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Severity of error in hierarchical 
datasets
Satwik Srivastava 1* & Deepak Mishra 2

Classification tasks today, especially for the medical domain, use datasets which are often 
hierarchical. These tasks are approached using methods that consider the class taxonomy for 
predicting a label. The classifiers are gradually becoming increasingly accurate over the complex 
datasets. While increasing accuracy is a good way to judge a model, in high-risk applications, it needs 
to be ensured that even if the model makes a mistake, it does not bear a severe consequence. This 
work explores the concept of severity of an error and extends it to the medical domain. Further, it 
aims to point out that accuracy or AUROC alone are not sufficient metrics to decide the performance 
of a model in a setting where a misclassification will incur a severe cost. Various approaches to 
reduce severity for classification models are compared and evaluated in this work, which indicate 
that while many of them might be suited for a traditional image classification setting, there is a need 
for techniques tailored toward tasks and settings of medical domain to push artificial intelligence in 
healthcare to a deployable state.

With onset of deep learning in the field of image analysis and computer vision, many frameworks have been 
proposed that solve various image analysis-based problems such as image classification, labelling, segmenta-
tion, etc. Each new advancement in the field targets better accuracy scores of the models. Specially the progress 
in medical image analysis and classification have led to a near-deployment level finesse of AI in  healthcare1. 
Secinaro et al.2 point out the areas of healthcare where deploying an AI solution is a viable outlook. Several 
studies have also explored the particular areas of applications. Davenport and  Kalakota3 note, that while AI is 
not on track to replace humans in this field, it can certainly help augment the work of experts to provide a better 
service in such sectors. To that end, several approaches have been proposed for various tasks in healthcare. One 
of the most common applications of AI in healthcare is augmenting the tasks such as classification, detection 
and labelling. Several different frameworks and approaches showing high performance have been reported 
over datasets of predominantly medical images obtained through X-Rays or other modalities such as MRIs and 
CT  Scans4–7. These standard datasets like CheXpert, Mimic-III, and  Padchest8–10 have the labels arranged in a 
hierarchy (Fig. 1). The abundance of hierarchical datasets and the inherent hierarchy that can be derived from 
various datasets is discussed further in “Background”.

The task in which deep learning has achieved a remarkable success is the automated diagnosis driven by 
image classification. In general, classification approaches are judged based on their accuracy or AUROC scores. 
Accuracy in simple terms is defined by Eq. (1) for a standard binary classification problem.

where TP, TN , FP, FN are the number of True Positive, True Negative, False Positive and False Negative observa-
tions. Similarly, area under the reciever operating statistics curve (AUROC) gives the performance measurement 
for the classification problems at various threshold settings and is defined by Eq. (2).

Here, TPR and FPR are the True Positivity Rate and the False Positivity Rate. It tells how much the model is 
capable of distinguishing between classes. Higher the AUROC, better the model predicts a class as its actual 
label or ground truth value. While these are robust measures of judging the performance of such deep learning 
networks and thus are essential to keep track of, they do not indicate the nature of errors themselves. In a set-
ting where each error or misdiagnosis can lead to a high cost, these errors need to be ranked, and it should be 
ensured that the model does not always populate the misdiagnosis with high-impact errors. To understand this 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)AUROC =
TPR

FPR
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better, consider the case study by Neale et al.11, which analyses how misdiagnosis can occur in various phases of 
the diagnostic process and how costly it is at each stage. The study points out that system diagnostic failures can 
be a major cause of misdiagnosis in 25–65% of the total assessed cases. Furthermore, the case study by Braun 
et al.12 sheds light on the diagnostic errors that occur in various modes of analysis like Chest X-rays, lab reports 
and other modes of medical information analysis. Thus in the field of healthcare, misdiagnosis is a significant 
issue, and different types of misdiagnosis cannot be clubbed together. Therefore, errors made by the networks 
should not carry the same weight. However, most classification tasks treat each error equally i.e. the impact of 
each misclassification by the model is equal.

