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A novel post‑weld treatment using 
nanostructured metallic multilayer 
for superior fatigue strength
Jakob Brunow 1*, Niclas Spalek 1, Fawad Mohammadi 1,2 & Marcus Rutner 1*

Welded joints exhibit fatigue failure potential from weld geometry and characteristics of the heat 
affected zone. In order to counteract fatigue, structures and components require larger thicknesses 
resulting in heavier designs exhausting the finite natural resources. We hereby introduce a novel post‑
weld treatment, which postpones or even prevents fatigue failure of the welded connection. A Cu/Ni 
nanostructured metallic multilayer (NMM) is applied via electrodeposition and a 300–600% increase 
in usable lifetime compared to the untreated weld is observed. A FAT class 190 with a slope of k = 6 is 
proposed for the design of NMM treated butt welds. Material mechanisms responsible for the fatigue 
strength increase are introduced herein. A case study shows that the design of offshore wind turbine 
support structures applying NMM post‑weld treatment enables a lifetime extension as well as a 28% 
weight reduction compared to the structure without post‑weld treatment.

The pressing need to counteract environmental pollution and climate change has prompted research in civil engi-
neering to explore ways to reduce its carbon footprint and adopt more environmentally friendly practices. One 
frontier in civil engineering is to extend the lifetimes of structures and reduce building material in the process, 
with the utilization of new and improved materials and construction techniques. In civil engineering, alongside 
corrosion, fatigue is responsible for premature failure of structures, extensive maintenance costs and safety risks. 
Particularly prone to fatigue loading is the welded connection, which is used in more than half of all global 
engineering  products1–6. In order to extend the possible lifetime of welded connections post-weld treatments 
have been  developed7,8. According to the International Institute of Welding (IIW) recommendations, post-weld 
treatment can be categorized into three groups. One focusses on methods to change the weld profile, e.g. grind-
ing. The second group modifies the residual stress states in the weld proximity, e.g. High Frequency Mechanical 
Impact (HFMI) treatment, and the third improves the environmental conditions, e.g. resin  coating5,8,9.

The nanostructured metallic multilayer (NMM) is applied locally on the weld and weld proximity covering 
the fatigue-susceptible area. NMM are known to possess superior material properties compared to the respec-
tive bulk materials and can be tailored towards special  requirements10,11. This applies to corrosion resistance, 
strength, further, to magnetism, conductivity and radiation damage  tolerance12–22. The novelty herein arises from 
using NMM as a supportive coating counteracting the fatigue susceptibility of welded connections. Increased 
fatigue life in NMM thin films has been shown in the literature. Especially Cu/Ni based systems show promising 
findings for the use as a post-weld  treatment11,18,22–34. Additional factors for the metal selection include the cost 
advantage over precious metal constituents and the possibility for using electrodeposition as a rapid and scal-
able application method in contrast to physical vapor deposition or chemical vapor  deposition35. The superior 
mechanical properties of NMM originate from mechanisms such as the Hall–Petch  effect36–38 and are strongly 
dependent on the individual layer  thickness39–42.

One example of a steel structure subjected to cyclic loading are support structures of offshore wind turbines, 
where fatigue is caused by water waves, wind and blade  rotation43. The most common foundation used is the 
monopile, which is addressed in this study. Monopiles are being built in wind parks around the world to secure 
sustainable energy production. The design of monopiles is highly governed by fatigue. Wall thicknesses of up to 
150 mm are necessary because of fatigue criticality of the circumferential welds which hold the monopile seg-
ments together. Fatigue limits the lifetime of the support structure to approximately 25  years43. Decommission 
of monopiles and re-erection are detrimental to the sea flora and fauna. Without the fatigue considerations in 
the design process, the monopile could be designed substantially thinner, which is investigated herein. Thereby 
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leading to beneficial implications for the carbon footprint, the manufacturing process and the service lifetime 
of offshore wind turbines.

Materials and experimental test setup
In the research presented herein, the possibility of Cu/Ni nanostructured metallic multilayer (NMM) treatment 
for strengthening of welds is explored. Due to a profile change at the weld toe and a property change in the heat 
affected zone (HAZ), welds are vulnerable when subjected to cyclic loading. An etched micrograph of a weld, 
which is used for hardness measurement, is shown in Fig. 1a. Hardness values in the HAZ and the base material 
are 250 HV10 and 180 HV10, respectively. The nanostructured metallic multilayer treatment is schematically 
shown together with other post-weld treatments in Fig. 1b.

