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Using spectral and temporal 
filters with EEG signal to predict 
the temporal lobe epilepsy 
outcome after antiseizure 
medication via machine learning
Youmin Shin 1,2,10, Sungeun Hwang 3,10, Seung‑Bo Lee 4, Hyoshin Son 5, Kon Chu 6,7, 
Ki‑Young Jung 6,7, Sang Kun Lee 6,7, Kyung‑Il Park 7,8,10* & Young‑Gon Kim 1,9,10*

Epilepsy is a neurological disorder in which the brain is transiently altered. Predicting outcomes 
in epilepsy is essential for providing feedback that can foster improved outcomes in the future. 
This study aimed to investigate whether applying spectral and temporal filters to resting‑state 
electroencephalography (EEG) signals could improve the prediction of outcomes for patients taking 
antiseizure medication to treat temporal lobe epilepsy (TLE). We collected EEG data from a total of 46 
patients (divided into a seizure‑free group (SF, n = 22) and a non‑seizure‑free group (NSF, n = 24)) with 
TLE and retrospectively reviewed their clinical data. We segmented spectral and temporal ranges with 
various time‑domain features (Hjorth parameters, statistical parameters, energy, zero‑crossing rate, 
inter‑channel correlation, inter‑channel phase locking value and spectral information derived from 
Fourier transform, Stockwell transform, and wavelet transform) and compared their performance by 
applying an optimal frequency strategy, an optimal duration strategy, and a combination strategy. 
For all time‑domain features, the optimal frequency and time combination strategy showed 
the highest performance in distinguishing SF patients from NSF patients (area under the curve 
(AUC) = 0.790 ± 0.159). Furthermore, optimal performance was achieved by utilizing a feature vector 
derived from statistical parameters within the 39‑ to 41‑Hz frequency band with a window length 
of 210 s, as evidenced by an AUC of 0.748. By identifying the optimal parameters, we improved 
the performance of the prediction model. These parameters can serve as standard parameters for 
predicting outcomes based on resting‑state EEG signals.

Epilepsy is a neurological disorder in which transient alteration of brain functions due to hyperexcitable neurons 
and their network causes  seizures1,2. Patients with epilepsy suffer from recurrent paroxysmal symptoms, such 
as loss of consciousness, tonic‒clonic seizures, and behavioral  changes3, as well as persistent comorbidities, 
such as depression and anxiety. Thus, epilepsy is a highly burdensome disease. The causes of epilepsy include 
nutritional status during pregnancy, complications during childbirth, head injury, exposure to toxic substances, 
brain infections, tumors, strokes, and degenerative changes in the  brain4–6.

Antiseizure medication (ASM) is an initial option and the mainstay in epilepsy  treatment7. While more than 
30 ASMs have been developed and  utilized8, approximately one-third of epilepsy patients are still medically 
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 refractory9–11. Among medically refractory patients, surgically remediable patients undergo resection of the 
seizure focus area. The International League Against Epilepsy (ILAE) defines medically refractory epilepsy as 
the persistence of seizures even after adequate trials of two  ASMs12. However, given the paucity of informa-
tion regarding seizures induced by cognitive problems, nocturnal seizures, and amnesia after  seizures13, more 
objective and commonly utilized tools (such as EEG) are needed. Although EEG is used to diagnose and assess 
clinical  status14, conventional visual readings of EEG recordings might be insufficient for evaluating brain status, 
especially for determining future outcomes.

More than 60% of newly diagnosed epilepsy patients enter long-term remission; therefore, predicting the 
outcome of epilepsy is crucial not only for patients but also for their  families10. Additionally, predicting outcomes 
in epilepsy is essential for providing feedback that can lead to improved  outcomes15.

