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Behavioral and physiological 
fatigue‑related factors influencing 
timing and force control learning 
in pianists
Mitsuaki Takemi 1,4*, Mai Akahoshi 2,3,4, Junichi Ushiba 3* & Shinichi Furuya 2

Optimizing the training regimen depending on neuromuscular fatigue is crucial for the well‑being of 
professionals intensively practicing motor skills, such as athletes and musicians, as persistent fatigue 
can hinder learning and cause neuromuscular injuries. However, accurate assessment of fatigue 
is challenging because of the dissociation between subjective perception and its impact on motor 
and cognitive performance. To address this issue, we investigated the interplay between fatigue 
and learning development in 28 pianists during three hours of auditory‑motor training, dividing 
them into two groups subjected to different resting conditions. Changes in behavior and muscle 
activity during training were measured to identify potential indicators capable of detecting fatigue 
before subjective awareness. Our results indicate that motor learning and fatigue development are 
independent of resting frequency and timing. Learning indices, such as reduction in force and timing 
errors throughout training, did not differ between the groups. No discernible distinctions emerged 
in fatigue‑related behavioral and physiological indicators between the groups. Regression analysis 
revealed that several fatigue‑related indicators, such as tapping speed variability and electromyogram 
amplitude per unit force, could explain the learning of timing and force control. Our findings suggest 
the absence of a universal resting schedule for optimizing auditory‑motor learning.

Acquiring advanced motor skills requires long-term and repetitive training, often accompanied by fatigue in 
the neuromuscular system. This fatigue poses the risk of developing severe injuries for those required to exert 
extraordinary performance, such as athletes and musicians. Thus, circumventing fatigue is crucial for achiev-
ing sustainable wellness throughout professional life. However, awareness of fatigue during training is often 
challenging. Previous studies have demonstrated a dissociation between the subjective perception of fatigue 
and its actual influence on motor and cognitive  performance1. This discrepancy emphasizes the importance of 
understanding when fatigue-related physiological changes occur, which does not necessarily coincide with the 
moment at which fatigue is subjectively  perceived2,3. Hence, it is necessary to identify fatigue-related markers to 
adjust the amount of practice based on objectively observed changes in performance or body states rather than 
unreliable subjective perceptions.

Potential fatigue-related indicators emerge at various levels within the neuromuscular system involved in force 
production and movement. These include the production of motor commands from the motor cortex through the 
corticospinal system, activation of motor neurons in the spinal cord, and activation of muscle fibers generating 
action potentials along the sarcolemma; muscle fatigue can occur at any of these  stages1,4. Physiological changes 
at these stages are measurable in electromyograms (EMG), including increased amplitudes and decreased spectral 
frequencies while generating the same  force5,6. The decline in maximal force, which is commonly used to define 
fatigue, is a typical expression of motor performance deterioration resulting from these muscular  changes7.

The effects of muscle fatigue on motor performance depend on the characteristics of the fatiguing exercise, the 
task performed with the fatigued muscle, and the physiological characteristics of individual muscles. For instance, 
different patterns of change in response to increasing physical demands have been observed between intrinsic and 
extrinsic  muscles8. When fatigue develops during a submaximal task, it can lead to the compensatory recruitment 
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of additional motor units to counteract the decrease in force generated by the initially engaged motor  units9. 
Altered patterns of muscle recruitment can compensate for fatigue in particular muscle groups so that move-
ment output can be maintained. Furthermore, their ability to compensate for fatigue while performing complex 
tasks depends on their  expertise10.

Most findings on muscular fatigue are limited to those caused by simple static tasks such as isometric force 
production, and little is known about the fatigue caused by complex dynamic tasks that involve coordinated 
movements across multiple joints and muscles. These tasks require precise control of the magnitude and timing 
of the exerted force, and involve controlling multiple degrees of freedom in the musculoskeletal system while 
receiving sensory feedback. Fatigue in such tasks is likely to be accompanied by altered patterns of functional 
coordination across muscles to compensate for fatigue. Consequently, performance degradation in complex 
tasks should be defined not only by a decline in maximal force but also by increased variability in the amplitude 
and timing of the force output. One representative example of a complex task suitable for addressing this issue is 
piano training, in which the fine control of factors such as force, speed, and spatiotemporal accuracy is crucial for 
generating the desired  sound11,12. Several studies have reported that fatigue in piano training should be classified 
differently from fatigue in sports training, which requires high-force  exertion13.

