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Genetically predicted 486 blood 
metabolites concerning risk 
of systemic lupus erythematosus: 
a Mendelian randomization study
Li Zhao 1,5, Ruonan Wu 2,5, Zewen Wu 3,5, Xinling Liu 4, Jingxuan Li 3, Liyun Zhang 3* & 
Shuqiu Zhang 1*

Metabolic abnormalities constitute a significant characteristic of systemic lupus erythematosus 
(SLE). We utilised a two-sample Mendelian randomisation (MR) study to evaluate the potential 
causal association between 486 blood metabolites and SLE. Exposure data at the metabolite level 
were extracted from 7824 European Genome-wide association studies (GWAS). Preliminary analysis 
utilised SLE GWAS data from FinnGen. The primary method for causal analysis relied on random 
inverse variance weighting (IVW). To ensure robustness, sensitivity analyses included the Cochran Q 
test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis. Steiger testing and linkage 
disequilibrium score regression were employed to validate the identified metabolites. This study 
identified 12 metabolites, comprising six known chemical structures: 1,5-anhydroglucitol(1,5-AG) 
[odds ratio (OR) = 0.100, 95% confidence interval (CI): 0.015–0.773, P = 0.027), gamma-
glutamylthreonine (OR = 0.077, 95% CI: 0.010–0.574, P = 0.012), 5-dodecenoate(12:1n7) (OR = 0.205, 
95% CI: 0.061–0.685, P = 0.010), linoleoylglycerophosphoethanolamine * (OR = 0.159, 95% CI: 0.027–
0.933, P = 0.044), erythrose (OR = 88.331,95% CI:1.098–63.214, P = 0.040) and 1-, adrenate (22:4n6) 
(OR = 9.876, 95% CI: 1.753–55.639, P = 0.001)]. Additionally, we found associations between SLE 
and six unknown chemical structures: X-06351 (OR = 0.071, 95% CI: 0.006–0.817, P = 0.034), X-10810 
(OR = 4.268 95% CI: 1.260–14.459, P = 0.020), X-11412 (OR = 5.418 95% CI: 1.068–27.487, P = 0.041), 
X-11905 (OR = 0.551, 95%CI: 0.304–0.997, P = 0.049), X-12038 (OR = 0.178 95%CI: 0.032–0.988, 
P = 0.045), X-12217 (OR = 0.174 95%CI: 0.044–0.680, P = 0.014). This study offers evidence supporting 
a causal relationship between SLE and 12 circulating metabolites, six of which have known chemical 
structures and six that remain unidentified. These findings introduce a new perspective for further 
exploration of SLE mechanisms. 

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organs, yet its precise 
pathophysiology and specific biomarkers remain largely  unknown1. This underscores the crucial need to pri-
oritise improved preventive and screening measures for SLE. While prior research has hinted at potential risk 
factors like gut  microbiota2 and  cytokines3, studies focusing on metabolic changes in SLE are relatively scarce.

In recent years, metabolomics has gained significant prominence within systems biology, offering a novel 
lens to unveil the underlying mechanisms of diseases. Notably, metabolomics has played a pivotal role in iden-
tifying and analysing altered metabolites and metabolic pathways, offering valuable insights into the intricate 
biological mechanisms associated with various diseases, including  SLE4,5. In the domain of autoimmune diseases, 
metabolomics holds promise in identifying useful  biomarkers6,7. Additionally, immune metabolism has emerged 
as a promising avenue, potentially modulating the differentiation and function of immune cells and offering 
therapeutic possibilities. Advancements in mass spectrometry-based metabolic flux analysis technology have 
furthered our understanding of the metabolic profiles of patients with SLE in serum/plasma8.
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Furthermore, targeted regulation of metabolites holds significant potential for SLE treatment. For instance, 
Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in oily 
fish and fish oil supplements, have been extensively studied. Previous research in cell culture and animal models 
has showcased their potential to diminish pro-inflammatory cytokine production such as tumour necrosis factor 
(TNF)-α and interleukin (IL)-1β while elevating the concentrations of the anti-inflammatory cytokine IL-109. 
These effects have been observed in various conditions, including rheumatoid arthritis, colitis and  asthma10. 
Notably, fish oil and its derivatives containing EPA and DHA have been utilised in clinical settings to treat rheu-
matoid  arthritis11–13. Hence, the targeted modulation of metabolism, such as through regulatory substitutions 
with Omega-3 fatty acids, presents promise as a therapeutic strategy for managing SLE.