Accordingly, many recent machine learning (ML) studies have used resting-state EEG data to predict the 
long-term outcomes (i.e., seizure-free (SF) or non-seizure-free (NSF)) of ASM treatment. These data can be used 
as a tool to characterize the neurophysiological effects of ASMs in epilepsy patients. Zhang et al.16 proposed a 
prediction model that used sample entropy and a support vector machine (SVM) to predict the attainment of SF 
status in epilepsy patients treated with levetiracetam (LEV). Croce et al.17 used a partial least square regression 
with standard deviation as a feature. Ricci et al.18 employed the power spectral density and phase locking value 
to measure brain activity and connectivity. These three studies were conducted among epilepsy patients who 
received LEV as their first ASM. Additionally, Lanzone et al.19 examined the effect of perampanel in patients with 
focal epilepsy. Notably, all these studies focused on spectral analysis of the delta (0.5–4 Hz), theta (4–7.5 Hz), 
alpha (7.5–12 Hz), beta (12–30 Hz), and gamma (30–60 Hz) bands; this method is called pharmaco-EEG20 
and involves the quantitative analysis of the EEG data to document the effect of drugs. However, more specific 
frequency bands should be investigated to optimize the predictive performance of the  model21. In addition 
to spectral analysis, temporal analysis should also be  performed22–24. Moreover, the optimal features should 
be  explored16. From a clinical perspective, the prediction of outcomes should be performed for individuals 
undergoing both polytherapy and monotherapy, as polytherapy users account for approximately one-third of 
all epilepsy  patients25. Furthermore, predictions in the context of monotherapy, especially for one type of drug, 
do not reflect real-world practice.

In the present study, we adopted ML classifiers to predict patient outcomes and to identify the optimal spectral 
and temporal features. We implemented the random forest (RF)26 model in the main experiment, while linear 
discriminant analysis (LDA)27, XGBoost (XGB)28, and CatBOFTSoost (CATB)29 were used for the additional 
experiment.

The goal of this study was to use resting-state EEG signals to determine whether spectral and temporal filters 
can be used to predict the outcomes of patients with temporal lobe epilepsy (TLE), which is the most common 
type of focal epilepsy. Four different analysis strategies were designed with various time-domain features: the 
optimal frequency strategy (OFS), optimal time strategy (OTS), optimal frequency and time strategy (OFTS), 
and no strategy (NS). Finally, some interpretations of the experimental results were provided based on estab-
lished theories.

Results
Comparison of the effects of the analysis strategies
The effect of each analysis strategy was compared based on the classification performance of all fea-
ture groups combined (Fig.  1A) and each feature group separately (Fig.  1B). The box plot of 
the area under the receiver operating characteristic curve (AUC) values for each analysis strat-
egy shows that the OFTS strategy had significantly higher AUC values (0.790 ± 0.159) than the 
OTS strategy (0.631 ± 0.170, pOFTS−OTS < 0.001, Cliff ′s deltaOFTS−OTS = 0.526) , the OFS strat-
egy (0.629 ± 0.160, pOFTS−OFS < 0.001, Cliff ′s deltaOFTS−OFS = 0.507 )  and NS (0.575 ± 0.174, 
pOFTS−NS < 0.001, Cliff ′s deltaOFTS−NS = 0.611) . The bar charts show that the AUC of each feature group 
under the OFTS strategy was higher than that under the other strategies.

Comparison of the performance of time‑domain features
The classification performance of each time-domain feature under the OFTS strategy is presented in Table 1. 
Feature group F yielded the best AUC (0.838 ± 0.204), and Feature group B yielded the best accuracy (ACC; 
0.824 ± 0.135), as shown in Table 1. Since Feature group B showed the highest performance on all metrics except 
for the AUC, Feature group B was evaluated with various ML classifiers. In this experiment, XGB showed the 
highest performance (AUC: 0.765 ± 0.179, ACC: 0.827 ± 0.112) on all metrics except for the true negative rate 
(TNR), positive predictive value (PPV), and negative predictive value (NPV). Detailed information about these 
analyses is provided in Supplementary Table 1.