Additionally, the relationship between fatigue and motor learning remains  unclear10, because it is difficult 
to distinguish the effects of fatigue on learning and  performance14. Recently, one seminal study successfully 
disentangled the effects of fatigue from its impact on  learning15. In this study, participants who performed a 
fatiguing task prior to the first day of training failed to reach the same skill level as the control group (non-
fatigued on the first day), even after subsequent learning sessions on the next day under non-fatigued condi-
tions. A recent study also suggested the involvement of the cerebellum in both fatigue perception and a decline 
in motor  performance16. Nevertheless, a more detailed understanding of the relationship between fatigue and 
motor learning is lacking, including which muscles play an important role in motor learning and performance 
maintenance, and which aspects of motor skill learning are affected by fatigue.

This study aimed to address the effect of fatigue on the learning of a complex task that requires both motor 
and cognitive loads. We adapted an auditory-motor learning task imitating the learning of a piano sequence 
that requires precise force and timing control of the two fingers. We hypothesized that increasing the number 
of intermissions during training reduces fatigue; second, that the effects of muscle fatigue on performance dif-
fer between intrinsic and extrinsic finger muscles; and third, that subjective perception of fatigue and fatigue 
appearing in performance do not correlate; that is, physiological fatigue cannot be felt. To test these hypotheses, 
we conducted experiments that lasted for a total of three hours with two different protocols with 28 pianists.

Methods
Participants
Twenty-eight pianists [currently belonging to or having graduated from a college of music, including 21 females, 
aged 23.1 ± 3.9 years; data values expressed as means ± standard deviation (SD)] participated in the experiment. 
Of these 28 pianists, 14 (11 female, aged 22.9 ± 2.6 years) participated in the 1-rest condition and the remaining 14 
(10 females, aged 23.3 ± 5.0 years) participated in the 2-rest condition (see “Experimental procedure” section for 
details). The study was conducted in accordance with the Declaration of Helsinki. The experimental procedures 
were approved by the Sony Bioethics Committee (approval number: 20-14-0001) and written informed consent 
was obtained from all participants prior to the experiments.

Apparatus
Participants were seated in front of a table. Two force sensors (USL06-H5, Tec Gihan Co., Ltd., Kyoto, Japan) 
were fixed to a casing that imitated a piano keyboard, and the casing was set on the table. The participants were 
instructed to place their left arm on the armrest and position their middle and ring fingers on the force sensors. 
EMG signals were measured from the left third dorsal interosseous muscle (3DI), fourth dorsal interosseous 
muscle (4DI), extensor digitorum communis (EDC), and flexor digitorum superficialis (FDS) muscles using wire-
less surface EMG sensors (Trigno Quattro/Mini, Delsys, Natick, MT, USA). Two electrodes on the EMG sensors 
maintained a fixed distance; one above the muscle belly and the other distally. Skin was prepped with alcohol 
to reduce the impedance. A computer monitor placed in front of each participant displayed the task content.

Force sensor signals were sent to a computer (G-Tune E5-165, MouseComputer Co., Ltd., Tokyo, Japan) 
through an analog-to-digital converter (USB-6363, National Instruments, Austin, TX, USA) at a sampling rate 
of 1000 Hz. The computer calculated the sound volume based on the magnitude of the finger force using the 
following equation:

where V(t) represents the percentage of the sound volume playing from the computer at time t, relative to the 
maximum volume, and F(t) is the average finger force over the last 20 ms. The constant α corresponds to a force 
level equal to one-third of the participant’s maximum voluntary contraction (MVC) (see “MVC test” section for 
details on MVC calculation), and β represents the baseline level that was determined by the mean + 2SD in the 
period when participants placed a finger on the force sensor for a few seconds without intentional force applica-
tion. Following a previous study, we converted the log of the finger force to  sound17. The MVC and baseline levels 
were measured before the start of the training session. A 400 Hz sound (close to the G sound) was generated 
when the force sensor placed under the middle finger was pressed. Pressing the sensor under the ring finger 
generated a 300 Hz sound (close to the D sound).

V(t) = 75
ln(1+ F(t)− β)

ln(1+ α − β)
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EMG signals were first sent to the base station, where the data were band-pass filtered (20–450 Hz, Butter-
worth filter), and then sent to the computer, which also received analog data from the force sensors through an 
analog-to-digital converter. Both the force and EMG data were stored on a computer for offline analysis. The 
experimental program was coded using LabView 2021 software (National Instruments).

