippo. (PSD; ctr) 0.135±0.084a 2.45 (2.77) 2.32 (2.68) 2.60 (2.89) 84.8 (31.7) 80.3 (60.1) 90.1 (158.3)

  Hippo. (PSD; eLTP) 0.197±0.083a 2.20 (2.91) 2.11 (2.82) 2.29 (3.02) 72.8 (44.4) 69.9 (102.2) 75.8 (463.3)

  Hippo. (PSD; mLTP) 0.100±0.041a 1.93 (2.66) 1.84 (2.57) 2.01 (2.78) 69.4 (44.1) 66.2 (105.9) 72.4 (494.9)

  Hippo. (PSD; lLTP) 0.116±0.091a 2.56 (2.72) 2.40 (2.63) 2.74 (2.83) 90.5 (22.8) 84.8 (43.1) 96.9 (62.5)

  Hippo. 0.047±0.038b 2.25 (2.39) 2.09 (2.30) 2.44 (2.51) 89.6 (21.1) 83.3 (41.2) 97.2 (53.0)

  Hippo. (PSD) 0.043±0.031c 2.15 (2.36) 2.00 (2.27) 2.32 (2.48) 86.7 (25.6) 80.6 (48.7) 93.9 (92.4)

  Piriform 1a (PSD) 0.096±0.105c 2.63 (2.65) 2.46 (2.56) 2.75 (2.77) 94.9 (8.4) 88.8 (25.8) 99.4 (16.4)

  Piriform 1b (PSD) 0.100±0.087c 2.56 (2.66) 2.40 (2.57) 2.75 (2.78) 92.1 (18.5) 86.3 (36.9) 98.9 (32.1)

  Visual (PSD) 0.08±0.06d 2.40 (2.58) 2.24 (2.49) 2.58 (2.70) 88.9 (24.3) 83.0 (46.0) 95.5 (77.8)

  Visual 0.31±0.35e 3.06 (3.07) 2.89 (2.98) 3.16 (3.19) 95.9 (7.6) 90.6 (24.5) 99.0 (21.6)

  Temporal 0.37±0.36e 3.08 (3.13) 2.91 (3.04) 3.25 (3.25) 94.8 (15.2) 89.5 (31.1) 99.9 (5.6)

  Somatosen. 0.87±0.47 f 3.00 (3.44) 2.88 (3.35) 3.13 (3.56) 84.3 (53.9) 80.9 (73.1) 87.8 (242.6)

Rat

  Hippo. 0.83±0.63 g 3.25 (3.43) 3.09 (3.34) 3.43 (3.54) 91.8 (36.3) 87.3 (45.2) 96.8 (73.6)

  Hippo. (PSD) 0.069±0.080 g 2.52 (2.53) 2.36 (2.44) 2.60 (2.65) 95.1 (5.7) 89.1 (23.5) 98.2 (25.6)

  Hippo. (PSD; ctr) 0.068±0.073h 2.50 (2.52) 2.33 (2.43) 2.63 (2.64) 94.7 (9.2) 88.3 (26.6) 99.6 (13.2)

  Hippo. (PSD; LTP) 0.109±0.179h 2.67 (2.69) 2.58 (2.60) 2.07 (2.81) 95.0 (10.9) 91.8 (13.0) 73.5 (62.9)

  Prefro. (ctr) 1.1±1.8 i 3.50 (3.53) 3.41 (3.44) 2.91 (3.64) 96.2 (28.2) 93.7 (13.1) 79.9 (62.7)

  Prefro. (stress) 1.0±1.9 i 3.42 (3.49) 3.38 (3.40) 2.15 (3.61) 94.7 (40.9) 93.6 (10.0) 59.6 (72.3)

  Forebr. (PSD; E19d) 0.195±0.118 j 2.56 (2.90) 2.43 (2.81) 2.71 (3.02) 84.8 (33.2) 80.5 (62.5) 89.6 (173.1)

  Forebr. (PSD; P2d) 0.313±0.216 j 2.83 (3.07) 2.69 (2.98) 3.00 (3.19) 88.7 (29.6) 84.3 (51.9) 94.1 (110.0)

  Forebr. (PSD; P21d) 0.259±0.214 j 2.88 (3.01) 2.72 (2.92) 3.07 (3.12) 92.3 (21.7) 87.2 (39.9) 98.2 (46.5)

  Forebr. (PSD; P60d) 0.251±0.153 j 2.66 (2.99) 2.52 (2.90) 2.81 (3.11) 85.5 (33.5) 81.0 (61.9) 90.2 (169.1)

  Cerebel. 1.12±0.18k 1.59 (3.53) 1.56 (3.44) 1.61 (3.65) 43.6 (107.1) 42.7 (336.7) 44.0 (3771.6)

  Cerebel. (PSD) 0.15±0.08k 2.35 (2.81) 2.23 (2.72) 2.48 (2.93) 80.2 (37.0) 76.1 (74.4) 84.6 (251.6)

Cat

  Visual 0.099±0.046 l 2.06 (2.66) 1.96 (2.57) 2.17 (2.78) 74.1 (40.7) 70.5 (89.7) 78.0 (363.2)

Macaque

  Prefro. (PSD) 0.12±0.13m 2.71 (2.73) 2.54 (2.64) 2.83 (2.85) 95.1 (8.9) 89.1 (26.2) 99.5 (14.8)

  Visual (PSD) 0.08±0.18m 2.43 (2.58) 2.48 (2.49) – 0.10 (2.70) 90.0 (26.0) 91.9 (7.4) – (80.2)

  Cingul. (PSD) 0.13±0.31n 2.57 (2.76) 2.66 (2.67) – 0.55 (2.87) 89.5 (29.5) 92.7 (6.6) – (82.4)

Human

  Neoctx (PSD) 0.205±0.121o 2.56 (2.92) 2.43 (2.83) 2.70 (3.04) 84.2 (34.2) 79.9 (64.7) 88.9 (187.0)

  Temporal 0.59±0.53e 3.22 (3.30) 3.05 (3.21) 3.40 (3.42) 94.2 (21.5) 89.2 (35.2) 99.4 (23.9)
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Table 4.  Information contained in the distribution of spine length. a45; b81; c85; d77; e83; f 32; g64; h50; i 91; j96; k92;  
l 34 (private comm.); m65 (and J.H. Herskowitz, private comm.); n30 (private comm.). Maximal entropy values are 
in bold.

Species/region (cond.)
Spine length,
mean±SD ( µm)

Entropy (bits) Efficiency % (deviation %)

Hln(Hln,m) Hll(Hll,m) Hg (Hg ,m) ηln(Dln) ηll(Dll) ηg (Dg )

Mouse

  Neoctx 0.836±0.569a 4.53 (4.78) 4.38 (4.68) 4.69 (4.89) 92.6 (42.1) 89.6 (52.9) 95.9 (115.9)

  Hippo. 0.95±0.42b 4.22 (4.87) 4.12 (4.78) 4.31 (4.98) 84.7 (66.7) 82.7 (95.9) 86.5 (411.6)

  Hippo. 0.83±0.27c 3.76 (4.77) 3.70 (4.68) 3.82 (4.89) 76.9 (66.9) 75.7 (143.0) 78.1 (845.0)

  Hippo. (neck) 0.42±0.24c 3.88 (4.28) 3.76 (4.19) 4.02 (4.40) 88.2 (38.0) 85.5 (67.7) 91.5 (206.2)

  Visual (neck) 0.66±0.37d 4.19 (4.60) 4.07 (4.51) 4.33 (4.72) 88.8 (43.9) 86.2 (69.5) 91.7 (218.2)

  Striat. (wt, 1m) 1.00±0.52e 4.42 (4.90) 4.31 (4.81) 4.54 (5.02) 88.0 (64.8) 85.9 (77.1) 90.5 (269.8)

  Striat. (mut, 1m) 1.14±0.57e 4.48 (5.00) 4.37 (4.91) 4.59 (5.12) 87.5 (83.3) 85.4 (81.3) 89.8 (299.9)

  Striat. (wt, 3m) 1.13±0.57e 4.48 (4.99) 4.37 (4.90) 4.60 (5.11) 87.7 (81.3) 85.5 (80.3) 89.9 (293.0)

  Striat. (mut, 3m) 1.11±0.57e 4.48 (4.98) 4.37 (4.89) 4.60 (5.10) 87.8 (77.6) 85.7 (78.4) 90.3 (279.2)

  Striat. (wt, 6m) 0.98±0.56e 4.50 (4.89) 4.37 (4.80) 4.63 (5.01) 89.8 (58.9) 87.2 (67.7) 92.5 (206.3)