For example, a network which uses X-ray images to predict the type of disease or condition a person has will 
often be judged by its ability to predict each class accurately, and the model will consider one error equally as 
wrong as any other error. Consider a case of effusion and consolidation. These are diseases where fluid fills up 
in or around the lungs. Thus, the feature maps extracted from their samples might appear similar to a regular 
deep feature extraction model. However, a misdiagnosis between these can lead to vastly different treatments 
for the diseases and lead to potential harm to the patient. Similar issues are highlighted by Oh et al.13 in their 
work. In such cases, each error cannot be weighted equally. Thus, a model must learn to avoid mistakes that 
have severe consequences.

The solution to this problem requires a parameter that provides a way to measure how critical an error can 
be. A potential term for this is Severity of Error (SoE) which can be used to quantify an error’s importance when 
it is made.

This work aims to explore SoE and its use in the medical domain, further evaluating it on hierarchical 
datasets presently used by State-of-The-Art (SoTA) methods for AI in healthcare. Additionally, different proposed 
frameworks are explored which aim to reduce severity. The experiments performed using these methods, thus, 
aim to show the importance of SoE for the classification tasks with high-risk potency.

The main contributions of this work are the following:

• The concept of Severity of Error (SoE) is introduced for the multi-label classification framework in the 
medical domain increasing its generalizability and adaption in various different use cases.

• Introduction of a novel way of calculating the Severity of Error for classification tasks.
• A modified CRM Framework is introduced to make it adaptable for the multi-label classification tasks as 

well as more generalizable for the classification task.
• This work lays down the foundation for error severity of deep learning models in medical domain and opens 

up a new direction for future works.

Figure 1.  Visualizing severity through the CheXpert hierarchy tree. When the model predicts Atelectasis as 
Lung Opacity, the severity value is low as the two diseases are close in the hierarchy tree. Hence, the cost of 
misdiagnosis is relatively low. Similarly, for a sample where Pneumonia is predicted as Consolidation, we have a 
low severity value. On the other hand, Pneumonia being predicted as No Finding, the cost of the error made is 
much higher due to both nodes having only the root node as a common ancestor.
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Background
There is a growing concern over the prediction of unsafe labels in the task of medical image  analysis14–17. As 
highlighted in the above, we need parameters, such as SoE, to quantify the degree of harm an incorrect prediction 
can cause. Intuitively, SoE is a quantitative measure of how costly an error made by the model in any particular 
setting is. This cost can be calculated using various methods. The principle of Cost-Sensitive  Learning18 uses a 
predefined cost matrix C where each entry ci,j reflects the cost (or penalty) that will be incurred when our model 
predicts the ith class where the ground truth is j (∀ i �= j) . However, this is largely based on an experimental 
approach that can not be easily automated without the presence of a domain expert. The notion that an error 
has a higher cost than the other, intuitively implies that each label is related to the other through a taxonomic 
relationship. Thus the datasets explored in this work are all hierarchical.

To this end, it is observed that two major representations of the class hierarchy occur in the standard medical 
and non-medical datasets. The first one is represented by a hierarchy tree where the leaf nodes represent the class 
labels of the dataset. These leaf nodes might not be at the same level in the hierarchy tree; however any internal 
node (nodes with a children) is treated as a superclass and hence does not occur in the prediction. We here refer 
to this type of hierarchy as type-1 hierarchy which is seen in datasets like  tieredImageNet19, and  iNaturalist20. 
However, in medical domain another kind of hierarchical organisation of data where each node is a class label is 
more common. Here every node, which may or may not include the root node, is used as a label for classification. 
This is referred as type-2 hierarchy. Some examples of medical datasets with type-2 hierarchy include CheXpert, 
MIMIC and FractureNet  data8, 9, 21.