Experimental procedure
The experiment comprised 30 training sessions. Before and after the 30 training sessions, the MVC of the par-
ticipants’ middle and ring fingers were assessed independently (Fig. 1a, top). While the experimenter counted 
seconds, participants increased their finger force in the first 2 s until it reached the maximum they could exert 
and maintained the maximal force for 2 s afterward. The measurements were repeated three times, and the 
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Figure 1.  (a) Experimental procedure. Thirty training sessions were conducted before and after MVC tests. A 
single training session consisted of a tapping test followed by eight practice blocks. Subjective rating of perceived 
exertion was obtained after the completion of the eight practice blocks. Participants were instructed to perform 
the same sequence they listened to three times within each practice block. One of the four sequences shown in 
(c) was randomly played in each practice block, with each sequence being played twice within a single training 
session. (b) Experimental conditions. (c) Task sequences. The sequences were played at a tempo of 96 beats per 
minute.
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measurement with the highest force was used for analysis. MVC was also measured before and after each break; 
however, these measurements were not used in the present study.

A single training session consisted of eight blocks (Fig. 1a, middle). In one block, the participants listened 
to the model’s performance (listening trial) and tried to imitate it three times as precisely as possible (perform-
ing trial) (Fig. 1a, bottom). The music sheet of the sequence was shown on a computer monitor in front of 
the participant from the start of the model performance until the last trial. Because the music sheet did not 
indicate the sound volume, the participants had to remember the volume changes from the listening trial and 
imitate them. Each performing trial started with a ‘GO’ cue on the computer monitor. After three trials, the 
average score, reflecting the accuracy of volume, rhythm, and keypress duration, appeared on the computer 
monitor (performance feedback). The total score was 100, of which 50 was allotted to volume accuracy, 25 to 
rhythm accuracy, and 25 to keypress duration accuracy. Model performance was randomly chosen from the 
four sequences (Fig. 1c).

The participants were grouped into two different training conditions. In the 1-rest condition, the experiment 
was divided into two sets of 15 training sessions with one 120-min rest, and the 2-rest condition was divided 
into three 10 training sessions with two 60-min rests (Fig. 1b). Between training sessions, participants took a 
1-min rest during which they performed a 5-s tapping task and completed a fatigue questionnaire. During the 
tapping task, the participants alternately tapped their middle and ring fingers as quickly as possible. The CR-10 
Borg scale was used as the fatigue  questionnaire18.

Data analysis
Behavioral data during training session
The raw force data measured by the force sensors were smoothed over 20 ms and segmented into single trials. 
Key presses were detected by identifying periods where the force level exceeded the baseline level. The peak 
force and timing of each keypress were then determined. The success rate was calculated as the number of trials 
in the correct sequence order divided by the total number of sequences performed by the participant (24 trials/
session). This was then converted into percentages. The timing error was calculated as the absolute difference 
between the detected peak timing and the sample sequence. The force error was calculated as the absolute dif-
ference between the detected and expected peak forces to generate the sound volume of the sample sequence, 
which was normalized by the participant’s MVC and converted into a percentage. Finally, the timing and force 
error values were individually averaged for each training session using data from the trials in which the task was 
successfully completed.

To quantify the time to best performance and the amount of learning, we performed curve fitting on the 
individual timing and force error data. These curve fittings were separately performed for the results of sessions 
1–15 and 16–30 in the 1-rest condition and sessions 1–10, 11–20, and 21–30 in the 2-rest condition. We expected 
two types of error change trends during the training period: exponential decay, indicating consistent motor 
learning, and a decrease followed by an increase, reflecting both learning- and fatigue-induced deterioration in 
performance. Hence, we applied both the exponential and quadratic functions and compared the goodness of 
fit using the adjusted  R2. The specific functions used for curve fitting are as follows:

here E(n) represents the average error in training session n, where n is the number of training sessions since the 
last break (e.g., n = 1 for the 16th training session in the 1-rest condition, and n = 6 for the 2-rest condition). The 
parameters A, B, and C were estimated through the ‘nlinfit’ function in MATLAB 2021b (Mathworks, Natick, 
MA, USA).