  Striat. (mut, 6m) 1.21±0.63e 4.56 (5.04) 4.45 (4.95) 4.68 (5.16) 88.4 (94.1) 86.2 (76.9) 90.8 (268.9)

  Striat. (wt, 22m) 1.03±0.54e 4.45 (4.93) 4.34 (4.84) 4.57 (5.04) 88.3 (67.3) 86.1 (76.2) 90.7 (263.8)

  Striat. (mut, 22m) 1.11±0.57e 4.48 (4.98) 4.37 (4.89) 4.60 (5.10) 87.8 (77.6) 85.7 (78.4) 90.3 (279.2)

Rat

  Hippo. 0.95±0.42 f 4.22 (4.87) 4.12 (4.78) 4.31 (4.98) 84.7 (66.7) 82.7 (95.9) 86.5 (411.6)

  Prefro. (ctr) 0.55±1.80 g 4.07 (4.47) 4.38 (4.38) -4.52 (4.59) 88.7 (61.9) 95.4 (3.6) – (90.7)

  Prefro. (stress) 0.55±0.95 g 4.43 (4.47) 4.36 (4.38) 3.64 (4.59) 96.5 (17.5) 95.0 (11.9) 79.2 (66.5)

  Cerebel. 1.22±0.30h 3.68 (5.05) 3.63 (4.96) 3.72 (5.17) 71.2 (122.8) 70.2 (202.8) 72.0 (1553.8)

Cat

  Visual 1.03±0.74 i 4.71 (4.93) 4.56 (4.84) 4.89 (5.04) 93.5 (50.5) 90.5 (49.0) 96.9 (93.7)

Macaque

  Prefro. (young) 1.481±2.968 j 5.09 (5.19) 5.08 (5.10) 3.49 (5.31) 95.9 (202.8) 95.7 (9.1) 65.8 (75.1)

  Prefro. (old) 1.336±3.516 j 4.87 (5.11) 5.02 (5.02) 0.49 (5.23) 93.1 (182.6) 96.0 (5.5) 9.3 (85.6)

  Visual (young) 1.388±3.179 j 4.98 (5.14) 5.04 (5.05) 2.28 (5.26) 94.7 (172.7) 95.8 (7.1) 43.3 (80.9)

  Visual (old) 1.462±2.883 j 5.09 (5.18) 5.07 (5.09) 3.60 (5.30) 96.0 (173.6) 95.7 (9.4) 67.9 (74.3)

  Visual (young) 1.10±1.32k 4.97 (4.97) 4.81 (4.88) 5.02 (5.09) 97.6 (10.2) 94.5 (22.2) 98.6 (30.6)

  Visual (old) 1.20±2.43k 4.93 (5.04) 4.93 (4.95) 3.27 (5.15) 95.7 (72.7) 95.7 (9.0) 63.4 (75.6)

Human

  Cingul. (40y api.) 1.780±0.740 l 4.60 (5.32) 4.51 (5.23) 4.69 (5.44) 84.6 (390.2) 82.9 (104.0) 86.2 (478.6)

  Cingul. (40y bas.) 1.417±0.710 l 4.64 (5.16) 4.53 (5.07) 4.75 (5.27) 88.0 (184.9) 86.0 (81.0) 90.1 (298.3)

  Cingul. (85y api.) 1.709±0.769 l 4.66 (5.29) 4.56 (5.20) 4.76 (5.41) 86.1 (804.1) 84.3 (93.7) 88.0 (393.9)

  Cingul. (85y bas.) 1.483±0.715 l 4.63 (5.19) 4.53 (5.10) 4.74 (5.31) 87.2 (266.8) 85.3 (85.4) 89.3 (330.2)

  Prefro. (non-alzh.) 1.219±2.335m 4.97 (5.05) 4.94 (4.96) 3.66 (5.16) 96.3 (65.6) 95.7 (9.9) 70.8 (72.7)

  Prefro. (alzh.) 1.360±2.980m 4.99 (5.13) 5.02 (5.04) 2.70 (5.24) 95.2 (141.1) 95.8 (7.7) 51.5 (79.2)

  Hippo. (5m) 1.347±0.697n 4.63 (5.12) 4.52 (5.03) 4.75 (5.24) 88.4 (138.3) 86.3 (77.6) 90.8 (273.5)

  Hippo. (2y) 1.359±0.662n 4.58 (5.13) 4.47 (5.04) 4.69 (5.24) 87.4 (148.9) 85.3 (84.2) 89.4 (321.4)

  Hippo. (23y) 1.376±0.650n 4.56 (5.13) 4.45 (5.04) 4.66 (5.25) 86.9 (160.9) 84.8 (87.8) 88.7 (348.1)

  Hippo. (27y) 1.390±0.669n 4.58 (5.14) 4.48 (5.05) 4.69 (5.26) 87.1 (168.4) 85.2 (85.6) 89.2 (331.7)

  Hippo. (38y) 1.383±0.663n 4.57 (5.14) 4.47 (5.05) 4.68 (5.26) 86.9 (164.1) 85.0 (86.0) 89.1 (335.1)

  Hippo. (45y) 1.358±0.659n 4.57 (5.13) 4.47 (5.03) 4.68 (5.24) 87.2 (148.7) 85.3 (84.6) 89.3 (324.6)

  Hippo. (57y) 1.346±0.651n 4.56 (5.12) 4.46 (5.03) 4.67 (5.24) 87.0 (142.9) 85.1 (85.0) 89.3 (327.5)

  Hippo. (58y) 1.331±0.649n 4.56 (5.11) 4.46 (5.02) 4.68 (5.23) 87.2 (135.4) 85.3 (84.1) 89.4 (320.6)

  Hippo. (68y) 1.342±0.655n 4.57 (5.12) 4.47 (5.03) 4.68 (5.23) 87.4 (140.3) 85.5 (84.0) 89.5 (319.8)

  Hippo. (70y) 1.348±0.654n 4.57 (5.12) 4.46 (5.03) 4.68 (5.24) 87.2 (143.6) 85.1 (84.7) 89.3 (324.8)

  Hippo. (71y) 1.341±0.649n 4.56 (5.12) 4.46 (5.03) 4.67 (5.23) 87.2 (140.4) 85.3 (84.9) 89.3 (326.9)
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Table 5.  Information contained in the distribution of spine head/neck/PSD diameter. a45; b85; c82; d32; e50; f 88;  
g89; h90; i 96; j92; k97; l 99; m98; n65 (private comm.); o30 (private comm.). Maximal entropy values are in bold.

Species/region (cond.)
Spine diameter, 
mean±SD ( µm)

Entropy (bits) Efficiency % (deviation %)

Hln(Hln,m) Hll(Hll,m) Hg (Hg ,m) ηln(Dln) ηll(Dll) ηg (Dg )

Mouse

  Neoctx (neck) 0.128±0.063a 2.88 (3.42) 2.78 (3.33) 2.99 (3.54) 81.4 (39.3) 78.5 (83.0) 84.7 (312.8)

  Hippo. 0.66±0.11b 2.71 (4.60) 2.68 (4.51) 2.73 (4.72) 57.4 (69.9) 56.8 (322.7) 57.8 (3500.0)

  Visual 0.42±0.13c 3.21 (4.28) 3.15 (4.19) 3.26 (4.40) 73.0 (54.6) 71.6 (152.3) 74.2 (943.8)

Rat

  Hippo. 0.53±0.28d 3.98 (4.45) 3.86 (4.36) 4.10 (4.56) 87.3 (42.7) 84.6 (75.4) 89.9 (258.3)

  Cerebel. 0.57±0.05e 1.70 (4.50) 1.73 (4.41) 1.72 (4.62) 36.8 (72.5) 37.4 (637.6) 37.3 (12895.9)

Rabbit

  Hippo. (E21d) 0.33±0.09 f 2.87 (4.10) 2.82 (4.01) 2.92 (4.22) 68.0 (55.6) 66.8 (178.5) 69.1 (1244.4)

  Hippo. (E24d) 0.49±0.13 f 3.12 (4.39) 3.07 (4.30) 3.16 (4.51) 69.2 (58.9) 68.1 (184.7) 70.2 (1320.7)

  Hippo. (E28d) 0.55±0.15 f 3.24 (4.47) 3.19 (4.38) 3.28 (4.59) 70.6 (59.8) 69.5 (178.5) 71.5 (1244.4)

  Hippo. (P2d) 0.48±0.11 f 2.92 (4.38) 2.87 (4.28) 2.95 (4.49) 65.0 (61.1) 63.9 (221.0) 65.6 (1804.1)