Comparison of the major feature values between SF and NSF patients
Figure 2A shows topology plots demonstrating the ability of Feature group B (statistical parameters) to distin-
guish between the SF and NSF groups. The kurtosis and maximum value were extracted from the EEG signals of 
all TLE patients (SF group: 22 patients, NSF group: 24 patients), and the EEG channel-wise average of patients was 
used to obtain the kurtosis and maximum value. Among the statistical parameters for Feature group B, the kur-
tosis and maximum value were selected since the values showed significant differences between the SF and NSF 
groups ( pkurtosis = 0.002 , Cliff ′sdeltaKurtosis = 0.576 , pmax < 0.001, Cliff ′sdeltamax = 0.570 ) (Fig. 2B, C). The 
patterns of the topology plots were compared quantitatively using cosine similarity (CS)30 and Euclidean distance 
(ED)31. For kurtosis, compared with NS, the OTS strategy showed a slight increase in CS ( CSOTS−NS = 0.013 ) 
and ED ( EDOTS−NS = 0.342 ), but the OFS strategy showed an increase in CS ( CSOFS−NS = 0.169 ) and a decrease 
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in ED ( EDOFS−NS = − 0.023 ). The OFTS strategy yielded the highest ED (4.929), with a CS (0.936) close to 1. 
At the maximum value, all strategies yielded CS values close to 1. Furthermore, ED was lower under the OTS 
strategy ( EDOTS−NS = − 0.212 ) and higher under the OFS strategy ( EDOFS−NS = 2.199 ) than under NS. The 
OFTS strategy yielded the highest ED (5.935), similar to the findings for kurtosis (Supplementary Table 2).

Optimal EEG window length and optimal frequency band of the EEG signals for SF prediction
Figure 3A and B show the variance in predictive performance based on the window length of the resting-state 
EEG signal (average AUC of the four features at each window length is shown in Fig. 3A, the AUC of Feature 
group B at each window length is shown in Fig. 3B). As shown in Fig. 3A, the highest AUC of the four features at 
each window length was observed at 210 s (0.673 ± 0.076); this value was significantly different from that at other 
window lengths except 120, 150, 180, 240, and 270 s. As shown in Fig. 3B, the highest AUC of Feature group B at 
each window length was observed at 150 s (0.838 ± 0.102); this value was significantly different from that at almost 

Figure 1.  Comparative Analysis of AUC Values Across Different Analysis Strategies and Features. (A) Boxplot 
representation showing the aggregate AUC values for each analysis strategy. This part of the figure combines 
results from distinct nine feature groups, with each strategy displaying 45 data points. These points represent 
the AUC values obtained from fivefold cross-validation for each of the feature groups, thereby illustrating the 
collective performance across multiple validation scenarios. (B) Bar charts depicting the AUC values for each 
individual feature under the different analysis strategies. The chart provides a feature-specific comparison, 
illustrating how each feature group contributes to the overall efficacy of the strategies.

Table 1.  The classification performance of each time-domain feature under the optimal frequency and time 
strategy. Significant values are in [bold]. The optimal frequency band and window length for each feature 
were as follows. Values in bold represent the best results within each column. Feature group A: frequency of 
1–3 Hz, length of 28 s; Feature group B: frequency of 39–41 Hz, length of 210 s; Feature group C: frequency of 
3–5 Hz, length of 270 s; Feature group D: frequency of 42–44 Hz, length of 14 s; Feature group E: frequency 
of 22–24 Hz, length of 270 s; Feature group F: frequency of 37–39 Hz, length of 300 s; Feature group G: 
frequency of 27–29 Hz, length of 150 s; Feature group H: frequency of 31–33 Hz, length of 150 s and Feature 
group I: frequency of 36–38 Hz, length of 180 s. AUC, area under the receiver-operating characteristic curve; 
ACC, accuracy; TPR, true positive rate; TNR, true negative rate; PPV, positive predictive value; NPV, negative 
predictive value.

AUC ACC F1 score TPR TNR PPV NPV

Feature group A 0.751 ± 0.097 0.668 ± 0.111 0.706 ± 0.086 0.658 ± 0.091 0.706 ± 0.135 0.691 ± 0.030 0.647 ± 0.034

Feature group B 0.748 ± 0.163 0.824 ± 0.135 0.867 ± 0.076 0.801 ± 0.020 0.794 ± 0.071 0.800 ± 0.076 0.801 ± 0.158

Feature group C 0.789 ± 0.185 0.656 ± 0.089 0.644 ± 0.091 0.658 ± 0.135 0.665 ± 0.030 0.654 ± 0.131 0.644 ± 0.157

Feature group D 0.778 ± 0.162 0.646 ± 0.147 0.658 ± 0.091 0.665 ± 0.156 0.647 ± 0.034 0.644 ± 0.104 0.633 ± 0.184