Exploring metabolites associated with the onset and progression of SLE not only holds significance for early 
screening and prevention but also carries crucial importance in understanding the biological mechanisms under-
pinning SLE treatment. However, the causal relationship between metabolites and SLE remains uncertain due 
to a lack of prospective studies examining metabolites and SLE. Traditional observational studies are limited by 
design constraints, including changes in patient lifestyle post-SLE diagnosis or alterations in metabolic substances 
induced by long-term medication use, contributing to an unclear causal relationship between metabolites and 
SLE. Randomised controlled trials (RCTs) are considered the gold standard in establishing causal effects but pose 
challenges in this context, making it difficult to derive definitive conclusions regarding the causal relationship 
between metabolites and SLE.

In the absence of RCTs, Mendelian randomisation (MR) has emerged as a compelling approach to explore 
the causal relationship between the exposure of interest and its  outcomes14. MR utilises exposure-related single 
nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to assess the causal effects of genetic proxy 
exposures on  outcomes15. This approach mimics RCTs by randomly assigning genetic variants (SNPs) to offspring 
during conception, reducing confounding factors, such as gender and age, that might bias causal effects. Addi-
tionally, MR minimises the likelihood of reverse causality since the genotype is determined before disease  onset16.

Given the limited comprehension of the causal association between blood metabolites and SLE, further 
investigations in this domain are warranted. This study employs MR analysis, utilising aggregated data from 
genome-wide association studies (GWAS), to comprehensively examine the potential causal involvement of 486 
blood metabolites in the development of SLE.

Methods and materials
GWAS data for 486 blood metabolites and SLE
Genetic data for 486 metabolites, involving 2,163,597 associated SNPs, were accessed from the metabolomics 
GWAS server (https:// metab olomi cs. helmh oltz- muenc hen. de/ gwas/)17. Detailed names of the 486 metabolites, 
denoted as X for unknown chemical properties, are listed in Table S1.

The SLE GWAS dataset, obtained from FinnGen (https:// www. finng en. fi/ en), encompassed 538 cases and 
213,145 controls, providing a substantial sample size for analysis (Table 1).

Instrumental variable (IV) selection
MR plays a vital for inferring causal relationships between traits. It utilises genetic variation as instrumental 
variables (IVs) from GWAS data to infer the causal relationship between exposure and outcome. In this study, 
blood metabolites and SLE were considered the exposure and outcome, respectively. Selected IVs adhered to 
three key  assumptions18: (1) genetic variation associated with the exposure; (2) No confounders exist between 
genetic variation and the exposure-outcome association; (3) genetic variation does not influence the outcome 
except through its association with the exposure factor. A visual representation of the study’s overview is depicted 
in Fig. 1. To fulfil these criteria, SNPs were utilised as IVs, setting a significance threshold of a P < 1 ×  10–5 to 
exclude less significant SNPs and eliminate highly correlated ones for  independence19. Furthermore, to ensure 
the independence of SNPs and avoid linkage disequilibrium (LD)  bia20, we set an LD threshold of  r2 < 0.001 and 
a distance of 10,000 kb. The PhenoScanner, (http:// www. pheno scann er. medsc hl. cam. ac. uk/) online tool assessed 
whether these SNPs were associated with confounding factors in SLE.

Statistical analysis
The IVW method, widely used in MR research for its  robustness21–23, was employed in the fixed-effects model and 
the random-effects model to reduce bias due to heterogeneity. All SNPs included in the IVW method adhered to 
the three assumptions of IV selection, especially the exclusivity assumption, which requires that genetic variation 
affects the outcome only through the exposure factors in the study. Despite efforts to exclude confounding SNPs, 
generic pleiotropy could have causal effect estimates. Therefore, MR-Egger regression and Weighted Median 
Estimator (WME) methods were used to test the stability of the results. MR-Egger regression modifies the IVW 
method to test for pleiotropy as well as correct pleiotropy bias. However, the MR-Egger regression method is less 

Table 1.  Details of the GWAS included in the Mendelian randomization.