  Hippo. (P8d) 0.43±0.10 f 2.86 (4.30) 2.81 (4.21) 2.89 (4.41) 64.9 (59.9) 63.7 (217.1) 65.4 (1749.0)

  Hippo. (P14d) 0.42±0.11 f 3.00 (4.28) 2.94 (4.19) 3.03 (4.40) 68.2 (57.8) 66.8 (187.7) 69.0 (1357.9)

  Hippo. (adult) 0.41±0.10 f 2.88 (4.26) 2.84 (4.17) 2.92 (4.38) 65.8 (58.8) 64.8 (204.8) 66.7 (1581.0)

Echidna

  Visual 0.323±0.120 g 3.24 (4.09) 3.16 (4.00) 3.31 (4.21) 77.0 (49.1) 75.1 (120.5) 78.8 (624.5)

Cat

  Auditory (hear) 0.672±0.213h 3.58 (4.62) 3.51 (4.53) 3.63 (4.74) 75.5 (60.4) 74.1 (147.8) 76.7 (895.4)

  Auditory (deaf) 0.707±0.233h 3.66 (4.65) 3.60 (4.56) 3.72 (4.77) 76.7 (60.9) 75.5 (140.6) 78.0 (820.7)

Macaque

  Prefro. (young) 0.403±0.660 i 4.22 (4.25) 4.13 (4.16) 3.63 (4.37) 96.6 (12.6) 94.5 (13.1) 83.2 (62.7)

  Prefro. (old) 0.420±0.440 i 4.25 (4.28) 4.08 (4.19) 4.39 (4.40) 96.6 (11.9) 92.7 (27.7) 99.9 (8.9)

  Visual (young) 0.376±0.289 i 4.03 (4.20) 3.87 (4.11) 4.21 (4.32) 93.3 (25.9) 89.6 (44.4) 97.6 (69.3)

  Visual (old) 0.383±0.226 i 3.85 (4.21) 3.72 (4.12) 3.99 (4.33) 88.9 (36.3) 85.9 (64.7) 92.2 (187.2)

  Visual (young) 0.43±0.53 j 4.29 (4.30) 4.14 (4.21) 4.31 (4.41) 97.3 (3.4) 93.9 (21.3) 97.8 (34.2)

  Visual (old) 0.46±0.30 j 4.06 (4.34) 3.92 (4.25) 4.22 (4.46) 91.0 (33.7) 87.9 (56.2) 94.6 (135.1)

Dolphin

  Visual 0.352±0.140k 3.38 (4.15) 3.30 (4.06) 3.46 (4.27) 79.2 (47.8) 77.3 (110.3) 81.1 (532.2)

Human

  Neoctx 0.466±0.121 l 3.06 (4.35) 3.01 (4.26) 3.10 (4.47) 68.5 (58.8) 67.3 (189.7) 69.3 (1383.2)

  Temporal 0.30±0.09m 2.93 (4.04) 2.87 (3.95) 2.98 (4.15) 70.6 (53.4) 69.2 (158.4) 71.7 (1011.1)

  Prefro. (non-alzh.) 0.573±0.803n 4.50 (4.50) 4.37 (4.41) 4.33 (4.62) 97.4 (4.2) 94.6 (17.2) 93.7 (49.1)

  Prefro. (alzh.) 0.562±1.141n 4.39 (4.49) 4.38 (4.40) 2.70 (4.61) 95.2 (28.6) 95.0 (8.9) 58.6 (75.7)

  Hippo. (5m) 0.375±0.166o 3.55 (4.20) 3.45 (4.11) 3.64 (4.31) 82.4 (45.3) 80.0 (95.7) 84.5 (410.3)

  Hippo. (2y) 0.380±0.175o 3.60 (4.21) 3.50 (4.12) 3.70 (4.32) 83.3 (44.2) 81.0 (90.8) 85.6 (371.5)

  Hippo. (23y) 0.386±0.175o 3.59 (4.22) 3.50 (4.13) 3.69 (4.34) 82.7 (44.8) 80.6 (92.7) 85.2 (386.5)

  Hippo. (27y) 0.391±0.181o 3.63 (4.23) 3.53 (4.14) 3.73 (4.34) 83.6 (44.2) 81.3 (90.2) 85.8 (366.7)

  Hippo. (38y) 0.389±0.184o 3.65 (4.22) 3.54 (4.13) 3.75 (4.34) 84.1 (43.6) 81.6 (87.6) 86.4 (346.9)

  Hippo. (45y) 0.391±0.181o 3.63 (4.23) 3.53 (4.14) 3.73 (4.34) 83.6 (44.2) 81.3 (90.2) 85.8 (366.7)

  Hippo. (57y) 0.391±0.179o 3.61 (4.23) 3.52 (4.14) 3.72 (4.34) 83.2 (44.6) 81.1 (91.5) 85.5 (377.1)

  Hippo. (58y) 0.385±0.177o 3.61 (4.22) 3.51 (4.13) 3.71 (4.33) 83.4 (44.3) 81.1 (91.0) 85.6 (373.1)

  Hippo. (68y) 0.387±0.181o 3.63 (4.22) 3.53 (4.13) 3.73 (4.34) 83.6 (43.9) 81.3 (88.9) 86.1 (357.2)

  Hippo. (70y) 0.387±0.183o 3.64 (4.22) 3.54 (4.13) 3.75 (4.34) 83.9 (43.5) 81.6 (87.6) 86.4 (347.2)

  Hippo. (71y) 0.390±0.185o 3.65 (4.23) 3.55 (4.13) 3.76 (4.34) 84.1 (43.5) 81.8 (87.3) 86.5 (344.4)
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All three distributions yield significant drops in entropy and efficiency for decreasing q from unity to zero. 
However, both H and η decay moderately by 25− 30% for 50% reduction in q (from 1 to 1/2). The situation is 
different for enlarging q (Fig. 9B). In this case, the values of H and η decrease fast only for gamma distribution. 
For the remaining long-tailed distributions, entropy and efficiency vary very weakly, especially η for loglogistic 
is approaching 100% asymptotically. The latter follows from the fact that optimal size ratio of SD/mean for 
loglogistic is approaching infinity.
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Figure 4.  Information encoded in spine volume is nearly optimal across brains with different sizes, regions, and 
physiological conditions. (A) Close alignment of the entropy data points to the maximal entropy curve (solid 
line, given by Eq. 4) for all three distributions. The gamma distribution has several outliers. The visible outlier 
for all three distributions is the point corresponding to rat cerebellum. (B) The ratio of empirical standard 
deviation to mean spine volume as a function of spine volume. Note that the majority of data points SD/mean 
fall within an “optimality zone” (dotted horizontal lines), which is a region with boundaries 30% off the optimal 
ratio 1.0 for the gamma distribution (solid line). The data with the ratio SD/mean ≫ 1 are closer to maximal 
entropies for loglogistic distribution. Legend for data points in (A) and (B) panels: diamonds for mouse, circles 
for rat, squares for macaque monkey, triangles for human.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22207  | https://doi.org/10.1038/s41598-023-49321-9

www.nature.com/scientificreports/

Discussion
Summary of the main results: optimization of information encoded in spine volume and area, 
but not in spine length or head diameter
Our results suggest that the sizes of dendritic spines can be described equally well by three different skewed 
distributions (gamma, lognormal, loglogistic, though gamma yields a slightly better fits), since all of them yield 
statistically significant fits (Supplementary Tables T1 and T2). This generally also supports, more quantitatively, 
previous studies that fitted skewed distributions to spine  sizes13,33,34,41–49. For the human data we used, this 
conclusion is independent on the number of bins, as verified by a goodness of fit procedure. Consequently, 
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Figure 5.  Information encoded in spine surface area is nearly optimal across mammalian brains with different 
regions and conditions. (A) Similar as in Fig. 4, the nearly optimal alignment of entropy data points to the 
maximal entropy curve (solid line, given by Eq. 4), with a cerebellum as an outlier. (B) The empirical ratios SD/
mean for spine and PSD areas are mostly within the range 0.7–1.3 (dotted horizontal lines), which is close to the 
optimal ratio 1.0 for the gamma distribution (solid line). Legend for data points in (A) and (B): diamonds for 
mouse, circles for rat, pentagram for cat, squares for macaque monkey, triangles for human.
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we calculated and compared spine entropies (i.e. information content in spines) for all these three probability 
densities, and confirmed that these continuous entropies are close, especially for gamma and lognormal, to the 
empirical entropies calculated from the histograms of the data sizes (Table 1). This positive result allowed us to 
extend with certain confidence the entropy calculations also to the cases of other brain regions and species for 
which we do not know the empirical distributions of spine sizes, but rather only their means and standard devia-
tions. The latter two empirical parameters are sufficient to determine entropy for all three above distributions.