Despite the difference in hierarchical organisation, the dissimilarity between two nodes of a hierarchical 
datasets, i.e. the measure of how “far” a particular predicted label is from the ground truth value, can be extracted 
from the class hierarchy using a common metric such as Lowest Common Ancestor (LCA) distance between the 
two  nodes22, 23. This is represented by Eq. (3).

here Si is the severity of the ith sample, ŷi is the predicted value, and yi is the ground-truth.
Figure 1 visualizes the severity of various sample predictions. We can see a high severity when a model 

predicts Atelectasis as Enlarged Cardiomegastinium. Similarly, for a sample where Pneumonia is predicted as No 
Finding, we have a high severity value. On the other hand in case of Pneumonia being predicted as Consolidation 
the cost of the error made is comparatively less as both nodes coming under the same branch. This can further 
be studied as the inbuilt hierarchy in medical data can be found and built upon using ICD-9 and ICD-10 codes 
which often groups similar conditions under a common related root or super-class. Figure 2 shows the inbuilt 
hierarchy of respiratory diseases and ailments, which can be built from their ICD-10 codes. Such a structure 
can be exploited in the classification of medical data and severity analysis. In the tree, we can see that each leaf 
is a disease, and its parent is the class of that disease. Similar to the label J constituting Respiratory diseases, 
such a taxonomy can be built for all other diseases using other labels. This indicates that there is a deep and rich 
hierarchy present in all the medical data.

The SoE in the current analysis is closely related to the class hierarchy. However, leveraging class hierarchies 
to improve classifiers is not new. Many authors have incorporated it in their works where hierarchical datasets 
are used to obtain better classification  results25. For example, a hierarchical loss can integrate the class hierarchy 
into the training objective. Thus any model that learns through such loss function should be able to produce less 
severe results. Dimitrovski et al.26, in their work on the IRMA dataset, use a Hierarchical Error Measurement27 
metric proposed in the dataset itself. It assigns a higher value to an error that occurs at a higher level of the 
predictive clustering tree (PCT)8. This is a case of a Hierarchical classification clubbed with a Hierarchical Error. 
Bertinetto et al.28 proposed Hierarchical Cross Entropy which incorporates the class hierarchy of the labels while 
performing error calculations. In contrast, Karthik et al. used a post-inference framework of conditional risk 
minimization (CRM)23 in their work to leverage class hierarchies to reduce the top-k error bound of their models.

As we move towards the application of AI in more and more domains, the risk of such errors is an important 
consideration. Moreover, with the increase of hierarchical datasets in the medical  domain8–10, 21, 29, 30, SoE can be 
used for evaluation before the deployment of any new model for any such tasks. However, all the experiments 
that have been previously done focus on classification tasks on popular datasets of a general classification domain 
like the iNaturalist  dataset20 or the tieredImageNet  dataset19. This work focuses on the medical domain and 
observes how introducing severity as a parameter changes the deep learning model performances in high-risk 
classification. Further, it analyses the effectiveness of the current methods in this domain and the scope of further 
improvement.

Method
There are three possible ways to incorporate severity in a classification task. These include tuning the dataset 
for severity, i.e. introducing a class taxonomy in it or balancing out the data samples and creating a cost matrix 
for the labels, which is termed a pre-training modification, while severity can also be injected into the training 
process and further it can also be used at inference time to reduce the cost of errors. 

1. The concept of dataset preprocessing and cost sensitive  learning18 requires that the dataset be organized into a 
hierarchy tree and a cost matrix (C) be formed where each element cij of the matrix denotes the cost between 
the ith and the jth label. This cost matrix can then be included in different phases of the model learning to 
batch sampling pipeline. While this process is easy to do these may be inaccurate as cost matrix definition 
can have multiple different techniques.

(3)Si = lca(ŷi , yi)
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2. Incorporating SoE in the training phase itself through the use of custom loss  functions28 such that any model 
can learn to choose the labels with the least severity. This method is very costly as the model will have to be 
trained on the specific loss function which would penalize inaccuracy as well as high severity however this 
method can be used to incorporate severity into any general model.

3. Using a post inference  technique23 to lower severity for the model at inference time such that the model can 
select the label reordered according to the technique. While this method is fast the model itself will not learn 
anything here and thus this method becomes hyper-local in its deployability.