In Fig. 1c, the S355 J2 steel type-E specimen, as defined in DIN  5012544, with a center double V-weld, is 
shown. The height of the weld reinforcement is 1.3 ± 0.1 mm. The width of the weld face is 13 mm. Therefore, 
the weld of this study is categorized into FAT class 80 according to DIN EN 1993-1-93. Table 1 lists the chemical 
compositions of base and filler materials.

The NMM post-weld treatment is produced by  electrodeposition45–48. The NMM metal combinations are 
limited by the available and stable electrolytes for the electrodeposition  process49. The bilayers, consisting of 
almost pure individual Copper and Nickel layers, are deposited in a single-bath electrodeposition process. The 
current densities applied for the deposition of the Cu/Ni nanolaminate are 0.45 mA/cm2 for Cu deposition and 
22 mA/cm2 for Ni deposition. The electrolyte consists of a citrate Cu/Ni sulfate  bath27. The as-welded sample 
and the polished sample, further, the sample after HFMI post-weld treatment and the NMM post-weld treated 
sample are shown in Fig. 2a–d, respectively. The HFMI post-weld treatment is conducted by HiFIT Vertriebs 
GmbH, Aitrang, Germany. A 3 mm-diameter pin is used at 7–8 bar with a pin movement speed of 2.5 mm/s 
and a penetration depth of 0.15–0.25 mm. A SEM (FEI Helios NanoLAB G3) image of the Cu/Ni nanolaminate 
cross section with a Ni base layer deposited on the steel substrate is shown in Fig. 2e. An EDX/TEM (FEI Talos 
F200x) image, that distinguishes between the Cu (orange) and Ni (gray) layers, is depicted in Fig. 2f. The NMM 
lay-up has a 1,000 nm-thick Ni base layer and 160 Cu/Ni bilayers with a thickness of 50 nm each. Each bilayer 
consists of a 15 nm-Cu and a 35 nm-Ni thick layer.

Figure 1.  (a) Etched micrograph of the weld; (b) Schematic depiction of post-weld treatment methods for the 
double-sided V-butt weld; (1) As-welded cross-section of a double-sided V-butt weld; (2) Flush ground surface; 
(3) Local grinding of the weld toe; (4) TIG-remelted weld toes; (5) HFMI-treated weld toes; (6) NMM treated 
weld; (c) Dimensions of the dogbone specimen according to DIN 50125 Type E with double-sided V-weld.

Table 1.  Chemical composition of base steel and filler material.

Material C (wt%) Mn (wt%) Si (wt%) P (wt%) S (wt%) Cu (wt%)

S355 J2 0.2 1.60 0.55  ≤ 0.025  ≤ 0.025 0.55

G3Si1 0.1 1.45 0.85 0 0 0
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Fatigue testing and evaluation
Fatigue testing is performed with a servo-hydraulic uni-axial testing machine (Schenck PC400M) and evalu-
ated according to DIN  5010050 and recommendations of DVS notice  240351. The constant amplitude loading is a 
sinusoidal load with a static mean stress  Sm, the stress amplitude  Sa, whereas a wide range of stress is covered to 
generate the stress (S)—cycle number (N) curve. The stress ratio of all tests is R = 0. All fatigue tests are conducted 
with a frequency of 8 Hz. The samples are tested until fracture or until cycle number N = 2.5∙106 is reached, which 
is defined as run-out. Table 2 summarizes the sample test matrix and provides the sample definition, the number 
of specimen tested and the slope of the S–N curve assessed.

Figure 3 shows all measured data points with shaded areas indicating the 80%-confidence intervals of the 
different data sets. This plot demonstrates that the scatter of the as-welded specimen is relatively high. The scatter 
even increases after polishing of the surface. The HFMI post-weld treatment (HiFIT) achieves a reduced slope 
of the S–N curve, however, a significant scatter remains. In contrast, the NMM treated specimen reveal a very 
narrow distribution of data points.

In engineering design terms, a reduced scatter equates to a high level of effectiveness and reliability of the 
technology. Obviously, these findings provide a first strong indication, while further testing and enlarging the 
data set is necessary to confirm this.