The main result of this study is that entropy (information encoded) of volumes and areas of cortical and 
hippocampal dendritic spines is almost maximized, achieving in many cases 90− 100% of its maximal value 
for given mean spine volume or surface area (Tables 2 and 3; Figs. 4 and 5). Equivalently, using a different 
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Figure 6.  Information encoded in spine length is suboptimal. (A) Data driven continuous entropies are 
generally suboptimal (especially for the gamma distribution), but nevertheless they are relatively close to the 
maximal entropy curve (solid line). (B) The suboptimality is manifested by majority of empirical spine length 
ratios SD/mean values below 0.7, i.e., significantly lower than the optimal ratio for gamma distribution (1.0; 
solid line). Legend for data points in (A) and (B): diamonds for mouse, circles for rat, pentagram for cat, squares 
for macaque monkey, triangles for human.
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perspective, this means that volumes and areas of dendritic spines are almost as random as possible given the 
constraint on their size. In other words, our calculations and data suggest that spines adjust simultaneously the 
means and standard deviations of their sizes to maximize information content in their structure. The important 
point is that spines achieve this maximization (for any given spine size) by adjusting only one parameter: the 
ratio SD/mean of their volumes or areas (i.e. the absolute values of SD and mean do not matter for such entropy 
maximization). Indeed, most of the empirical ratios SD/mean for spine volume and area are close to the optimal 
ratios for gamma (1.0) and lognormal (1.3) distributions. This general conclusion is also supported by relatively 
small deviations from the optimality of the parameters characterizing the distributions (D values mostly below 
20− 30% for heavy-tailed distributions). Furthermore, the optimality of entropy of spine volume or area is 
mostly independent of the investigated species (i.e. brain size), brain region (except cerebellum), age, or condition 
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Figure 7.  Information encoded in spine head diameter is suboptimal. (A) Scattered data points, far away 
from the maximal entropy curve (solid line). (B) Majority of empirical ratios SD/mean are below 1/3, i.e., far 
away from the optimality zone (dotted lines) corresponding to the optimal ratio for gamma distribution (1.0; 
solid line). Legend for data points in (A) and (B): diamonds for mouse, circles for rat, stars for rabbit, plus for 
echidna, pentagram for cat, squares for macaque monkey, hexagon for dolphin, triangles for human.
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(but see below), which might suggest its possible universality, at least in the cerebral cortex and hippocampus 
(Tables 2 and 3). The exception of the cerebellum, with only 35− 45% of its information efficiency is intriguing, 
but from a theoretical point of view it is a consequence of the uniformity of spine sizes (though not of PSD sizes) 
in that part of the  brain50. That uniformity might serve some functional role, different from information storage.

In most cases, the near optimality of information content in spine volumes and areas is also independent of 
the type of the chosen spine size distribution. Several exceptions for the gamma distribution in Tables 4 and 5 
reflect the fact that this probability density poorly handles cases in which standard deviation exceeds the mean. 
That is also the reason for several negative entropy values associated with gamma distribution in Tables 2 and 
3, which is only a mathematical artifact (see the Methods after Eq. 9), and relates to the fact that continuous 
distributions can yield negative entropies (in contrast to discrete distributions). Generally, the negative entropy 
cases appear almost exclusively for macaque monkey, which leads us to a hypothesis that spine volumes and areas 
in this species are probably better described by the heavy tailed distributions. Such distributions give entropy 
efficiency closer to optimality (Tables 2 and 3). However, one must be careful with loglogistic distribution as its 
optimal size ratio SD/mean= ∞ , implying in practice that there is no a single optimum for this distribution. 
This fact, together with slightly worse fits to the volume and entropy data (Table 1 and Supplementary Table T1), 
suggests that loglogistic density is probably not the best choice for approximating spine size distributions, which 
likely do not have too heavy tails (do not decay as power law).

The near maximization of entropy in spine volumes and areas is not very sensitive on the uncertainties associ-
ated with precise values of noise amplitude �x and empirical variances of spine sizes (Fig. 9). The first indicates 
that small deviations from the assumption of Poisson distribution for the actin number underlying spine structure 
do not have much effect on the result. The latter suggests that, despite different experimental techniques with 
various accuracies used for evaluating spine sizes in different studies, the precise values of standard deviations 
are not critical for the main result. Again, what matters most is the ratio of standard deviation to mean spine 
volume or area.

The efficiency of the information encoded in spine length and spine head (or PSD) diameter is significantly 
lower than that encoded in spine volume and area (compare Tables 4 and 5 with Tables 2 and 3; Figs. 6 and 7), 
suggesting that these variables do not maintain the synaptic information optimally. Similarly, the entropy den-
sity is also not optimized, as its empirical values are far below their upper bounds (Fig. 8). This indicates that 
information is not densely packed in the whole available space of dendritic spines, and furthermore, it seems 
that entropy density is not the relevant quantity for neuroanatomical and functional organization of dendritic 
spines, if we take an evolutionary point of view into  account51,52.

Finally, there have been a few studies that are similar in spirit to our general approach but that differ in con-
text and details. Notably, Refs.53,54 assumed an information maximization under constraints to derive optimal 
distribution of synaptic weights and to make some general qualitative observations.  In53 the optimal distribution 
of synaptic weights derived in the context of perceptron was a mixture of Gaussian with Dirac delta, and they 
fitted that to Purkinje cells in rat cerebellum.  In54, the authors used mainly discrete exponential or stretched 
exponential distributions for synaptic weights as optimal solutions of the entropy maximization, but without 

Figure 8.  Entropy density in spine sizes is far from optimal. Density of entropy F as a function of (A) spine 
volume, (B) spine surface area, (C) spine length, and (D) spine head diameter. Blue diamonds correspond to 
data points described by lognormal distribution, black squares correspond to loglogistic, and red triangles to 
gamma distribution. Note that all these data points are far below the theoretical upper bounds for the entropy 
density represented by three lines (blue solid line for lognormal, black dashed line for loglogistic, and green 
dotted line for gamma distribution).
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quantitative comparison between theory and experiment. In contrast, we took a different approach, with dif-
ferent distributions, and we actually proved the near maximization of information content in synaptic volumes 
and areas in different parts of the brain across several mammals. In the experimental work  of31, the authors also 
estimate information content in dendritic spines, but use a different more engineering method, and only for one 
species and brain region: rat hippocampus.
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Figure 9.  The effect of uncertainty in noise amplitude �x and in the empirical standard deviations on 
maximization of entropy. (A) Entropy and its efficiency as a function of r characterizing the magnitude of 
noise amplitude, �x(r) = r�x . Upper panel: spine volume in human cingulate cortex on apical dendrites in 
40 years old  individual34. Middle panel: spine area in human temporal  cortex78. Lower panel: spine length in 
human hippocampus for 45 years old  individual30. Note that information efficiency η decreases with increasing 
r, but with different pace for different distributions and size parameters. For all panels: solid line (lognormal), 
dashed line (loglogistic), and dashed-dotted line (gamma). (B) Entropy and its efficiency as a function of q 
characterizing the uncertainty in the empirical standard deviation, SD(q) = qSD . Data for spine volume in 
human cingulate cortex on apical dendrites in 40 years old  individual34. Entropy H and efficiency η depend 
asymmetrically on q. For small q (smaller SD than actually measured), H and η are both small for all three 
distributions (solid line - lognormal, dashed line - loglogistic, and dashed-dotted line - gamma). For large q, 
efficiency η decreases fast only for gamma, but for long-tailed distributions it either weakly decays (lognormal) 
or asymptotically approaches 100 % (loglogistic).
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Stability of synaptic information, memory, and physiological conditions
We found that different populations of dendritic spines can store between 1.9− 3.4 bits of information per 
spine in their volumes and surface areas (Tables 2 and 3), which means that on average a typical spine can have 
between 21.9 − 23.4 , i.e. 4− 10 distinguishable geometric internal states. Because of the link between spine 
structure and function (e.g. mean spine volume is proportional to postsynaptic current;2), these geometric states 
can be translated into possible 4− 10 physiological states. For example, for spine volume in rat hippocampus 
we obtain 2.7− 2.8 bits per spine, which is either similar or slightly smaller than the numbers calculated  in55 
 and31, ∼ 2.7− 4.7 bits, and the difference can be attributed to a different method of information estimation. Our 
results indicate that spines in the mammalian cerebral cortex can hold about (1− 1.5) · 1012 bits/cm3 of memory 
in their volumes and areas, assuming in agreement with the data that cortical synaptic density is roughly brain 
size independent and on average 5 · 1011 cm−356,57.