An error is a top-1 prediction of a classifier that differs from the ground truth. Thus, qualitatively SoE is an 
indirect measure of the impact a top-1 error/mistake has (as real-world consequences) if taken at face value and 
utilized without any form of correction.

This work explores two possible methods of reducing the severity of a classifier. First, using the hierarchical 
cross entropy loss (HXELoss) function for classifier training, which can incorporate the information about the 
hierarchy of a dataset directly into the  classifier28. Second, using the CRM  framework23 to populate a pool of 
top-k results with the least severity samples at the time of inference.

Hierarchical cross entropy
This method comes under the umbrella of using hierarchical loss functions which are the loss functions that 
incorporate class hierarchy such that a more distant prediction (from the ground truth) automatically has a 
higher value of the loss.

As described  in27, the hierarchy H present in a dataset is a categorical distribution over the levels of the taxo-
nomic hierarchy tree. This is defined in terms of conditional probabilities over classes and is denoted as p(C(l)) 
where (l) is the level of the hierarchy tree at which this class or node is present. Thus root R can be denoted as 
C(0) . Now a path connecting a leaf node C to the root can be denoted as C = C(0), . . .C(h) = R . Thus p(C) can 
be factorized as:

J00-J99 Respiratory Diseases

J00-J06: Acute upper respiratory infections

J00: Acute nasopharyngitis (common cold)
J01: Acute sinusitis
J02: Acute pharyngitis
J03: Acute tonsillitis
J04: Acute laryngitis and tracheitis
J05: Acute obstructive laryngitis [croup] and epiglottitis

J06: Acute upper respiratory infections of multiple and unspeci-
fied sites

J09-J18: Influenza and pneumonia

J20-J22: Other acute lower respiratory infections

J30-J39: Other diseases of upper respiratory tract

J40-J47: Chronic lower respiratory diseases

J60-J70: Lung diseases due to external agents

J80-J84: Other respiratory diseases principally affecting the interstitium

J85-J86: Suppurative and necrotic conditions of the lower respiratory tract

J90-J94: Other diseases of the pleura

J95-J95: Intraoperative and postprocedural complications and disor-
ders of respiratory system, not elsewhere classified

J96-J99: Other diseases of the respiratory system

Figure 2.  The ICD-10  codes24. Each type of diagnosis for a condition has an ICD-10 code used internationally 
in any form of medical image analysis. Each scan is packaged in the DICOM format, which includes such a 
code. These codes are hierarchically arranged and thus the hierarchy in any medical imaging dataset can be 
easily extracted and built.
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here h == h(C) is the height of the node C. The above conditional can be conversely written as follows:

this leads to hierarchical cross entropy (HXE) proposed by Bertinetto et al.28 where the hierarchical loss function 
is defined as:

here �(C(l)) is the weight associated with the edge connecting the node C(l + 1) to C(l).

The conditional risk minimization framework
Another way to incorporate severity in the classification task is to include it in the post-validation/inference 
phase. As shown by Karthik et al.23, the  CRM31 framework is useful to calculate and minimize severity after the 
model inference. It alters the predicted labels to minimize conditional risk (R) as follows

C represents the class relationship matrix where Ci,j is the height of LCA between the labels yi and yj , and is 
directly related to the severity defined in Eq. (3). K is the total number of classes in the considered classification 
task.

Severity of a model
The severity of a sample in this work is considered as the LCA distance between the predicted and ground truth 
labels. This is denoted in Eq. (3). Accordingly the severity of a classifier is represented as the expectation of all 
the severity values over all the samples passed into the classifier as input. This is denoted by Eq. (9).