Feature group E 0.808 ± 0.212 0.783 ± 0.186 0.766 ± 0.109 0.748 ± 0.051 0.761 ± 0.104 0.738 ± 0.051 0.748 ± 0.073

Feature group F 0.838 ± 0.048 0.734 ± 0.093 0.748 ± 0.036 0.723 ± 0.131 0.718 ± 0.157 0.748 ± 0.073 0.766 ± 0.109

Feature group G 0.786 ± 0.204 0.773 ± 0.120 0.766 ± 0.109 0.738 ± 0.051 0.748 ± 0.073 0.766 ± 0.109 0.766 ± 0.109

Feature group H 0.784 ± 0.152 0.643 ± 0.133 0.633 ± 0.184 0.654 ± 0.034 0.692 ± 0.261 0.654 ± 0.034 0.658 ± 0.123

Feature group H 0.825 ± 0.143 0.757 ± 0.101 0.748 ± 0.073 0.766 ± 0.109 0.753 ± 0.036 0.761 ± 0.104 0.766 ± 0.020
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all other window lengths. Detailed information regarding these analyses is shown in Supplementary Table 3. 
Figure 3C shows the AUC of each frequency band at the optimal EEG window length for Feature 2. The highest 
AUC in the low gamma band (frequency band of 39–41 Hz) was 0.748 ± 0.163, and the AUC showed a tendency 
to increase from the low-frequency band to the high-frequency band. In particular, it was found that the high 

Figure 2.  (A) Topology plots for each analysis strategy using the kurtosis and maximum value of Feature 2. 
Each topology plot consisted of the average value of each group (seizure-free (SF) or non-seizure-free (NSF)). 
(B, C) Comparison of SF vs. NSF groups according to the kurtosis (B) and the maximum value (C) under OFTS 
for each patient. For each patient’s kurtosis and maximum values in (B, C), the average for all EEG channels was 
used. Asterisks indicate that the p value is less than 0.05.
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beta (beta 3; AUC = 0.645 ± 0.050) and low gamma bands (AUC = 0.668 ± 0.057) showed better performance than 
the other frequency bands (delta: AUC = 0.522 ± 0.005, theta: AUC = 0.520 ± 0.100. alpha: AUC = 0.509 ± 0.131, 
beta1: AUC = 0.600 ± 0.047, beta2: AUC = 0.525 ± 0.085).

Discussion
In this study, we showed the effects of using spectral and temporal filters on the prediction of outcomes among 
patients with TLE. Our main findings are as follows. (1) When predicting the outcome of TLE patients using 
resting-state EEG signals, simultaneously optimizing the spectral and temporal ranges greatly improved perfor-
mance. (2) When the EEG window length is greater than 2 min, using the gamma band and statistical param-
eters (especially the kurtosis and the maximum value) as features had a substantial impact on the prediction 
performance.

Synergy of spectral and temporal filters
We evaluated the use of each analysis strategy to compare and investigate the effect of spectral and temporal 
filters on prediction performance. When only one filter (spectral or temporal) was optimized, the performance 
was increased compared to the scenario in which no filer is optimized; however, the performance was further 
improved when both filters were optimized (Fig. 1). These results suggest that spectral and temporal filters 
must be used together to achieve a significant increase in performance, especially when using long-term EEG 
signals such as resting-state EEG. Additionally, we quantitatively compared the topology plot of each analysis 
strategy in terms of CS and ED, which represent the similarity of spatial patterns and the difference between 
the patterns, respectively. When the spectral filter was optimized, the CS between the two groups (SF and NSF) 
increased, which means that these groups had similar spatial patterns. The temporal filter seemed to be related 
to ED, indicating an increase in the intensity of the patterns; ED increased substantially when the spectral filter 
was applied. These results also show that synergy in the similarities of spatial patterns (CS and ED) occurs when 
the spectral and temporal filters are optimized simultaneously (Supplementary Table 2).

Appropriate optimal EEG window length and EEG frequency band for SF prediction
As shown in Fig. 3A and B, we found that increasing the window length of the resting-state EEG signals to greater 
than 2 min led to a significant improvement in performance. We believe that the discriminative power of features 
could (1) exist in a specific section of the EEG signals or (2) occur over a specific length of EEG signals (or both). 
As resting-state EEG involves no specific stimulus or  action32, it is expected that the discriminative power of 
features would occur over a specific length of time rather than in a specific section.