On a single dendritic spine level neural memory is presumably stored in PSD structure, i.e. in the num-
ber and activities of its various proteins, which are coupled with AMPA and NMDA receptors on spine 
 membrane1,3–5,8,58–60. Moreover, the data show that mean spine volume is proportional to mean PSD  diameter20, 
implying that spine volume is positively correlated with “memory” variable associated with PSD size, and con-
sequently, the entropies of both these variables should be  proportional61. That suggests that entropy of spine 
volume (and/or area) could serve as a proxy for “memory capacity”, and its maximization should reflect near 
optimality of synaptic memory (given a size constraint).

It is also curious that entropy efficiency η is relatively stable even in many cases when the condition changes. 
For example, for situations stress vs. non-stress, or mutation vs. control, or LTP vs. non-LTP condition, η stays 
approximately constant despite changes in the mean and standard deviations of spine sizes (Tables 2, 3, 4 and  5). 
This again suggests that dendritic spines can adjust simultaneously their mean sizes and variances to maintain 
nearly maximal information content (e.g. data  from62 for spine/PSD volumes during LTP induction in rat hip-
pocampus; Table 2). However, there are some exceptions to that stability. For example, LTP induction generally 
enlarges spines but does not necessarily increases their entropy and efficiency, which can dynamically change 
during LTP (data  from63; Table 3). Also, stress can decrease the amount of stored information in volumes and 
areas of spines in the rat prefrontal cortex (data  of64; Tables 2 and 3), but paradoxically that same stress can 
increase the information encoded in spine length (Table 4). Similarly, in human prefrontal cortex, Alzheimer’s 
disease can decrease the stored information in spine length and head diameter (data  of65; Tables 4 and 5). Overall, 
the widespread stability of information efficiency might suggest that some compensatory mechanisms take plays 
in synapses that counteract a local memory degradation. Interestingly, the same conclusion can be reached for 
the developmental data on human  hippocampus30, where the corresponding entropy related to spine length and 
head diameter is remarkably invariant across the human lifespan (Tables 4 and 5). In contrast, entropy efficiency 
in PSD area of rat forebrain during development exhibits nonmonotonic behavior with a visible maximum for 
postnatal day 21, but the differences are not large (data  of66; Table 3).

Given the above, one can speculate that a serious alternation of a neural circuit, e.g. by Alzheimer’s disease, 
can significantly modify the sizes of dendritic spines. That effect can be quantified by a single number, namely 
the entropy of the sizes distribution. We predict, based on the data  of65 in Tables 4 and 5, that progression of 
Alzheimer’s disease should gradually reduce the entropy of spine volumes and areas away from maximal values. 
That would correspond to a decrease in the long-term synaptic information capacity, which should correlate 
with a decline in general “cognitive capabilities”. It would be interesting to perform such experiments linking 
spine structure, quantified by entropy, with behavioral performance in Alzheimer patients in different parts of 
the cerebral cortex and hippocampus.

Implications for neuroanatomical and metabolic organization of the cerebral cortex in the 
context of synaptic information capacity
Information is always associated with  energy67, and there have been suggestions that information processing 
in neurons is energy efficient, with neurons preferring low firing  rates37,40,68–71, and sublinear scaling of neural 
metabolism with brain  size72. We have an analogous situation in this study for dendritic spines. From Eqs. (12), 
(19), and (29) we get that maximal entropy of spine sizes depends only logarithmically (weakly) on mean spine 
size, while their energy consumption is proportional to it. The latter follows from the fact that mean spine size 
scales linearly with the number of AMPA receptors on spine  membrane19, and thus with spine energy consump-
tion related to synaptic  transmission37,38,40 and  plasticity39. Consequently, spines should favor small sizes to be 
energy efficient for information storage, which qualitatively agrees with skewed empirical distributions of spine 
sizes showing substantial SD/mean ratios. We show here that these SD/mean ratios for spine volume and area 
are close to optimal for information content maximization. In this light, our result is essentially an additional 
example of the energetic efficiency of  information73,74, this time on a synaptic level and on a long time scale, 
which might suggest an universality of optimal encoding in synapses via entropy maximization with a constraint. 
Furthermore, because entropy maximization allows us to compute optimal ratios of SD/mean for spine sizes, it 
can potentially serve as a useful tool to derive or predict neuroanatomical properties of synapses along dendrites, 
e.g. their sizes and  densities75,76.

Methods
Data collection and analysis for the sizes of dendritic spines
All the experimental data on the sizes of dendritic spines used in this study were collected from different 
published sources, and concern several mammals. Data for mouse brain come from:33,45,63,77–86, for rat brain 
 from32,50,62,64,66,87, for rabbit brain  from88, for echidna brain  from89, for cat brain  from90,91, for macaque monkey 
brain  from92–96, for dolphin brain  from97, and for human brain  from30,34,65,78,98,99. The data used are both from 
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cortical and subcortical regions, at different animal ages and different physiological conditions. The cortical 
areas include: piriform, somatosensory, visual, prefrontal, cingulate, parietal, temporal, and auditory cortex. The 
subcortical regions include: hippocampus, striatum, cerebellum, and forebrain.

The data for fitting distributions of dendritic spine sizes were taken  from34 (human cingulate cortex) and 
 from30 (human hippocampus). For cingulate cortex we had either 5334 or 3355 data points related to spine 
volume, and either 5494 or 3469 data points related to spine length (for 40 and 85 years old individuals, respec-
tively). For hippocampus we had the same number of data points for spine length and spine head diameter, but 
the numbers are age-specific. In particular, we had 819 data points for 5 month old, 1108 for 2 yrs old, 915 for 
23 yrs old, 657 for 27 yrs old, 1024 for 38 yrs old, 1052 for 45 yrs old, 662 for 57 yrs old, 805 for 58 yrs old, 1022 
for 68 yrs old, 1026 for 70 yrs old, and 1032 for 71 yrs old. Histograms from these data were fitted to the three 
distributions (gamma, lognormal, and loglogistic) using standard tools from Matlab and Python. As a measure 
of the goodness of fit we used the Kolmogorov-Smirnov  test100,101. For this, we constructed a cumulative distribu-
tion function CDF for each data set (empirical CDF) and compared it to three theoretical CDF corresponding 
to lognormal, loglogistic, and gamma probability densities with the same mean and variance as the original raw 
data. The test consists in determining a Kolmogorov-Smirnov distance, i.e. the maximum absolute deviation DKS 
of the empirical CDF from the theoretical CDF, and then comparing such DKS with a critical value of deviation 
DNb

(P) , which depends on the number of sampling bins Nb and a level of significance P. If DKS < DNb
(P) for a 

given Nb and significance P, then the fit is statistically  significant100. We used the level of significance P = 0.05 
(corresponding to the confidence level of 95% ), and a variable number of bins Nb , either 20, 30, or a maximal 
possible number for a given sample (412 for cingulate cortex, and 256 or 100 for hippocampus). Among the 
three theoretical distributions to which the data were compared, we chose that with the smallest Kolmogorov-
Smirnov distance DKS as the best fit. That best fit often depends on Nb . The code for calculations is provided in 
the Supplementary Information.

Theoretical modeling
Maximization of entropy
We express information content in a population of sizes of dendritic spines as Shannon entropy, which is a stand-
ard tool for estimation of general  information67. Although Shannon entropy H is defined only for discrete stochas-
tic variables, it can be also applied to continuous variables with the help of the so-called differential entropy h, 
which in turn is defined for continuous variables  only61. The basic idea is that any continuous stochastic variable 
x can be decomposed into small bins of length �x , relating probabilities to probability density ρ(x) in those bins. 
This decomposition allows us to approximate Shannon entropy H(x) for discretized continuous variable with 
accuracy �x by differential entropy h(x) = −

∫

dx ρ(x) log2(ρ(x)) via the relation: H(x) ≈ h(x)− log2 �x (see 
Theorem 9.3.1  in61). A direct consequence of this relation is that the amount of information contained in the 
probability distribution ρ(x) of some continuous random variable x ( 0 ≤ x ≤ ∞ ) can be quantified as (102; see 
Eqs. 4.16, 4.26, 4.27 and discussion in this book)

where �x can be viewed as the limit on measurement accuracy that sets the scale for the resolution of x (see 
additionally Eq. (3.11) and related discussion  in71 for a Gaussian case). The appearance of �x in Eq. (1) has also 
a practical necessity for keeping entropy H dimensionless, which is implemented by making the argument of the 
logarithm unitless. (Note that the normalization condition, 

∫∞
0 ρ(x) dx = 1 , must be satisfied, which implies 

that ρ(x) has the units of the inverse of x, and hence also the inverse of �x.)
We consider x to be either spine volume, spine surface area (or PSD area), spine head diameter, or spine 

length. The parameter �x can be also interpreted as a fundamental intrinsic noise amplitude characterizing 
microscopic fluctuations of actin dynamics underlying spine structure, and �x depends on average spine size 
(av. length 〈L〉 , av. area 〈A〉 , and av. volume 〈V〉 ) in the following way (the estimate is given below):

Equivalently, we can write Eq. (2) in a more compact form as �x = c�x�κ , where 〈x〉 denotes the average spine 
size, with κ = 1/2 (length), 3/4 (area), 5/6 (volume), and c is the appropriate constant (with units). This aver-
age individual spine size is a typical spine size, and thus it is assumed that it is the same as the population mean 
spine size (see below). Note that because the noise amplitude �x depends on 〈x〉 , it is generally different in dif-
ferent brain regions. It might be also useful to mention that the physical sense of �x is conceptually similar to 
EPSP uncertainty as in the case of synaptic information  transfer31, or to the temporal width of action potentials 
(temporal resolution) when studying information content in distributions of neural  spikes71.