Following curve fitting, the individual error for each session was estimated using either exponential or quad-
ratic functions depending on the goodness of fit analysis results. Five learning-related indices were calculated 
to quantify the time to the best performance and the amount of learning (Fig. 2c). (i) Best session number: The 
session number showing the minimal error, where a smaller value indicates a shorter time to achieve the best 
performance. (ii) Overall gain: difference between the maximum and minimum errors over 30 training sessions. 
(iii) Online gain 1: the difference between the maximum and minimum errors over the training sessions before 
the first break. (iv) Online gain 2: the difference between the maximum and minimum errors during the train-
ing sessions after the first break. (v) Offline gain: the difference in error between the last session before the first 
break and the first session after the first break.

MVC test
Using the data from the EMG and force sensors, we calculated the MVC, EMG median frequency (EMG-MF), 
and EMG amplitude per unit force (EMG/force). The raw EMG signal was subjected to full-wave rectification and 
smoothed with a 40 ms moving average. For the MVC calculation, we averaged the force during the middle 1 s 
interval within 2 s in which the maximum force was maintained. As we measured the maximum force of the left 
middle and ring fingers separately, the MVC value was represented by the average of the MVC exerted by these 
two fingers. EMG-MF and EMG/force were also determined using the same two 1-s data segments. EMG-MF 
was computed using the ‘medfreq’ function in MATLAB 2021b. The EMG/force ratio was obtained by dividing 
the average preprocessed EMG amplitude by the MVC.

E(n) = Ae exp (Ben)+ Ce

E(n) = Aqn
2
+ Bqn+ Cq
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Tapping test
We computed the tapping speed and speed variability using data derived from the force sensors. The tapping 
speed was calculated as the reciprocal of the average tapping interval, and variability was represented by the SD 
of the tapping interval divided by the average interval.

Statistical analysis
In this study, several parameters related to force and timing error reduction were evaluated. These included the 
session number representing the smallest force error (best session number); the amount of overall, online, and 
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Figure 2.  Error reduction over 30 training sessions. (a,b) Force error and timing error throughout the training 
sessions. The left and right figures show the results for the 1-rest and 2-rest conditions, respectively. Black dots 
and error bars represent the mean and standard error of the mean (SEM) of the empirical results, respectively. 
The gray shaded areas represent the SEM of the individual curve fitting results. (c) Schema of learning indexes. 
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offline error reduction; the highest perceived exertion; changes in the average maximum finger force between the 
pre- and post-MVC tests; differences in the mean tapping speed and mean tapping timing variability between 
the first five and the last five tapping tests; and changes in the EMG-MF and EMG/force of the four muscles at 
the pre- and post-MVC tests. To compare these variables between the 1-rest and 2-rest condition groups, we 
employed either the Wilcoxon rank-sum test or the two-sample t-test, depending on the data distribution.

Furthermore, we conducted group-wise comparisons of changes in force error, timing error, and task success 
rate. For this analysis, we employed an analysis of variance (ANOVA) with the session number (1, 2, …, 30) as 
the within-subjects factor and the group (1-rest and 2-rest conditions) as the between-subjects factor. Post hoc 
pairwise comparisons were performed using Tukey’s test to correct for multiple comparisons. The type I error 
was set to 0.05 for all statistical analyses. JASP 0.16.2 (Apple Silicon) was used for statistical analyses.

Stepwise regression analysis
To assess factors that affect different aspects of motor skill learning, we performed stepwise regression analyses 
using the default setting of the ‘stepwiseglm’ function in MATLAB 2021b. We set the parameters related to force 
and timing error reduction (i.e., the best session number and the amount of overall, online, and offline error 
reduction) as the response variables. Predictor variables included differential values of MVC of the middle and 
ring fingers, EMG-MF and EMG/force of 3DI, 4DI, EDC, and FDS muscles, maximal tapping speed, tapping 
timing variability, and maximal perceived exertion score before and after the training sessions. Both the depend-
ent and independent variables were standardized prior to the regression analysis.

Results
Effect of rest frequency and timing on force and timing error reduction
Figure 2a,b illustrate the group averages of force and timing errors for each session in the 1-rest and 2-rest condi-
tions, respectively. Two-way ANOVAs revealed no interaction between session and group for force error (F(29, 
754) = 1.39; p = 0.087) or timing error (F(29, 754) = 0.70; p = 0.88). No main group effects were observed for force 
(F(1, 26) = 0.82, p = 0.37) or timing errors (F(1, 26) = 0.88, p = 0.36). These findings suggest that the changes in 
force and timing errors do not depend on the number of rests. However, both force and timing errors exhibited 
significant main effects of the session (F(29, 754) = 6.22 and 24.8, respectively; p < 0.001 for both), indicating that 
the participants successfully learned motor skills.