As shown in Fig. 3C, we compared the SF prediction performances within narrow frequency bands. The 
use of the low gamma band (30–50 Hz) with Feature 2 (statistical parameters) led to a higher predictive value.

Figure 3.  (A) Average performance (AUC) for all feature groups with each EEG window length on the optimal 
frequency band. Asterisks indicate that the p value is lower than 0.05 compared with the AUC at 270 s. (B) 
Performance (AUC) of Feature 2 on the optimal frequency band at each EEG window length. Asterisks indicate 
that the p value is lower than 0.05 compared with the AUC at 150 s. (C) Performance (AUC) of Feature 2 at 
the optimal EEG window length for each frequency band. The frequency range of each band is as follows: 
delta band, 0.1–4 Hz; theta band, 4–8 Hz; alpha band, 8–12 Hz; beta1 (low beta) band, 12–16 Hz; beta2 (beta) 
band, 16–20 Hz; beta3 (high beta) band, 20–30 Hz; and low gamma band, 30–50 Hz. The asterisk indicates the 
frequency band with the highest performance.
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Strengthening or weakening of cognitive function is one of the side effects of ASM treatment, which is sec-
ondary to the intended purpose of seizure  control33–35. Although it is well known that long-term treatment with 
ASMs can adversely affect cognitive functions, such as attention, vigilance, and psychomotor  speed36,37, some 
ASMs (e.g., carbamazepine, lamotrigine, valproate) have positive psychotropic  effects38.

EEG modulation in the gamma band (> 30 Hz), has been shown to be correlated with large-scale brain net-
work  activity39. In particular, modulation in this band is known to play a crucial role in cognitive processes (e.g., 
working memory, attention, and perceptual grouping) and is thus assumed to reflect the consciousness  level40,41.

Additionally, the EEG modulation in the gamma band was reflected in the kurtosis and the maximum value. 
One phenomenon—namely, sharp wave ripples—may account for the processes assessed by kurtosis and maxi-
mum values. Sharp wave ripples, which support the consolidation of recently acquired memories or the planning 
of future actions, consist of several spectral components: a slow sharp wave (5–15 Hz), a high-frequency “ripple” 
oscillation (150–200 Hz), and a slow “gamma” oscillation (20–40 Hz). The fusion of sharp wave ripples could also 
be reflected as increased power in the slow gamma  band42. These prior findings lend credibility to our results 
with respect to the importance of low gamma and Feature 2.

Limitations and future work
Our study has several limitations. First, our analysis was based on individual EEG segments for each patient. We 
only drew segments once for all window lengths because we were comparing performance across window lengths, 
and thus, we suspected that having different numbers of epochs for different window lengths might affect the 
results. The use of only one segment per patient might not fully capture the variability inherent in EEG signals. 
This approach may limit the generalizability of our findings, as multiple segments could provide a more com-
prehensive view of each patient’s EEG characteristics. Second, the highest frequency bands that can be observed 
through scalp EEG signals are only approximately 50  Hz43. Therefore, it is necessary to investigate frequency 
ranges higher than 50 Hz through another modality through an additional method. Third, most patients were 
already taking ASMs at the time of the EEG study. Fourth, because the dataset used in this study consisted of 
patients receiving mono- or polytherapy, it is difficult to characterize the effect of a particular ASM on the EEG 
signal. Finally, this retrospective study was conducted using a limited dataset, which could introduce bias in the 
characteristics of epilepsy patients. Future research should apply more sophisticated methods that can aggregate 
multiple frequency bands and multiple time segments using resting-state EEG signals.

Conclusion
This study shows that the application of spectral and temporal filters to resting-state EEG signals enhanced the 
prediction of long-term patient outcomes when the spectral and temporal filters were simultaneously optimized. 
In particular, an EEG window length of greater than 2 min and the gamma band substantially impacted the 
prediction performance. This optimization strategy can be applied for the early identification of patients with 
drug-resistant epilepsy, as they are potential candidates for nonpharmacologic intervention.