Trait Data sources Population N case N control Websource

Exposure Systemic lupus erythematosus FinnGen European 538 2,13,145 https:// www. finng en. fi/ en

Outcome Metabolites Metabolomics GWAS server European 7824 N
https:// metab olomi cs. 
helmh oltz- muenc hen. de/ 
gwas/

https://metabolomics.helmholtz-muenchen.de/gwas/
https://www.finngen.fi/en
http://www.phenoscanner.medschl.cam.ac.uk/
https://www.finngen.fi/en
https://metabolomics.helmholtz-muenchen.de/gwas/
https://metabolomics.helmholtz-muenchen.de/gwas/
https://metabolomics.helmholtz-muenchen.de/gwas/
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statistically valid for causal estimation, with some studies pointing out that the MR-Egger regression method can 
only be used as a sensitivity analysis to test whether it violates the core assumptions of the instrumental variables 
and not as an alternative to the IVW method. Conversely, the WME method gives consistent results considering 
that some of the genetic variations in the analyses are not valid IVs.

To evaluate the strength of IVs, an F-statistic was employed, using the formula F = R2 × (n − k − 1)/[(1 
− R2) × k]. In this equation, R2 represents the genetic variance explained by the sample size, n denotes the 
sample size and k represents the number of SNPs present in the  sample24. An F-statistic above 10 indicated no 
significant weak instrument bias. Conversely, SNPs with F-statistics below this threshold were considered weak 
instruments and excluded from the analysis. Final MR analysis was performed again after eliminating IVs not 
meeting this criterion, with reliable IVW method results when no heterogeneity or pleiotropy evidence  existed25.

Sensitivity analysis
Sensitivity analyses encompassed heterogeneity and multiplicity tests. Differences between the included stud-
ies, such as different gene annotation and analysis platforms or different inclusion and exclusion criteria, might 
contribute to heterogeneity in our results. In this study, Cochran’s Q test assessed heterogeneity in IVW and 
MR-Egger regression methods, with P > 0.05 indicating no statistically significant effect on the study results. As 
the intercept term in MR-Egger regression approaches zero, the magnitude of horizontal pleiotropy becomes 
smaller. Notably, horizontal pleiotropy did not exist if the test for horizontal pleiotropy resulted in P > 0.05. 
MR-PRESSO outlier test identified outlier SNPs affecting overall results. A ‘leave-one-out’ analysis removed one 
SNP at a time to assess its impact, visually represented through forest plots for result stability. Furthermore, MR 
Steiger tests verified causal direction.

Results
Following strict IV quality control, the MR Study encompassed 486 metabolites. To ensure accuracy, LD analy-
sis was performed to eliminate any potential chain ambiguity. Additionally, an extensive search through the 
PhenoScanner database aimed to identify established SLE risk factors yielded no relevant findings (Table S2). 
Throughout the screening process, special attention was dedicated to removing palindromic sequences to avert 
potential strand ambiguity, ensuring the reliability of selected IVs. Ultimately, 10,541 SNPs were identified as IVs, 
constituting a comprehensive set of genetic variants associated with 486 metabolites. The F-statistics of these IVs 
exceeded 10, indicating their robustness and power. Detailed information about the IVs can be found in Table S3. 
MR analysis results, including the F-statistic, are visually represented in Table S4. Subsequently, an IVW analysis 
identified 12 metabolites potentially casually linked to SLE, with six known and unknown compounds (Fig. 2). 
These findings shed light on the association between metabolites and SLE, providing valuable insights into 
potential underlying mechanisms. Noteworthy metabolites include 1,5-anhydroglucitol (1,5-AG) (Odds Ratio 
(OR) = 0.100, 95% Confidence Interval (CI): 0.015–0.773, P = 0.270), gamma-glutamylthreonine (OR = 0.077, 
95% CI: 0.010–0.574, P = 0.012), 5-dodecenoate(12:1n7) (OR = 0.205, 95% CI: 0.061–0.685, P = 0.010), lino-
leoylglycerophosphoethanolamine * (OR = 0.159, 95% CI: 0.027–0.933, P = 0.044), erythrose (OR = 88.331, 
95% CI:1.098–63.214, P = 0.040), 1-adrenate (22:4n6) (OR = 9.876, 95% CI: 1.753–55.639, P = 0.001), X-06351 
(OR = 0.071, 95% CI: 0.006–0.817, P = 0.034), X-10810 (OR = 4.268, 95% CI: 1.260–14.459, P = 0.200), X-11412 
(OR = 5.418 95% CI: 1.068–27.487, P = 0.041), X-11905 (OR = 0.551, 95% CI: 0.304–0.997 P = 0.049), X-12038 
(OR = 0.178, 95% CI: 0.032–0.988, P = 0.0448) and X-12217 (OR = 0.174, 95% CI: 0.044–0.680, P = 0.0143). Table 2 
presents the results of the sensitivity analyses. Cochran’s Q test, assessing potential heterogeneity, specifically the 
metabolites under investigation, revealed no significant heterogeneity among the IVs. Additionally, MR-PRESSO 
revealed no outliers, and MR-Egger’s intercept analysis suggested an absence of horizontal pleiotropy (Fig. 3). 
Furthermore, the leave-one-out approach, as illustrated in Fig. 4, affirmed the robustness and stability of the MR 
analysis, demonstrating that the exclusion of any SNP did not significantly impact the overall findings, supporting 
the reliability and stability of the MR analysis.