The formulas in Eq. (2) were derived under the assumption that the length of underlying actin filaments fol-
lows Poisson  distribution103–105. We also performed some analysis when this assumption is relaxed. In this case, 
we took a substitution �x  → �xr = r�x , where r is the parameter ( r ≥ 0 ) characterizing the deviation from 
Poisson distribution (see below, the Sect. “Uncertainty parameter for intrinsic noise amplitude”).

In what follows, we solve the following optimization problem: we want to maximize the entropy for a given 
population mean of x. Putting the mathematical constraint on the mean value of x reflects the constraint coming 
from neuroanatomical and/or metabolical restrictions on spine size. It is important to note that the population 
mean is different in different brain regions, and thus this mathematical constraint is not fixed, but instead it is 

(1)H = −
1

ln(2)

∫ ∞

0
dxρ(x) ln[ρ(x)�x],

(2)�x =







0.084�L�1/2, length (µm)

0.223�A�3/4, area (µm2)

0.226�V�5/6, volume (µm3).
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brain location dependent. Mathematically, this procedure is equivalent to the standard Lagrange optimization 
problem with the Lagrangian L defined as

where 〈x〉 is the population mean (average) of x over the distribution ρ(x) , S is the given mean spine size, and 
� is the Lagrange multiplier. The resulting maximal entropy will be a function of the given mean spine size S.

A standard approach to entropy maximization is to use the Lagrangian given by Eq. (3) (supplemented 
by an additional constraint for probability normalization) and to find the best or optimal probability density 
that maximizes L61. Using that approach, it is straightforward to show that the optimal distribution is expo-
nential, i.e. ρop(x) = e−x/S/S61,71. For this optimal distribution we have that mean 〈x〉 and standard deviation 
SD =

√

�x2� − �x�2 are both equal to S, such that their ratio SD/�x� = 1 . Moreover, the maximal entropy Hmax 
associated with this distribution is

where e is the Euler number ( e ≈ 2.718 ). It is important to stress, that Hmax is the largest possible entropy for all 
possible distributions that are subject to the constraint on mean value of x.

In this study, however, we take a different approach. Instead of finding the optimal probability density, we 
assume three plausible distributions that are motivated by experimental data. All three chosen distributions, i.e. 
gamma, lognormal, and loglogistic, are two-parameter distributions, meaning that the shape of each of them 
depends on two parameters (for instance, these are µ and σ for lognormal density). As a result, entropy and 
Lagrangian in Eq. (3) for each of these distributions can be computed directly, and in each case they depend on 
these two shape parameters. Importantly, since the shape parameters can be uniquely determined by the first two 
moments of x (see below), the entropy in each case can be found exactly by the knowledge of just two quantities: 
population mean and standard deviation of spine sizes (despite the fact that these distributions as such cannot 
be fully characterized by only these two moments). Our approach to entropy maximization for each distribu-
tion consists in maximization of the Lagrangian in Eq. (3) by optimizing respective shape parameters. That 
enables us to find how far a given experimental distribution is from an optimal distribution within a given class 
of probability densities. Interestingly, we find that the maximal entropy for gamma distribution (Eq. 12 below) 
is exactly the same as the one for the “optimal” exponential distribution (in Eq. 4). This is a consequence of the 
fact that exponential distribution is a special case of more general gamma distribution (with α = 1 in Eq. 5). 
This means that the gamma distribution considered here can in principle attain the maximal possible entropy 
across all possible distribution (subject to the constraint on the mean).

Entropy of dendritic spines with gamma distribution
The gamma distribution of a random variable x (spine size) is skewed but it decays fast for large values of x. It 
is defined as

where ρg (x) is the probability density of x, the parameters α and β are some positive numbers, and Ŵ(α) is the 
Gamma function ( Ŵ(1) = 1).

The entropy for the gamma distribution Hg is found from Eqs. (1) and (5), which generates

The integral on the right hand side can be evaluated explicitly with the help of the  formula106

where ψ(α) is the digamma function, defined as ψ(α) = d lnŴ(α)/dα106. Additionally, the average of x for this 
distribution is �x�g = α/β . Combining these results we obtain the entropy Hg as

The standard deviation for the gamma distribution (defined as σg =
√

�x2�g − �x�2g  ) is σg =
√
α/β . We can 

invert the relations for the mean and standard deviations to find the parameters α and β for given experimental 
values of 〈x〉g and σg . The result is:

(3)L = H − �(�x� − S),

(4)Hmax = ln

(

eS

�x

)

/ ln(2),

(5)ρg (x) =
βα

Ŵ(α)
xα−1e−βx ,

(6)Hg (α,β) = −
1

ln(2)

[

ln

(

βα�x

Ŵ(α)

)

− β�x�g + (α − 1)

∫ ∞

0
dxρg (x) ln(x)

]

.

∫ ∞

0

dx xα−1e−βx
ln(x) = Ŵ(α)[ψ(α)− ln(β)]/βα

(7)Hg (α,β) =
1

ln(2)

[

α + (1− α)ψ(α)+ ln

(

Ŵ(α)

β�x

)]

.

(8)α =
( �x�g

σg

)2

,
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Note that the entropy Hg (α,β) can become negative for α ≪ 1 , since in this limit the digamma function behaves 
as ψ(α) ≈ −1/α . This situation corresponds to the cases in which σg ≫ �x�g , i.e. to the data points for which 
standard deviation is much greater than the mean.

With Eqs. (8) and (9) entropy Hg can be alternatively expressed as a function of population mean 〈x〉g and 
standard deviation σg . This is the fact we explore in determining entropy for experimental data in Tables 2, 3, 
4 and 5, where we have only the means and standard deviations of empirical spine sizes. More precisely, with a 
slight rearrangement we can rewrite Eq. (7) as

where we used Eqs. (8) and (9) such that �x�g = α/β , and we introduced the function G(α) defined as 
G(α) = (1− α)[ψ(α)− 1] + ln (Ŵ(α)/α) . The important point is that G(α) ≤ 0 for all α > 0 , which implies 
that the entropy is bounded from above by the following inequality

The right hand side of the above equation is the maximal value of entropy for a given mean 〈x〉g . The nonposi-
tivity of the function G(α) follows from the fact that G(α) achieves a single maximum for α = 1 , and G(1) = 0 
(derivative G′(α) = (α − 1)[1/α − ψ ′(α)] is positive for α < 1 , and negative for α > 1 , because ψ ′(α) > 1/α
;106). Note that entropy reaches its maximal value for the parameter α = 1 , which corresponds to the optimal 
ratio of standard deviation to mean of spine sizes given by σg/�x�g = 1 (see Eq. 8).

Alternatively, we can find the maximal entropy of the gamma distribution for a given mean size 〈x〉g by 
solving the Lagrange optimization problem defined in Eq. (3) with entropy Hg (α,β) as in Eq. (7). The optimal 
parameters α and β are found by setting ∂L/∂α = 0 , ∂L/∂β = 0 , and ∂L/∂� = 0 . As a result, their optimal values 
are α0 = 1 , β0 = 1/S , and �0 = −(1− κ)/S . For this values, the maximal entropy of the gamma distribution is:

and we see that Hg ,m is exactly the same as the upper bound of entropy in Eq. (11), if we set �x�g = S . Moreover, 
Hg ,m is also exactly equal to the maximal entropy Hmax for all possible distributions of x, which is given by Eq. 
(4). Interestingly, the upper bound of entropy Hg ,m depends logarithmically on mean spine size S.