Materials and methods
Patients and data collection
We retrospectively analyzed the medical records and EEG data of patients with TLE who visited Seoul National 
University Hospital between 2014 and 2021. All included patients had experienced at least one clinical seizure 
and were confirmed as having TLE based on seizure semiology, EEG, and/or 3.0-Tesla magnetic resonance 
imaging throughout the follow-up period. All patients received ASM during the follow-up period. We included 
patients whose initial EEG data were obtained using the NicoletOne® EEG system (Natus, San Carlo, CA, USA). 
Demographic and clinical characteristics, including baseline and final seizure frequencies, were obtained through 
a retrospective review of medical records. A total of 46 patients with TLE were selected and divided into two 
groups according to the final outcome: the SF group (seizure-free for the last year of follow-up, n = 22) and the 
NSF group (at least one seizure in the last year of follow-up, n = 24). In our capacity as a tertiary referral hospital, 
we identified only one treatment-naïve patient with TLE, while all other patients were already using ASMs at 
the time of EEG study. None of the patients had undergone ketogenic diet therapy. This study was conducted 
in accordance with the Declaration of Helsinki. This study was approved by the Institutional Review Board of 
Seoul National University Hospital (IRB No. H-2109-005-1251), and the need for informed consent was waived 
by the Institutional Review Board of Seoul National University Hospital due to the retrospective nature of the 
study. Detailed patient information can be found in Table 2.

EEG recording
All EEG data were acquired with the NicoletOne® EEG system using the modified international 10–20 electrode 
placement system (electrodes: Fp1, Fp2, T1, F7, F3, Fz, F4, F8, T2, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 
and O2), with a sampling rate of 250 Hz, a hardware high-pass filter of 0.1 Hz, and a hardware low-pass filter 
of 500 Hz. All electrode impedances were maintained below 10 kΩ. After photic stimulation and hyperventila-
tion, the patients were asked to close their eyes to collect resting-state EEG data. The first 5 min of resting-state 
EEG data were processed for further analysis. Among the participants, 1 out of 22 SF patients (4.5%) and 4 out 
of 24 NSF patients (16.7%) exhibited interictal epileptiform discharges within the first 5 min of EEG recordings 
(p = 0.349).

Preprocessing
The resting-state EEG signals, recorded from 20 to 320 s, were epoched and then scaled by  106 to convert the 
measurements from volts to microvolts (µV), thus enhancing both the relevance and clarity of the  data44. Data 
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from all 21 channels were used in further analysis. However, data referencing was conducted only with the fol-
lowing EEG channels: F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, and  O245.

Analysis strategy
To determine the effect of appropriate spectral and temporal ranges in predicting SF outcomes of TLE patients, 
the following three strategies were compared. (1) In the OTS strategy, a grid search was applied to optimize the 
temporal range of the EEG signals in a fixed frequency band (0.1–51 Hz). The temporal segments were extracted 
only once with different durations. All segments started precisely at the 0-s mark of the resting-state EEG data. 
The target temporal range was set at 1-s intervals from 1 to 30 s and 30-s intervals from 30 to 300 s (thus yielding 
a total of 39 temporal segments, 1, 2, 3, …, 27, 28, 29, 30, 60, …, 90, 120, 150, …, 300 s). (2) In the OFS strategy, 
a grid search was applied to optimize the spectral range of EEG signals from 0.1 Hz (low cut) to 2 Hz (high cut) 
up to 49 Hz (low cut) to 51 Hz (high cut) (a total of 50 bands spanning 2 Hz) for the total resting state (300 s). 
(3) In the OFTS strategy, a two-grid search was applied to 50 spectral and 39 temporal ranges to optimize the 
spectral and temporal ranges simultaneously. Then, bandpass filtering,  standardization46 and segmentation were 
sequentially performed. Figure 4 shows the analysis pipeline for OFTS. In the case of NS, total resting state (300 s) 
and fixed-frequency bandpass cutoff from 0.1 Hz (low cut) to 51 Hz (high cut) were applied.