To remove the variation among sessions, we quantified the time to best performance and the amount of learn-
ing through curve fittings of the individual timing and force error data, as shown in Fig. 2d–g. The Wilcoxon 
rank-sum test found no significant differences in the time to best performance or the amount of learning between 
the two conditions (p > 0.05 for all comparisons). Furthermore, no group differences were found for online and 
offline gains, as shown in Fig. 2h–i. The detailed statistical analysis results are presented in Table 1.

While not statistically significant, the speed of force error reduction appeared faster in the 2-rest condition, 
particularly in the early learning phases (e.g., the first ten training sessions). This might be due to between-group 

Table 1.  Statistical analysis results.

Figure no Test method Dependent variable Statistic

2d Wilcoxon rank-sum test Force, overall gain − 0.391

2e Wilcoxon rank-sum test Force, best session no 0.000

2f Wilcoxon rank-sum test Timing, overall gain − 0.115

2g Wilcoxon rank-sum test Timing, best session no 0.533

2h Wilcoxon rank-sum test Force, online gain 1 − 0.391

2h Wilcoxon rank-sum test Force, online gain 2 1.815

2h Wilcoxon rank-sum test Force, offline gain 0.437

2i Wilcoxon rank-sum test Timing, online gain 1 0.574

2i Wilcoxon rank-sum test Timing, online gain 2 0.207

2i Wilcoxon rank-sum test Timing, offline gain − 1.585

3a Wilcoxon rank-sum test Max. perceived exertion − 0.379

3b Wilcoxon rank-sum test ΔMVC 0.161

3c Wilcoxon rank-sum test ΔTapping speed − 0.718

3d Two-sample t-test ΔTapping timing variability 1.552

3e Wilcoxon rank-sum test ΔEMG/force, EDC muscle 0.170

3f Wilcoxon rank-sum test ΔEMG/force, FDS muscle 0.849

3g Two-sample t-test ΔEMG/force, 3DI muscle 0.316

3h Two-sample t-test ΔEMG/force, 4DI muscle 0.269

3i Wilcoxon rank-sum test ΔMF, EDC muscle − 0.267

3j Wilcoxon rank-sum test ΔMF, FDS muscle − 2.208

3k Wilcoxon rank-sum test ΔMF, 3DI muscle − 1.179

3l Wilcoxon rank-sum test ΔMF, 4DI muscle − 0.540



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21646  | https://doi.org/10.1038/s41598-023-49226-7

www.nature.com/scientificreports/

differences in task success rate during the early learning phase (Supplementary Fig. 1). In fact, a two-way ANOVA 
revealed a significant interaction between session and group for the success rate (F(29, 754) = 1.67, p = 0.013), 
and a post hoc test showed that the success rate in the first training session was significantly higher for the 2-rest 
condition than for the 1-rest condition (p < 0.05). Participants in the 1-rest condition may have been too engaged 
to accurately follow the assigned sequences, leading to challenges in precise force control.

Impact of rest conditions on fatigue indicators
We quantified the fatigue indicators using data from the MVC and tapping tests. Pairwise comparisons revealed 
no significant differences in the fatigue-related metrics between the groups, except for the EMG-MF of the FDS 
muscle. The highest perceived exertion across the 30 training sessions showed no significant difference between 
the two groups (Fig. 3a; p = 0.705). The change in the average maximum force of the left middle and ring fingers 
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Figure 3.  Changes in fatigue indicators over the training sessions. (a) Highest perceived exertion across 30 
training sessions. (b) Difference in the average maximum force of the left middle and ring fingers between the 
pre- and post-MVC tests. (c) Difference between the mean tapping speed and (d) the mean timing variability 
(i.e., coefficient of variation) for the first five tapping tests and the last five tapping tests. (e–h) Changes in 
EMG median frequency of FDS, EDC, 3DI, and 4DI muscles at the pre- and post-MVC tests, respectively. (i–l) 
Changes in the ratio of EMG amplitude of FDS, EDC, 3DI, and 4DI muscles to the average maximum force at 
pre and post MVC tests, respectively. *p < 0.05 by a non-parametric pairwise comparison.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21646  | https://doi.org/10.1038/s41598-023-49226-7