Figure 1.  Workflow of the MR analysis.
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Discussion
Our study aimed to explore the potential causal effects of 486 blood metabolites, using genetic proxies, on SLE 
development. Integrating two large-scale GWAS datasets and employing rigorous MR design, our analyses high-
lighted metabolites genetically associated with reduced SLE risk. These metabolites include X-06351, 1,5-anhy-
droglucitol (1,5-AG), X-11905, gamma-glutamylthreonine*, linoleoylglycerophosphoethanolamine *, X-12038, 
X-12217 and 5-dodecenoate (12:1n7). Elevated levels of these metabolites were associated with a lower risk of 
developing SLE. Conversely, we also found that genetic susceptibility to increased levels of certain metabolites, 
namely erythrose, X-10810, 1-, X-11412, adrenate (22:4 n6), was associated with a higher risk of SLE.

SLE manifests as a multifactorial autoimmune disease characterised by self-tolerance loss, autoantibody 
production and immune complex-related damage across multiple tissues and organs such as the kidneys, skin, 
joints, blood and nervous  system26. Its clinical manifestations vary from mild mucocutaneous manifestations to 
life-threatening renal, nervous system, or multi-organ  involvement27. Despite the association between genetic, 
hormonal, and environmental factors and diverse clinical SLE manifestations, its precise pathogenesis remains 
unclear. Early diagnosis is crucial to prevent irreversible organ damage, underscoring the need for reliable lupus-
associated organ damage biomarkers to optimise SLE treatment. Metabolomics technologies have sparked interest 
in exploring the potential significance of metabolites in SLE. Blood metabolites can reflect both endogenous 
and exogenous processes, providing intuitive biological mechanism insights. For example, studies have reported 

Figure 2.  Significant results for the IVW analysis.

Table 2.  Sensitivity analysis causality from blood metabolites on SLE.

Metabolites Q_pval (IVW) MRegger_interpreter MRegger_interpreter_pval MRPRESSO_GLOBAL