Figure 3 shows the 80% confidence intervals bound by the 10% and 90% quantiles, however, the design of 
structures according to  Eurocode3 is based on the 5% quantile, as plotted for all categories of samples in Fig. 4. 
The plot includes the corresponding FAT classes from the literature. It should be noted that the 5% quantile of the 
as-welded specimen is almost congruent with the FAT class 80 which is in agreement with  Eurocode3. Further, 
the 5% quantile of the HFMI (HiFIT) post-weld treated specimen is almost lining up with FAT class 140 with a 
slope of k = 5, which is consistent with the fatigue class for HFMI used in the  literature52. The experimental data 
matching the corresponding FAT classes according to specifications can be interpreted as a validation of test setup 
and test performance. The 5% quantile of the polished specimen shows no increase in fatigue life resulting from 
the large scatter. Further, a lifetime improvement for Cu/Ni NMM treated welds is seen across all stress ranges. 
The 5% quantile of the Cu/Ni NMM treated specimen achieves a FAT class 190 with k = 6, which corresponds to 
a fatigue design lifetime increase between 300 and 600% depending on the stress range. NMM treated specimen 
show run-outs below a stress range of 70% of yield strength which equates to 249 MPa.

Figure 2.  Micrographs of weld periphery: (a) As-welded specimen; (b) Polished specimen; (c) HFMI post-weld 
treated specimen; (d) NNM post-weld treated specimen; (e) SEM image showing the deposited NNM coating: 
The steel substrate (dark grey), the 1 µm-thick Ni base layer (light grey) and the Cu/Ni nanolaminate; (f) Close 
up colorized EDX/TEM image showing the sharp interfaces between Cu (orange) and Ni (grey) layers.

Table 2.  Summary of fatigue test data.

Category of specimen Number of specimen Number of run-outs
Slope k of S–N curve assessed according to DIN 
 5010050 Modified slope k according to DIN  5010050

As-welded 32 3 2.57 3

HiFIT 20 2 3.46 5

Polished 11 4 3.2 3

NMM 16 4 6.79 6
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Fundamental effects of NMM
Results from FIB-SEM tomography and subsequent TEM investigations indicate, that crack propagation through 
NMM is accompanied by multi crack formation within the adjacent Cu layers, as well as necking and work 
hardening in the Ni  layers28,53–56, as shown in Fig. 5a. The schematic sketch shows the dark grey steel substrate, 
the light grey Ni base layer and the Cu/Ni nanolaminate. Complex crack dynamics, including deflection, arrest, 
crack re-initiation and aforementioned multi-crack development and work hardening are responsible for energy 
dissipation in the crack propagation phase, as shown in Fig. 5e. This is seen as one explanation for the observed 
superior fatigue  resistance28. While this crack propagation behavior is in line with common explanations for the 
increased strength of NMM and the observations are well supported by findings from the  literature28, the follow-
ing mechanisms are expected to significantly contribute to an increase in fatigue strength through a postponed 
crack initiation. Further research is needed to quantify the individual contribution of the following expected 
mechanisms:

• Compressive residual stresses introduced to the steel surface (Fig. 5b)
• Surface roughness reduction (Fig. 5c)
• Suppression of persistent slip bands (PSB) (Fig. 5d)

Figure 3.  Scatter plot of fatigue specimen with colored areas showing the 80%-confidence interval, bound by 
the 10%- and the 90%-quantile; Comparative study of as-welded, polished, HFMI (HiFIT) post-weld treated and 
NMM post-weld treated specimen.

Figure 4.  Design S–N curves derived from the 5%-quantiles compared to the corresponding FAT classes.
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A preliminary synchrotron radiation X-Ray diffraction (XRD) experiment indicates a complex residual stress 
behavior. Significant tensile residual stress of several hundred MPa is measured in the nanolaminate while com-
pressive stress is measured in the steel substrate adjacent to the surface (Fig. 5b). A gradient of residual stress 
over the thickness of the cross section is observed in measurements conducted at PETRA-III at DESY German 
Electron Synchrotron in Hamburg, Germany, as shown in Fig. 5f. The compressive residual stress in the steel 
substrate is assumed to compress microcracks, hence, contributing to postpone or even avoid crack initiation. 
The residual stress states are measured in the nanolaminate of the unloaded specimen and after fatigue failure. It 
is recognized that the tensile stress in the Ni layers even increases throughout the lifetime which can be attributed 
to the load transfer from Cu layers to its neighboring Ni layers due to multi-cracking.

The surface roughness is reduced through the deposition of the NMM, as shown in Fig. 5c,g. Surface defects 
as potential sources for fatigue crack initiation are mitigated. Red lines sketched into Fig. 5g show the surface 
roughness of the polished steel substrate compared to the interface between Ni base layer and nanolaminate and 
on top of the nanolaminate. As recently shown, the surface roughness at the end of lifetime for the NMM treated 
weld is smoother than the roughness of the pristine polished  steel28.