www.nature.com/scientificreports/

between the pre- and post-MVC tests was also similar between the groups (Fig. 3b; p = 0.87). Similarly, there 
were no significant differences in the mean tapping speed (Fig. 3c; p = 0.473) or mean tapping timing variability 
(Fig. 3d; p = 0.134) for the first and last five tapping tests. Changes in EMG/force at pre- and post-MVC tests 
were also not significantly different between the groups (Fig. 3e–h; p = 0.40–0.87). However, the Wilcoxon rank-
sum test identified a significant group difference in the changes in the EMG-MF of the EDC muscle between 
pre- and post-MVC tests (Fig. 3j; p = 0.027). Note that EMG-MF did not significantly differ between the groups 
for the other muscles (Fig. 3i,k,l; p = 0.24–0.79). The detailed statistical analysis results are presented in Table 1.

Covariation of tapping timing variability and EMG amplitude per unit force with motor skill 
learning
Figure 4 shows the relationships between the learning indices (response variables) and fatigue indicators (pre-
dictor variables) derived from the stepwise regression analysis. We observed a positive association between the 
time to best performance in timing error and changes in the EMG/force of the EDC muscle, as well as tapping 
timing variability between the pre- and post-MVC tests. This implies that participants whose EMG/force and 
tapping timing variability increased after training required more time to acquire complex auditory-motor skills. A 
post-training increase in tapping timing variability was also linked to a smaller online gain 2 in timing error. Fur-
thermore, participants whose 3DI muscle EMG/force increased after training exhibited a smaller offline gain in 
force error. Notably, perceived exertion was not linked to any of the learning indices. These findings suggest that 
the tapping timing variability and EMG/force may help predict the efficiency of learning dexterous movements. 
However, none of the fatigue indicators explained the amount of overall learning gain throughout the training.

Discussion
The present study has two key findings. First, motor skill learning and fatigue evolution may be independent of 
resting frequency. Learning indices, such as reduction in force and timing error throughout training, were not 
different between the two groups with different numbers of rests. Similarly, we observed no difference in fatigue 
indices, such as the MVC test, tapping test, muscle activities during those tests, and perceived exertion, between 
the two groups. This finding suggests a counterintuitive insight: there may not be a uniform resting schedule 
for the enhancement of learning efficiency, although other unexplored features have the potential to reveal the 
effects of a resting strategy on learning. Second, several fatigue-related indicators may explain the learning of 
timing and force control. Regression analyses revealed that the tapping speed variability explained the time-to-
best performance and online gain in timing error, whereas the EMG amplitude per unit force during the MVC 
test explained the time-to-best performance in timing error and offline gain in force error. Together, these results 
highlight the unreliability of the subjective perception of fatigue, and thus, the necessity of an objective test bat-
tery, such as the tapping test, to reliably evaluate fatigue.

Contrary to our hypothesis, frequent rest did not lead to enhanced learning. Our hypothesis was based on 
several neurophysiological factors such as memory consolidation during  rest19,20, offline  learning21, and learning 
deterioration under  fatigue15. One potential reason for this counterintuitive result may be the limited understand-
ing of the mechanisms governing recovery from muscle fatigue during rest. While endurance against fatigue has 
been actively  investigated22, little is known about recovery from fatigue, such as the factors underlying prolonged 
central fatigue accompanying long-duration exercise and the effect of exercise intensity and duration on the time 
course of neuromuscular  recovery23. Our results suggest that muscle recovery from fatigue may play a role in the 
efficiency of motor skill learning, although the precise relationship remains unclear.

Our results showed notable inter-subject variability in the change in fatigue indicators over the training 
sessions, despite all the subjects being trained pianists. This finding aligns with a number of studies that have 
reported subject-specific neuromuscular responses to fatigue that appear in MVC and  EMG24,25. One puta-
tive factor that explains individual differences in the amount of fatigue among pianists is their motor skills in 
reducing unnecessary muscular activity during piano  keystrokes12,26,27. For example, expert pianists can utilize 
more non-muscular forces, such as inertial and gravitational forces, thereby reducing the muscular  load26,27. 
Pianists who exerted a shorter duration of muscular work exhibited faster piano performances, highlighting 

Force errorTiming errorLearning
indexes

Fatigue
indicators

Time to best performance
(Best session no.)