Entropy of dendritic spines with lognormal distribution
The lognormal distribution of a random variable x is both skewed and has a heavy tail, and is defined as

where ρln(x) is the probability density of x, and µ , σ are some parameters ( σ > 0).
The entropy of the lognormal distribution Hln can be determined by combining Eqs. (1) and (13). Using the 

substitution y = ln(x) the corresponding integrals can be evaluated similarly as in the case of Gaussian distribu-
tion, which is a standard procedure. As a result, the entropy of lognormal distribution takes the form

The average of x for this distribution is �x�ln = exp(µ+ σ 2/2) , and the standard deviation ( σln =
√

�x2�ln − �x�2ln ) 

is σln = �x�ln
√

eσ
2 − 1 . By inverting these relations, we find

Equations (15, 16) allow us to find the characteristic parameters µ and σ defining the lognormal distribution from 
the experimental values of mean and standard deviation for the variable x, i.e. 〈x〉ln and σln . Consequently, we can 
also express the entropy for lognormal distribution in Eq. (14) in terms of these empirical means and standard 
deviations, which is relevant for empirical data in Tables 2, 3, 4 and 5. The explicit dependence of entropy Hln 
on empirical average spine size 〈x〉ln is

(9)β =
�x�g
σ 2
g

.

(10)Hg (�x�g ,α) =
1

ln(2)

[

ln

(

e�x�g
�x

)

+ G(α)

]

,

(11)Hg (�x�g ,α) ≤ ln

(

e�x�g
�x

)

/ ln(2).

(12)Hg ,m = ln

(

eS

�x

)

/ ln(2) = Hmax ,

(13)ρln(x) =
1

√
2πσx

exp

[

−
(ln x − µ)2

2σ 2

]

,

(14)Hln(µ, σ) =
1

ln(2)

[

1

2
+ µ+ ln

(√
2πσ

�x

)]

.

(15)µ = ln





�x�2ln
�

�x�2ln + σ 2

ln



 ,

(16)σ =
√

ln
(

1+ (σln/�x�ln)2
)

.
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This expression allows us to find immediately the maximal value of entropy, i.e. to determine its upper bound 
for a given mean 〈x〉ln , which is

The above inequality follows from the fact that (1− σ 2 + ln σ 2) ≤ 0 for all σ 2 , which is a direct result of a well 
known inequality ln(1+ z) ≤ z valid for z ≥ −1 (with substitution z = σ 2 − 1 ). The equality in Eq. (18) is 
reached for the parameter σ = 1 , which implies that the entropy of spine sizes is maximal for the optimal ratio 
of their standard deviation to mean σln/�x�ln =

√
e − 1 = 1.31 (see Eq. 16).

Alternatively, we can find the maximal entropy of the lognormal distribution for a given population mean 
〈x〉ln as before, i.e. by solving the Lagrange optimization problem defined in Eq. (3) with Hln(µ, σ) as in Eq. (14). 
The optimal parameters µ and σ are found by setting ∂L/∂µ = 0 , ∂L/∂σ = 0 , and ∂L/∂� = 0 . Their optimal 
values are: µ0 = −0.5+ ln(S) , σ0 = 1 , and �0 = −(1− κ)/S . For this values, the maximal entropy of the log-
normal distribution is:

and it is clear that Hln,m is the same as the upper bound of entropy in Eq. (18), if we set �x�ln = S . Note that Hln,m 
depends logarithmically on mean spine size S, similar to Hg ,m . However, we have Hln,m < Hg ,m = Hmax , which 
is a consequence of the general result represented by Eq. (4) that all distributions have lower entropies than 
gamma distribution for a given mean.

Entropy of dendritic spines with loglogistic distribution
The loglogistic distribution of a random variable x is visually similar to the lognormal distribution with heavy 
tail, except that it decays as a power law for very large x and hence has a longer tail. The loglogistic probability 
density ρll is defined as

where a and b are some positive parameters. Note that for x ≫ a the probability density ρll behaves asymptoti-
cally as ρ(x)ll ∼ 1/xb+1 , which is a much slower decay than for the gamma distribution.

The entropy of the loglogistic distribution Hll can be determined by combining Eqs. (1) and (20). Conse-
quently, we have

The first integral on the right hand side (without the prefactor (b− 1) ) is performed by the substitution 
y = (x/a)b . This transforms that integral into

which is equal to  0106. The second integral on the right hand side (without the prefactor 2) can be transformed, 
using the same substitution, into

which has a value equal to  1106. As a result, the entropy of loglogistic distribution takes the form

The mean 〈x〉ll and standard deviation σll for this distribution both exist, i.e. they are finite, provided the param-
eter b > 2 . In this case, we have

(17)Hln(�x�ln, σ) =
1

ln(2)

[

ln

(√
2π�x�ln
�x

)

+
1

2
(1− σ 2 + ln σ 2)

]

.

(18)Hln(�x�ln, σ) ≤ ln

(√
2π�x�ln
�x

)

/ ln(2).

(19)Hln,m = ln

(√
2πS

�x

)

/ ln(2) = Hmax − 0.117,

(20)ρll(x) =
b

a

(x/a)b−1

[1+ (x/a)b]2
,

(21)Hll(a, b) =
1

ln(2)

[

ln
( a

b�x

)

− (b− 1)

∫ ∞

0
dx ρll(x) ln

(x

a

)

+ 2

∫ ∞

0
dx ρll(x) ln

(

1+
(x

a

)b
)]

.

(1/b)

∫ ∞

0

dy
ln(y)

(1+ y)2
,

∫ ∞

0

dy
ln(1+ y)

(1+ y)2
,

(22)Hll(a, b) =
1

ln(2)

[

2+ ln
( a

b�x

)]

.

(23)�x�ll =
πa/b

sin(π/b)
,
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The inverse relations between the parameters a, b and 〈x〉ll , σll are given by

The first equation has to be solved numerically, for given empirical values of 〈x〉ll , σll . The second equation deter-
mines a once the parameter b is known.

Equations (23, 24) render the entropy to depend alternatively on 〈x〉ll and σll , which allows us to determine 
entropy for the empirical values of means and standard deviations in Tables 2, 3, 4 and 5. In particular, since 
a/b = (�x�ll/π) sin(π/b) , we can express the entropy explicitly as a function of mean 〈x〉ll in the form

This implies that the maximal value of entropy is represented by the following inequality

which follows from the fact that ln(sin π
b ) ≤ 0 , as 0 ≤ sin( πb ) ≤ 1 for b ≥ 2 . The maximal entropy is asymptoti-

cally approached for b  → 2 , or equivalently if the ratio σll/�x�ll �→ ∞ (see Eq. 25). In practice, this means that 
empirical entropy never reaches exactly its maximal value, but it gets closer to its maximum the larger the ratio 
of standard deviation to the mean of spine sizes.

Alternatively, the maximal value of the entropy for loglogistic distribution for a given mean 〈x〉ll is found by 
solving the Lagrange optimization problem defined in Eq. (3) with Hll as in Eq. (22). The optimal parameters a 
and b are found by setting ∂L/∂a = 0 , ∂L/∂b = 0 , and ∂L/∂� = 0 . Their optimal values are a0 = 2S/π , b0 = 2 , 
and �0 = −(1− κ)/S . For this values, the maximal entropy of the loglogistic distribution is:

and it is apparent that Hll,m is the same as the upper bound of entropy in Eq. (28), if we set �x�ll = S . Note that 
Hll,m < Hg ,m = Hmax , as expected, and additionally Hll,m < Hln,m . Moreover, the upper bound entropy Hll,m 
depends logarithmically on S, similar to the cases for gamma and lognormal distributions.

Definition of entropy efficiency
Entropy efficiency η is defined as the ratio of the continuous entropy ( Hln,Hll ,Hg ) to the theoretical maxi-
mal entropy ( Hmax) . Thus, for a specific probability distribution we have

where Hmax is given by Eq. (4), and the index i denotes one of the distributions (either ln, ll, or g).

Estimation of the intrinsic noise amplitude �x

Here we provide a justification for Eq. (2), which appeared above. Empirical data indicate that the size and shape 
of a dendritic spine is directly controlled by cytoskeleton, which consists mainly of the polymer filaments called 
F-actin107. Polymer F-actin is composed of many small monomers called G-actin, each with a characteristic size 7 
 nm108. This polymer has two characteristic turnover rates, one fast ∼ 1.2 min−1109, and second slow ∼ 0.06 min−1

110, which suggests that the changing length of F-actin (addition or removal of monomers) can cause either rapid 
or slow fluctuations in the size and shape of a dendritic  spine110,111. Therefore, we assume that the amplitude of 
F-actin length fluctuations sets the scale for the intrinsic noise amplitude in an individual spine size, which we 
denote as �x . We consider 3 separate cases for �x related to spine length/diameter ( �x1D ), spine area ( �x2D ), 
and spine volume ( �x3D).