PSB form in surface proximity and become detectable by intrusions and extrusions during cyclic loading 
(Fig. 5h). Intrusions are widely considered to be the nucleation point for crack formation. Recent simulated 
investigations of the interaction between PSB and surface hard coatings demonstrate that the suppression of PSB 
increases the fatigue lifetime of  materials31,57,58. Further investigations are necessary to qualitatively describe and 
to quantify the influence of PSB suppression by NNM coatings to prolong the crack initiation phase (Fig. 5d).

Summarizing, NMM treatment addresses all three main improvement techniques defined by  IIW5, notably 
the improvement of weld profile, residual stress conditions as well as environmental conditions.

Lifetime extension and steel mass savings of wind turbine structures
The steadily increasing targets for offshore wind energy  production59 pose a significant challenge to the supply 
chain to meet the future demand. In particular, the monopile structure as the most common form of  foundation60 
and heaviest component is prone to fatigue failure and poses a significant challenge for production and handling.

The case study determines what effect the NMM treatment has, if applied on the circular welds of a monopole 
type foundation with a state-of-the-art 15 MW offshore wind turbine (Fig. 6a). The fully integrated numeric 
model consists of the rotor-nacelle-assembly, tower, substructure and foundation and is analyzed in a hydrody-
namic and aeroelastic finite-element analysis using the software Bladed61. The environmental boundary condi-
tions regarding water depth, geotechnical resistance, metocean data are selected to resemble a typical location 
in the German North Sea.

The analysis covers a wide range of load cases:

Figure 5.  Schematic depictions of underlying principles of improved fatigue resistance: (a) Influenced 
crack propagation through NMM; (b) Introduction of residual tensile stresses in the NMM and equivalent 
compressive stresses in the steel substrate adjacent to the surface; (c) Reduction of surface roughness; (d): 
Suppression of PSB by hard coating application; (e) TEM image of complex crack propagation across NMM; (f) 
Synchrotron energy data revealing residual compressive stress gradient in steel surface proximity after NMM 
application; (g) SEM image with visualized surface roughness reduction; (h) Image of visible extrusions in HAZ 
after cyclic loading.
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• Fatigue limit state (FLS), e.g. operational load cases during power production
• Ultimate limit state (ULS), e.g. an extreme weather event
• Service limit state (SLS), e.g. a severe weather event with a focus on deflections
• Installation load cases, e.g. loads during pile driving

The codes of the International Electrotechnical Commission (IEC)62 specify the number of categories of load 
cases that need to be analyzed for the design of foundations of offshore wind structures.

The most critical load cases drive the design of the monopile. Typically, the ULS and SLS load cases drive the 
embedment depth and bottom outer diameter of the monopile, FLS usually—and in certain cases ULS—drives 
the distribution of wall thickness over height. Further, minimizing the top diameter leads to overall smaller loads 
as the surface area subjected to wave forces is minimized. The starting configuration of the case study contains 
an optimized monopile design based on the normative fatigue resistances without consideration of the NMM 
treatment. In this case study several configurations are simulated. Global parameters such as the outer monopile 
diameter and embedment depth are not changed among the configurations as a change of these parameters has 
a significant influence on the applied load level. For every reduction in wall thickness, as shown in Fig. 6c, a 
structural reassessment is performed to determine the applicable loads based on the changes in stiffness. The 
analyses revealed that although the thickness reductions are substantial, changes in eigenfrequency and load 
level are minor.

The following three configurations are distinguished:
Configuration A Resembling the current design approach. The majority of the circumferential welds (Fig. 6b) 

connecting the segments of the monopile remains in the as-welded condition (FAT 90) with the exception of 
the welds below and above the conical transition piece to be improved via flush-grinding (FAT 112). The total 
weight sums up to 1710 t.

Configuration B All welds of the monopile (Fig. 6b) are flush ground (FAT 112) representing the theoretical 
optimum in respect to fatigue resistance according to  DNV63. The total weight sums up to 1337 t, which is a 22% 
weight reduction compared to configuration A.

Configuration C Covering the monopile with NMM post-weld treatment applied on the circumferential welds 
(Fig. 6b). As the NMM by far extends the fatigue resistance of the base metal, the applicable fatigue resistance is 
set to FAT 140 within the case study, which resembles the fatigue resistance of the base metal. The total weight 
sums up to 1236 t, which is a 28% weight reduction compared to configuration A.