Feature extraction
Among the many EEG features, four types of features were selected based on the following three questions (1) Is 
it a time-domain feature? (The analysis pipeline included a narrow bandpass filter). (2) Has it ever been used in 
an EEG-based epilepsy study? (3) What is the computational cost? (Supplementary Table 4). The selected features 
were as follows: Hjorth parameters (Feature group A), statistical parameters (Feature group B), energy (Feature 
group C), zero-crossing rate (Feature group D), interchannel correlation (ICC) (Feature group E), interchannel 
phase locking value (ICPLV) (Feature group F), spectral power (Feature group G), Stockwell transform (ST) 
(Feature group H), and wavelet transform (WT) (Feature group I).

Table 2.  Demographic and clinical characteristics of the seizure-free and non-seizure-free groups. EEG, 
electroencephalography; SD, standard deviation; IED, interictal epileptic discharge; ASM, antiseizure 
medication; CNS, central nervous system. a Chi-square test. b Cramer’s V. c Student ‘s t test. d Cohen’s d. e Mann‒
Whitney U test. f Mann‒Whitney effect size r. g Fisher’s exact test.

Seizure-free
(n = 22)

Non-seizure-free
(n = 24) p value Effect size

Sex (N, %) 0.796a 0.038b

 Male 12 (54.5%) 14 (58.3%)

 Female 10 (45.5%) 10 (41.7%)

Age at EEG study (years, mean ± SD) 42.95 ± 18.09 39.29 ± 16.12 0.471c 0.214d

Onset age of epilepsy (years, mean ± SD) 27.50 ± 16.58 23.00 ± 12.13 0.296c 0.312d

Duration from onset to EEG (years, mean ± SD) 15.45 ± 13.27 16.29 ± 13.11 0.831c 0.064d

Follow-up duration (months, mean ± SD) 55.86 ± 18.85 46.83 ± 32.39 0.113e 0.234f

Seizure types (N, %) 0.603a 0.077b

 Focal seizures only 8 (36.4%) 7 (29.2%)

 Focal & focal to bilateral seizures 14 (63.6%) 17 (70.8%)

Etiology (N, %) 0.692g 0.201b

 Hippocampal sclerosis 4 (18.2%) 7 (29.2%)

 Focal cortical dysplasia 0 (0.0%) 1 (4.2%)

 Trauma 1 (4.5%) 1 (4.2%)

 Unknown 17 (77.3%) 15 (62.5%)

Epileptic focus (N, %) 0.281g 0.308b

 Left 15 (68.2%) 13 (54.2%)

 Right 8 (33.3%) 6 (27.3%)

 Bilateral 3 (12.5%) 0 (0.0%)

 Unknown 0 (0.0%) 1 (4.5%)

Number of ASMs used at the time of the EEG study (mean ± SD) 1.55 ± 1.01 2.42 ± 1.02 0.001e 0.476f

Seizure frequency at the time of the EEG study (per month, mean ± SD) 2.97 ± 12.75 3.33 ± 12.15 0.013e 0.367f

IED on initial EEG (N, %) 5 (22.7%) 11 (45.8%) 0.100a 0.242b

Family history of epilepsy (N, %) 3 (13.6%) 0 (0.0%) 0.101g 0.276b

History of febrile convulsion (N, %) 2 (9.1%) 0 (0.0%) 0.223g 0.223b

History of CNS infection (N, %) 0 (0.0%) 0 (0.0%) NA NA

History of head trauma (N, %) 3 (13.6%) 2 (8.3%) 0.659g 0.085b

History of epilepsy surgery (N, %) 1 (4.5%) 2 (8.3%) 1.000g 0.077b
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Hjorth parameters (Feature group A)
Hjorth parameters consist of activity, mobility, and complexity, which represent the signal power, mean frequency, 
and change in frequency,  respectively47. In many epilepsy studies, these parameters have been used to detect and 
diagnose  seizures48,49 or to predict seizure recurrence after ASM  withdrawal50. A total of 63 Hjorth parameters 
were acquired using Eqs. (1)–(3) and used as ML inputs.

Statistical parameters (Feature group B)
In many EEG-based epilepsy studies, statistical parameters have been used as features to detect  seizures51, dis-
tinguish healthy participants from epilepsy  patients52 and predict LEV treatment  responses17,51. We selected six 
of the most commonly used statistical indicators (i.e., skewness, kurtosis, and the mean, median, minimum, and 
maximum values) as Feature group B. Variance, which is one of the most commonly used statistical indicators, 
was excluded from Feature group B because it was included in Feature group A (Hjorth parameters). A total of 
126 statistical parameters were acquired using Eqs. (4)–(9) and used as ML inputs.