Here X(f )
s  denotes the severity of the classifier f. xi is the input data and yi is the corresponding ground truth 

label. P(X, Y) denotes the data distribution from which the pairs (xi , yi) are sampled.
Equations (3) and (8) are useful to calculate the severity in a multiclass setting, however in the multilabel 

setting such a formulation does not provide the correct results as it incurs a loss of information. Thus the above 
framework is extended for multilabel scenario as follows: consider a predicted-label vector ŷ and a ground 
truth vector y . Let ŷ(i) and y(i) represent the values at index i in predicted label vector and ground truth vector, 
respectively. The severity for a multilabel task setting can thus be defined as:

Here the set I = {i | ŷ(i) = 1 and y(i)  = 1} and the set J = {j | y(j) = 1 and ŷ(j)  = 1}.
A classifier gives more severe errors when the average severity of the classifier is quantitatively larger than 

the other. Note that CRM as formulated in Eq. (7) is not suitable for a multilabel setting due to combinatorial 
intractability. To make it useful for multilable setting, the CRM output obtained as C · p , where C is the class 
relationship matrix and p is the prediction probability vector, is simply considered as the soft labels representing 
multilabel prediction. The classifiers are compared based on the mean severity value as denoted in Eq. (8). Each 
classifier is first trained on the standard binary cross entropy loss, and then its severity value is checked with 
and without the CRM framework. Further, the classifiers are trained on the HXELoss function, and the severity 
values are compared against the standard results.

Results
Experimental setup
The models are examined using two different severity-reducing frameworks namely the CRM  framework23, 
and the HXELoss based  training28. We evaluate seven popular classification models namely Resnet18, Resnet50 
Densenet121, Wideresnet50, EfficientnetB4, MobilenetV2 and ShufflenetV2 on the Chexpert dataset. The image 
size is kept to (224× 224) to limit the GPU memory usage of the training process. The models are trained for 
25 epochs with a batch size of 64 using the adam optimizer with the learning rate set to 0.001. The standard loss 
function used for training is the binary cross entropy loss.

(4)p(C) =

h−1∏

l=0

p(C(l)|C(l+1))

(5)p(C(l)|C(l+1)) =

∑
A∈Leaves(C(l)) p(A)∑
B∈Leaves(C(l+1)) p(B)

(6)LHXE(p,C) = −

h−1∑

l=0

�(C(l)) log p(C(l)|C(l+1))

(7)argmin
k

R(y = k|x) = argmin
k

K∑

j=1

Ck,j · p(y = j|k)

(8)X
(f )
s = Exi ,yi∼P(X,Y)[lca(f (xi), yi)]

(9)S =
1

|J|

∑

i∈I

∑

j∈J

lca(i, j)
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Preparing the dataset
The CheXpert  dataset9 contains chest radiographs with 14 labels corresponding to different thoracic diseases. 
Since there is a built-in hierarchy of labels in this dataset each sample can have more than one label attached to 
it. For a comprehensive analysis we train the models on this dataset using two different labeling policies. The 
dataset is split into a train set of 166,028 samples and a validation set of 25,001 samples. All the results are on the 
validation set as the test set only contains 224 samples. All samples are split with respect to their patient ids so 
as to avoid overlaps. First one is the conventional multilabel classification in which the standard cross-entropy 
loss does not provide good results. Our experiments use the binary cross-entropy loss function (BCELoss).

The second policy is to covert the multilabel problem into a multiclass classification by considering only one 
of the positive labels (“one”) and assign “zeros” to all the others for each sample. This is a more rudimentary 
approach and leads to loss of information. However, this is more compatible for the loss functions like the 
HXELoss, which is discussed in the next subsection.

Reductions in severity using CRM and HXELoss
Table 1 shows the severity values in the standard setting without any severity-reducing framework applied to 
the model. It is then compared to the models where a post-inference framework, CRM, is applied to reduce the 
severity values.

From Table 1, it can be observed that the CRM framework does not help in reducing the average severity of 
the classifiers. Instead a large increase in the severity value is observed in each model that has been tested. It is 
also observed that AUROC (or F1-Score) is not a factor which can be relied upon when making a prediction 
for the severity value as models with high AUROC and complex architectures (Densenet121, WideResnet50) 
perform worse than simpler models (Mobilenet, Shufflenet, Resnet18) with a low AUROC value.