Carbohydrate

 1,5-Anhydroglucitol (1,5-AG) 3.91E−09 0.085572857 0.058921943  < 0.001

 Erythrose 0.223640701 0.040746711 0.594611092 0.274

Lipid

 5-Dodecenoate (12:1n7) 0.225006148 −0.056271325 0.216472562 0.178

 1-Linoleoylglycerophosphoethanolamine 0.989140627 0.021472062 0.438164124 0.963

 Adrenate (22:4n6) 0.274124194 0.001703907 0.976979995 0.328

Amino acid

 Gamma-glutamylthreonine 0.366118463 0.148486033 0.042765681 0.413

Unknown

 X-10810 0.989140627 0.021472062 0.438164124 0.963

 X-11412 0.458807845 −0.010865033 0.641879865 0.471

 X-11905 0.894506947 −0.02809744 0.357888134 0.917

 X-12038 0.631738147 0.07242924 0.109834223 0.657

 X-12217 0.441095877 −0.08379171 0.128447555 0.466

 X-06351 0.718786965 0.06606423 0.322291501 0.684
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that GC/MS tested serum from healthy controls and patients with SLE revealed that patients. The authors deter-
mined that nephritis patients can be distinguished from SLE patients by detecting elevated levels of serum lipid 
metabolism and decreased acetate levels 28,29. Although existing literature provides conflicting results on some 
metabolites, apparent serum metabolite differences between patients with SLE and healthy controls do exist. 
Most studies showed an increase in fatty acids and a decrease in most amino and organic acids, while others 
reported that oxidative stress was increased in SLE, especially in the form of decreased intracellular antioxidant 
 glutathione30. Considering that these metabolome changes in the blood reflect intracellular changes, a more pre-
cise study of cellular metabolic regulation of immune cell subsets in SLE is required. Although the metabolites’ 
association with SLE is strongly indicated, further research is needed to establish a clear causal link and better 
understand the underlying mechanisms. Such investigations will enhance our knowledge of SLE pathogenesis 
and potentially aid in developing effective strategies for early detection and prevention in the future. Therefore, 
we conducted a pivotal MR study to clarify the causal relationship between blood metabolites and SLE, offering 
new avenues for SLE screening and treatment.

In addition to the unknown blood metabolites, this MR study identified four blood metabolites (1,5-anhy-
droglucitol (1,5-AG), 1-linoleoylglycerophosphoethanolamine *, gamma-glutamylthreonine and 5-dodecenoate 
(12:1n7)) deemed protective against SLE. Although limited reports discuss their effects, certain insights exist, 
warranting further investigations. For instance, 1, 5-anhydrous glucose reflects blood glucose levels over 
1–2 weeks and may exhibit antioxidant properties concerning type 1 diabetes, combatting cellular damage and 
inflammatory responses by reducing oxidative stress and free radical  production31. This could be related to 
glucose metabolism and glucose ketone group regulation. Gamma-glutamylthreonine (γ-glutamyl-threonine) 
has an amino acid structure similar to glutamine and is synthesised from glutamate and threonine, a cystine 
precursor, through the amino acid metabolic pathway. As a compound containing γ-glutamylthreonine resi-
dues, γ-glutamylthreonine may also have antioxidant properties. Notably, γ-glutamyl residues are involved in 
synthesising glutathione (GSH), an important antioxidant that protects cells from damage by reducing intracel-
lular oxidative stress responses and scavenging free  radicals32. However, the specific functions and mechanisms 
of γ-glutamylthreonine remain incompletely understood., warranting further study. Similarly, 5-dodecenoate, 
also known as 12:1n7, is an Omega-3 fatty acid with potential health benefits. Omega-3 fatty acids have been 
demonstrated to reduce the activity of  SLE33, affecting the production of many inflammatory proteins, includ-
ing cytokines and adhesion molecules. Omega-3 fatty acids also reduce the production of pro-inflammatory 

Figure 3.  Scatter plots of the MR analysis.
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cytokines (Tnf-α, Il-1β, and IL-6) in response to LPS but increase the concentrations of the anti-inflammatory 
cytokine IL-10 10. Several studies using EPA and DHA as supplements in healthy human volunteers have reported 
reduced TNF, IL-1 and IL-6 production by LPS-stimulated monocytes or  monocyte34–37. Similarly, human trials 
have demonstrated the benefits of oral n-3 fatty acids in rheumatoid arthritis and in stabilising advanced athero-
sclerotic  plaques12,38–40. Furthermore, the intravenous administration of n-3 fatty acids may benefit critically ill 
patients by reducing inflammation. Our findings indicate an inverse correlation between 5-dodecenoate abun-
dance and SLE incidence, suggesting a potential therapeutic approach targeting this taxon for SLE management.