The results of configuration A confirm that fatigue susceptibility of the untreated welds drives the design 
of  monopiles43. Post-weld treatments reduce the fatigue criticality. Configuration B, although considered to 
be economically challenging, demonstrates, that a significant wall thickness reduction is achievable, as shown 
in Fig. 6c. However, the design in configuration B remains mostly driven by the FLS. For configuration C, the 
advantages of a NMM post-weld treatment cannot be fully utilized since further reduction of the wall thickness 
is restricted by ULS-criteria, such as buckling and plastic deformation. However, the NMM treatment eliminates 

Figure 6.  (a) Offshore wind turbine structure; (b) Schematic depiction of a monopile foundation. 
Circumferential welds represented by dotted lines; (c) Resulting wall thickness distribution for the respective 
configurations A–C.
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the fatigue criticality which allows an 300–600% extended service life and at the same time enables a 8% further 
weight reduction compared to configuration B.

By neutralizing the fatigue susceptibility of welded structures, the NMM enables the offshore wind industry 
to further utilize their current production capacities. The application of the NMM post-weld treatment further 
contributes to the global energy production targets, sustainable use of current infrastructure and efforts to 
minimize green-house gas emissions.

Summary
Fatigue tests of welded S355 J2 steel type-E specimen according to DIN  5012544, comparing the NMM treated 
welds to untreated and conventionally post-weld treated (HFMI) welds, reveal a superior fatigue strength. The 
S–N curve of the NMM treated weld corresponds to a FAT class 190. Four underlying material mechanisms, 
which are seen as responsible for the significant fatigue strength increase, are discussed. An additional case study 
investigates NMM treatment of all circumferential welds of a 15 MW reference wind turbine monopile founda-
tion, assessed in a hydrodynamic and aeroelastic finite element analysis. Complete elimination of the fatigue 
criticality of all welds and additionally a 28% weight reduction of the structure is identified.

With these findings, a novel post-weld treatment method is herein introduced with the potential to change 
the state-of-the-art in design and maintenance of welded structures, hence contributing to sustainable use of 
infrastructure and natural resources and reduction of the carbon footprint of the steel industry.

Methods
Sample preparation
S355 J2 steel type-E specimen, as defined in DIN  5012544, with a center double V-weld, are used. The weld 
material is G3Si1 (Table 1). NMM post-weld treatment is produced by electrodeposition. The NMM lay-up has 
a 1000 nm-thick Ni base layer and 160 Cu/Ni bilayers with a thickness of 50 nm each. Each bilayer consists of 
a 15 nm-Cu and a 35 nm-Ni thick layer. The bilayers are deposited in a single-bath electrodeposition process. 
The current densities applied for the deposition of the Cu/Ni nanolaminate are 0.45 mA/cm2 for Cu deposition 
and 22 mA/cm2 for Ni deposition. The electrolyte consists of a citrate Cu/Ni sulfate bath. The high frequency 
impact post-weld treatment is conducted using a 3 mm-diameter pin at 7–8 bar with a pin movement speed of 
2.5 mm/s and a penetration depth of 0.15–0.25 mm.

Synchrotron radiation X‑ray diffraction (XRD)
The X-Ray diffraction tests are performed with the high energy beamline P61A at PETRA-III (DESY synchrotron 
facility Hamburg, Germany). The beamline is optimized for energy dispersive measurements with usable photon 
energies ranging from 30 to 200 keV. The experiments are conducted in transmission mode using a HPGe point 
detector, with 2ϴ ~ 4°. Sample positioning is done using an Eulerian cradle. Gauge volumes of 10 × 500 × 500 µm3 
and 100 × 10 × 10,000 µm3 for the respective stresses s33 and s11 are set up in the HAZ with the scan direction 
being vertical (in the direction of the cross section).

Fatigue testing
Fatigue testing is performed with a servo-hydraulic uni-axial testing machine (Schenck PC400M). The constant 
amplitude loading is a sinusoidal load with a static mean stress  Sm, the stress amplitude  Sa, whereas a wide range 
of stress is covered to generate the stress (S)—cycle number (N) curve. The stress ratio of all tests is R = 0. All 
fatigue tests are conducted with a frequency of 8 Hz. The samples are tested until fracture or until cycle number 
N = 2.5 ×  106 is reached, which is defined as run-out. The S–N curve is established according to DIN  5010050.

Finite element analysis
A fully integrated model consisting of turbine, tower, substructure and foundation is modelled in a hydrodynamic 
and aeroelastic finite element analysis using the software  Bladed61.

Data availability
The data presented in this study are measured data by Synchrotron radiation X-Ray diffraction (XRD), Electron 
microscopy and fatigue tests and are available on request from the corresponding author.
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