(1)Activity(X) = var(X(t))
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√

var
(

X′(t)
)

√
var(X(t))

(3)Complexity =

√

var
(

X′′(t)
)

/
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(
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Figure 4.  Analysis strategy for determining the optimal spectral and temporal range.
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Energy (Feature group C)
Many studies have used energy as an indicator of brain  activity18,19. Therefore, the linear and nonlinear energy 
of the EEG signals were included in Feature group  C52. A total of 42 energy parameters were acquired using 
Eqs. (10), (11) and used as ML inputs.

Zero‑crossing rate (Feature group D)
The zero-crossing rate is the rate at which a signal changes from positive to zero to negative or from negative to 
zero to  positive53. This parameter has been used to detect or classify seizures from normal EEG signals in many 
 studies54,55. In this study, the zero-crossing rate and its first derivative were included in Feature group  D52. A total 
of 42 zero-crossing parameters were acquired using Eqs. (12), (13) and used as ML inputs.

ICC (Feature group E)
In the context of EEG analysis, cross-correlation is a powerful  tool56,57 that offers unique insights into the func-
tional connectivity and relationships between different brain regions. We used the Pearson correlation coefficient 
as the correlation coefficient in Eq. (14), which is a measure of the linear correlation between two variables X 
and Y. A total of 210 ICC were acquired using Eq. (14) and 20 graph  measurements23,58 were used as ML inputs. 
Graph measurements were performed using  NetworkX59 and  nilearn60 Python libraries.

ICPLV (Feature group F)
In the context of EEG analysis, ICPLV is a powerful tool for investigating phase synchronization between brain 
regions. Its ability to provide insights into the timing and coordination of brain activities makes it invaluable 
in both research and clinical  settings61,62. A total of 210 ICPLVs were acquired using Eq. (15), and 20 graph 
 measurements23,58 were used as ML inputs.

Spectral parameters (Feature group G)
Spectral power and phase, which are acquired using fast Fourier transform (FFT) (Eq. 16), are crucial compo-
nents of EEG signal analysis, These parameters provide deep insights into brain function and neural activity.63,64 
We extracted five spectral parameters: mean, median, minimum, maximum, skewness and standard deviation 
of power and phase. A total of 126 spectral parameters were acquired using Eq. (16) and used as ML inputs.
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ST parameters (Feature group H)
The ST is a linear transform that combines elements of the wavelet transform and the Fourier transform. It 
provides a time–frequency representation of a signal, similar to the wavelet transform, but it exhibits properties 
more akin to the Fourier  transform65,66. We extracted five ST parameters mean, median, minimum, maximum, 
skewness and standard deviation. The stockwell python package was used to estimate ST. A total of 126 ST 
parameters were used as ML inputs.

WT (Feature group I)
Wavelet coefficients derives from the application of a wavelet transform to a signal. The wavelet transform 
decomposes the signal into components that vary in both time and frequency, unlike the Fourier transform, 
which only provides frequency  information67,68. The wavelet coefficient of the continuous wavelet transform 
was acquired using the pywt.cwt function in Python (‘wavelet = db4’)69. We extracted five wavelet coefficient 
parameters: mean, median, minimum, maximum, skewness and standard deviation of square of absolute values 
of WT. A total of 126 WT parameters were used as ML inputs.

Classification and statistical analysis
The classification was performed using the RF  model26 in the main experiment, and  LDA27,  XGB28, and  CATB29 
were used for the additional experiment. We treated each EEG channel as a separate input and only used a single 
segment of the temporal range. The area under the receiver operating characteristic curve, accuracy, F1 score, 
true positive rate, true negative rate, positive predictive value, and negative predictive value for each feature 
were compared through five-fold nested cross-validation with grid search, in which the number of patients in 
the test dataset was 9 or 10. The hyperparameter of each fold of each model was set based on grid-search (Sup-
plementary Table 5). The Mann‒Whitney U test and Cliff ’s delta were used for all statistical analyses, including 
the comparison of each feature’s performance.
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