Furthermore, our study highlighted that elevated erythrose and adrenate (22:4 n6) levels increased the risk of 
SLE. Adrenate (22:4 n6), a long-chain Omega-6 fatty acid, is involved in lipid metabolism and shares associations 
with inflammatory processes. Many studies have shown that the omega-6 polyunsaturated fatty acid arachidonic 
acid (ARA) exerts an essential effect on fatty acids in cell membrane phospholipids involved in inflammation. 
ARA released from cell membrane phospholipids acts as a substrate for cyclooxygenase (COX), lipoxygenase 
(LOX) and cytochrome P450 enzymes to produce eicosanoid family mediators, resulting in high ARA content 
being directly related to inflammation. Moreover, eicosanoid acids are essential regulators and mediators of 
inflammatory processes and include prostaglandins (PGs), thromboxanes and leukotrienes (LTs) 41–43. Inflam-
matory stimuli can upregulate eicosanoid synthesis through enzymatic activation (e.g., release of ARA from 
membrane phospholipids by phospholipase A2) and enzyme-encoding gene expression. Many anti-inflammatory 
therapies, such as non-steroidal anti-inflammatory drugs and COX inhibitors, target ARA metabolism, suggest-
ing that ARA metabolism is closely related to inflammatory processes. Erythrose, a four-carbon ketose sugar, 
is one of the simplest sugars in nature. Erythrose is not commonly found in free form but is an intermediate in 
several metabolic pathways. It is involved in the glycolysis process and contributes to acute T cell metabolic shifts 
towards aerobic glycolysis, a process observed in SLE CD4+ T cells. Moreover, ATP production mainly depends 
on  OXPHOS44.Interestingly, healthy effector CD4+ T cells expanded in SLE patients, and naive CD4+ T cells 
in lupus-susceptible mice showed elevated glycolytic pathways and oxidative  phosphorylation8. These results 
suggest that the elevation of the glycolytic pathway and OXPHOS in SLE CD4+ T cells is not a secondary effect 
of autoantibody exposure or differentiation, but rather an incidental effect associated with SLE pathogenicity. 
However, reports on the immune metabolism of B cells in SLE are scarce. Transgenic mice overexpressing B cell 
activating factors shift the metabolic state of B cells to the glycolytic  pathway45. Unlike T cell receptor stimulation, 
which primarily activates the glycolytic pathway, B cell receptor (BCR) stimulation enhances both the glycolytic 
and oxidative phosphorylation pathways, indicating an elevated state of the glycolytic pathway in immune cells 
in SLE. Similarly, our results revealed that the abundance of the glycolytic intermediate metabolite Erythrose 

Figure 4.  Leave-one-out results.
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was positively correlated with SLE, implying that this taxon may serve as a novel therapeutic target. However, 
its specific role needs to be further explored.

There are several notable advantages to this MR analysis. To the best of our knowledge, this study stands 
out for its comprehensiveness in examining 486 blood metabolites and their potential impact on SLE. Rigorous 
methods were employed to address potential pitfalls, ensuring robust and reliable results. Various methods were 
implemented to ensure that factors violating the MR assumption were appropriately addressed and removed from 
the analysis. The study’s commitment to producing convincing estimates is evident through their meticulous 
handling of potential confounding factors. By applying stringent methods and considering various factors, the 
researchers were able to generate robust and reliable results. Furthermore, the consistency across different MR 
methods further enhances the reliability of our findings. Additionally, sensitivity analyses reinforced the validity 
of the results under various conditions and assumptions.

However, our study also has its limitations. The availability of a restricted set of SNPs for comprehensive 
genome-wide exposure analysis poses a constraint, despite the satisfactory robustness observed in the selected 
SNPs’ F-statistics. Furthermore, limiting the analysis to individuals of European ancestry may restrict the find-
ings’ generalisability, warranting validation in diverse ethnic groups. Additionally, expanding the sample size in 
future studies could enhance result reliability and accuracy of causal effect estimations.

Conclusion
This MR study established a causal relationship between blood metabolites and SLE using genetic proxies. Addi-
tionally, the research identifies six distinct blood metabolites potentially associated with the development of SLE. 
These findings offer important insights into potential strategies for early screening, prevention and treatment of 
SLE, offering a roadmap for future clinical investigations in this domain. Furthermore, the MR analysis frame-
work employed in this study serves as a valuable model for further explorations into the underlying aetiology 
and mechanisms driving SLE.

Data availability
We have annotated the article with the source of all original data, please contact the original authors for access 
if needed. The results of this study can be obtained by contacting the corresponding author.
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