1D case
Let L be the length of a spine (either spine head diameter or spine neck length). Since F-actin underlies the spine 
structure and sets the scale for length L, we can approximate L as a sum of several F-actin polymers in a row 
spanning the spine linear  dimension112, i.e. L =

∑K
i=1 niξ , where K is the number of polymers, ni is the number 

of monomers (G-actin) in the i-th polymer, each of length ξ = 0.007 µm108. This implies the equality 
L = ξ

∑K
i=1 ni = ξNK , where NK is the total number of monomers in all K polymers setting the spine linear 
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dimension. The spine length L fluctuates due to variability in NK , which is caused by the fluctuations in the 
number of monomers ni in each polymer. We make the simplest assumption that the fluctuations in ni are gov-
erned by the Poisson stochastic process, which is consistent with empirical distributions of F-actin length in 
dendritic  spines103, as well as with the basic models of polymer  growth104,105. In fact, the process of addition and 
removal of monomers in a polymer chain can be described by a simple birth-death model, which naturally 
generates a Poisson distribution for the polymer  length113. Since NK is the sum of individual ni , each with a Pois-
son distribution, it also has a Poisson  distribution61. Consequently, we assume that NK has a stationary probability 
distribution of the form P(NK ) = e−ννNK /NK ! , where ν is the intensity parameter ( ν can be different for different 
dendritic spines, but it does not matter for this analysis, since we consider here an individual “typical” spine). 
This implies that we have for the mean and standard deviation of NK at the steady-state the following relations: 
�NK � = ν , and 

√

�N2
K � − �NK �2 =

√
ν , which leads to fluctuations in length L characterized by

and

We identify the intrinsic noise amplitude �x1D in this 1D case with the standard deviation of L, i.e. 
�x1D =

√

�L2� − �L�2 . The last step is to combine Eqs. (31) and (32) such that to remove the unknown param-
eter ν , after which we obtain

where 〈L〉 and �x1D are in µ m. Note that the noise amplitude �x1D in 1D case is proportional to the square root 
of mean spine length 〈L〉.

2D case
We assume, in agreement with the data, that the spine surface area is dominated by the surface area of the spine 
head, which is approximately a sphere. Thus the spine area A is approximately A = πD2 , where D is both the 
spine head diameter and (in analogy to 1D case) the sum of the lengths of NK F-actin polymers spanning the 
spine head, i.e. we have D = NKξ . Furthermore, we have for the mean area �A� = πξ 2�N2

K � , and for the standard 

deviation of area 
√

�A2� − �A�2 = πξ 2
√

�N4
K � − �N2

K �2.
The moments of NK for the Poisson distribution with the intensity parameter ν are: �N2

K � = ν2 + ν , and 
�N4

K � = ν4 + 6ν3 + 7ν2 + ν , and thus we have an equation for the unknown parameter ν:

Since the value of πξ 2 is 1.5 · 10−4 µm2 , and this is much smaller than any recorded value of spine (or PSD) 
area 〈A〉 in Table 3 (by a factor of at least 200), we can safely assume that the parameter ν ≫ 1 (mean of the total 
number of monomers spanning the spine head diameter much bigger than 1). This implies that we can neglect 
the linear term on the left in Eq. (34), and obtain

Similarly, for the standard deviation of A we have 
√

�A2� − �A�2 = πξ 2
√
4ν3 + 6ν2 + ν ≈ 2πξ 2ν3/2 . We identify 

the intrinsic noise amplitude �x2D in this 2D case with the standard deviation of A, and thus obtain

where the average spine area 〈A〉 and �x2D are in µm2 . Note that the noise amplitude �x2D in 2D case is pro-
portional to 〈A〉3/4.

3D case
We make a similar assumption as in 2D case, that volume V of a spine is dominated by the volume of spine head, 
which is approximately a sphere. Repeating similar steps as before, we have for the mean volume

and for the standard deviation of volume

where we used the fact that ν ≫ 1 , and the following moments of the Poisson distribution: �N3
K � = ν3 + 3ν2 + ν , 

and �N6
K � = ν6 + 15ν5 + 65ν4 + 90ν3 + 31ν2 + ν.
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Combining of the equations for the mean and standard deviation, and identifying the intrinsic noise ampli-
tude �x3D in this 3D case with the volume standard deviation, we obtain

where the average spine volume 〈V〉 and �x3D are in µm3 . Note that the noise amplitude �x3D in 3D case is 
nearly a linear function of mean spine volume. This is a very similar result to the empirical finding  in17, where 
it was found that the standard deviation of intrinsic spine fluctuations could be well fitted to a linear function 
of spine volume.

Uncertainty parameter for intrinsic noise amplitude
The above relations for the intrinsic noise amplitude �x , summarized in Eq. (2), were derived under the assump-
tion of Poisson distribution for the number of actin molecules spanning the linear dimension of the dendritic 
spine. Here, we introduce the uncertainty parameter r related to intrinsic noise amplitude as a measure of 
deviation from the Poisson distribution. We define the renormalized noise amplitude �xr , which is used in 
calculations of the impact of noise uncertainty on the results, as �xr = r�x , i.e. we rescale the original noise 
amplitude or resolution by r. For r ≪ 1 , the effective noise in spine size is very small, while for r ≫ 1 , the effec-
tive noise in very large.

Deviation from optimality of the empirical parameters characterizing spine size distributions
We introduce a measure of deviation of the parameters characterizing a given distribution from their optimal 
theoretical values, as a relative combined error from optimality.

For the gamma distribution the deviation Dg is:

For the log-normal distribution the deviation Dln is:

and for the log-logistic distribution the deviation Dll is:

In Eqs. (38, 39 and 40) the parameters α0,β0,µ0, σ0 , and a0, b0 are the optimal parameters for a given distribution. 
The smaller the value of D, the closer the empirical distribution is to its maximal entropy. For example, if both 
α and β deviate from their respective optimal values by 50% , then Dg = 1/2 , or the deviation is 50% in Tables 2, 
3, 4 and 5. Similarly for the rest of the parameters.

Alternative measure of optimality: maximization of entropy density
As an alternative to the above approach with the maximization of the entropy for a given average spine size, we 
consider below the maximization of the density of entropy. The first measures the average number of bits for a 
typical spine size, while the second provides average number of bits per unit of spine volume (or surface area, 
or length). More precisely, we want to analyze the optimization problem in which we maximize the entropy of 
spine sizes per average spine size.

The fitness function F in this case takes the form:

where S is the mean and σs is the standard deviation of spine size. Interestingly, the function F displays maxima 
for each of the three probability densities. We look for optimal S and σs for which F is maximized, i.e. when 
∂F/∂S = (1/S)[∂H/∂S −H/S] = 0 , and ∂F/∂σs = (1/S)∂H/∂σs = 0.

For the gamma distribution, using Eq. (10) for H with �x�g = S , we obtain the optimal mean S0 and standard 
deviation σs,0 as S0 = σs,0 = (ce−κ )1/(1−κ) , where c is the numerical parameter relating �x and S in Eq. (2), i.e. 
�x = cSκ . It can be easily verified that S0 < �x(S0) , and thus the optimal spine size is smaller than its intrinsic 
noise. The maximal value of the fitness function for gamma distribution, or the upper bound on entropy density, 
Fg ,m = H(S0, σs,0)/S0 , is
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For the lognormal distribution, using Eq. (17), we obtain the following optimal mean S0 = e(c/
√
2π)1/(1−κ) , 

and standard deviation σs,0 =
√
e − 1S0 . Note that for this distribution S0 is also smaller than �x(S0) . The cor-

responding maximal entropy density is

For the loglogistic distribution, using Eq. (27) with �x�ll = S , we have the optimal S0 = (πc/e(1+κ))1/(1−κ) , and 
σs,0 = ∞ . Additionally, S0 is again smaller than �x(S0) . The maximal entropy density for loglogistic distribution is

Note that generally we have the following inequalities: Fg ,m > Fln,m > Fll,m , which means that gamma distribu-
tion provides the highest maximal information density. Moreover, for all three distributions optimal spine size is 
smaller than its corresponding intrinsic noise �x , which indicates that maximal entropy density is not attainable 
for empirical spines. In other words, real spines are too large to be optimized for entropy density.

Data availability
All the data are included in the main body of the paper or in the Supplementary Information.
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