EDC
β = 0.96

Timing variability
β = 0.85

Online gain 2

Perceived
exertion

Maximum
force

Tapping
performance

EMG
per unit force

EMG
median frequency

Offline gain

Timing variability
β = -1.10 3DI

β = -0.96

Figure 4.  Dependencies between learning indexes and fatigue indicators. These results were derived from 
stepwise regression analyses.
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the inter-individual differences in neuromuscular skills as a key expertise of  pianists12,28. Another factor is the 
endurance of the finger muscles against fatigue, which is likely superior in pianists than in non-musicians13,29. 
Physiological adaptation to muscular fatigue in pianists suggests piano training has the nature of endurance 
training, which can differ across pianists depending on the amount and ways of practicing.

A key finding of our study is that tapping speed variability, rather than the tapping speed itself, serves as an 
indicator of fatigue that can explain motor skill learning. It has been reported that the inhibitory M1-intracortical 
circuits and corticospinal excitability increase during unresisted repetitive  movements30. They also observed that 
the MVC force and the level of the central drive to the muscle remained unchanged after 30 s of finger tapping. 
Another study reported that while short-lasting repetitive movements induce fatigue within intracortical inhibi-
tory circuits, isometric contractions have a clear impact on spinal  circuits31. These findings suggest that a task 
that does not require isometric contraction, but rather fine control of force and timing, triggers fatigue within 
the intracortical circuits and not merely at the muscle level. This could explain why tapping speed variability 
can be a predictor of learning but not speed itself, which might be a more direct fatigue indicator. One possible 
reason for the unchanged tapping speed in our experiment is the relatively short duration (5 s) of the tapping 
task. Future observations of the concomitant shift in the movement rate and firing rate of motor neurons, as 
reflected in the median frequency of EMG, toward a lower frequency with fatigue, may signify synchronization 
between different systems, aligning with Bernstein’s classical  statement32.

Another fatigue-related indicator that seemed to explain the detrimental effect on motor skill learning was the 
EMG amplitude per unit force. This result agrees with those of previous studies demonstrating that as fatigue sets 
in, the EMG amplitude required to exert the same force tends to  increase5,6. The increase in motor unit activity 
reflected in the EMG amplitude can include changes in the number of active motor units and modulation of 
the discharge rate to compensate for peripheral  fatigue33. Because the EMG per unit force is a clear indicator of 
fatigue, which has been reported in several previous studies, our results extend those of a previous study that 
demonstrated deteriorated learning under muscle  fatigue15. However, drawing a more reliable conclusion requires 
performing a cross-validation of the features in the regression model in future studies, which the present study 
could not do because of the small sample size. Additionally, recognizing potential contributors to result vari-
ability, such as hormonal influences associated with the menstrual cycle, known to impact feelings of fatigue and 
finger  fluency34,35, could further enrich our understanding.

Fatigue detection is crucial to avoid neuromuscular disorders triggered by overtraining. The present study 
aimed to discover potential markers to detect fatigue even when a pianist does not consciously perceive it. The 
results suggest the potential utility of tapping speed variability and EMG per unit force as reliable fatigue indica-
tors in the context of auditory-motor learning. In addition, our results suggest the need to tailor rest periods for 
each individual during learning for trained pianists. It is worth noting that resting, which is not well designed 
for individuals, does not enhance learning efficiency. As the neuromuscular system of professional pianists for 
auditory-motor learning is optimized after years of musical  training36, it is crucial to adopt test batteries, such 
as the tapping test, to correctly identify fatigue that appears differently among individuals.

Further investigation is required to verify the practical application of tapping speed variability and EMG 
per unit force as fatigue indicators. While the task adapted in this study was similar to piano training in that 
it required fine force and timing control, it was not representative of typical piano practice. This is because it 
involves only two fingers and utilizes an apparatus that is not a real piano. To apply these indicators in the actual 
piano practice of professionals, future studies must test the capacity of these markers to detect fatigue in real 
piano practice.

Conclusions
We tested the effect of fatigue on the learning of a complex task, by conducting an auditory-motor learning task 
experiment in two groups with different resting conditions. Contrary to our hypothesis, the results showed no 
uniform resting schedule for optimizing auditory-motor learning. Instead, our results suggest the possibility of 
using additional objective tests during training, such as a tapping test, to detect fatigue and optimize individual 
skill learning. With further investigations to verify their aptitude as fatigue detectors, this finding can be applied 
to musical training and other types of motor learning, such as sports and rehabilitation.

Data availability
Data to generate all plots in Figs. 2 and 3 can be found at https:// osf. io/ mvhxn/. The other data (e.g., raw data) 
will be provided upon request to the corresponding authors.
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