In the next experiment, where the models are trained using the HXELoss, a similar phenomenon is observed, 
as shown in Table 2. HXELoss is also found to be ineffective in reducing the severity value for the models. From 
Table 2, it can again be noted that the higher AUROC (or F1-score) does not ensure a lower severity value.

It can also be observed that HXELoss is not very efficient in training the considered models. This is due to the 
fact for HXE the problem is diluted from multilabel to multiclass classification (this is discussed in “Preparing 
the dataset”). Thus the models result in suboptimal AUROC since the loss function cannot capture the desired 
information about the whole dataset. However, despite a lower score, it can be noted that directly incorporating 
the hierarchy is more efficient in reducing the severity when compared to the previously used post-inference 
framework that is CRM.

Table 1.  Average severity of models trained using the BCELoss. The results are compared by applying CRM 
as a post-inference technique for reducing the severity values. The severity of a model does not often depend 
upon the high AUROC scores and it can be noted that simpler models with lower AUROCs perform better as 
compared to more complex models.

 Model

AUROC F1 Score SoE

Standard CRM Standard CRM Standard CRM

Resnet18 77.38 ± 0.01 75.56 ± 0.56 0.75 ± 0.01 0.73 ± 0.03 2.37 ± 3.99 8.75 ± 3.70

Resnet50 77.96 ± 0.01 76.62 ± 0.06 0.71 ± 0.01 0.71 ± 0.03 1.48 ± 2.58 10.93 ± 4.63

Densenet121 79.07 ± 0.00 77.78 ± 0.07 0.73 ± 0.01 0.71 ± 0.02 2.29 ± 2.99 10.06 ± 4.61

MobilenetV2 74.17 ± 0.01 72.78 ± 0.07 0.59 ± 0.01 0.61 ± 0.02 2.83 ± 3.36 9.42 ± 4.62

ShufflenetV2 76.29 ± 0.01 76.50 ± 0.07 0.53 ± 0.01 0.54 ± 0.02 2.03 ± 2.87 10.15 ± 4.46

Wideresnet50 78.68 ± 0.02 78.60 ± 0.06 0.55 ± 0.00 0.58 ± 0.03 2.29 ± 2.99 11.04 ± 4.55

EfficientNetB4 75.48 ± 0.01 74.45 ± 0.03 0.57 ± 0.01 0.54 ± 0.04 1.71 ± 2.69 10.63 ± 4.56

Table 2.  Average severity of models trained using the HXELoss. Similar to CRM framework, HXELoss also 
fails to improve severity values of models.

 Model

AUROC F1 Score SoE

BCE HXE BCE HXE BCE HXE

Resnet18 77.38± 0.01 67.88± 0.02 0.75± 0.01 0.67± 0.01 2.37 ± 3.99 5.97 ± 3.94

Resnet50 77.96± 0.01 70.23± 0.01 0.71± 0.01 0.71± 0.00 1.48 ± 2.58 5.98 ± 3.97

Densenet121 79.07± 0.00 69.57± 0.01 0.73± 0.01 0.76± 0.01 2.29 ± 2.99 5.98 ± 4.11

MobilenetV2 74.17± 0.01 61.87± 0.01 0.59± 0.01 0.59± 0.00 2.83 ± 3.36 6.04 ± 4.12

ShufflenetV2 76.29± 0.01 63.60± 0.00 0.53± 0.01 0.55± 0.00 2.03 ± 2.87 6.38 ± 4.31

Wideresnet50 78.68± 0.02 64.97± 0.01 0.55± 0.00 0.58± 0.01 2.29 ± 2.99 6.23 ± 4.07

EfficientNetB4 75.48± 0.01 64.28± 0.02 0.57± 0.01 0.81± 0.01 1.71 ± 2.69 6.23 ± 4.11
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Discussion
From the experiments it is observed that a high AUROC score (or F1 score) does not necessarily translate into 
a low SoE value for the deep learning models. Furthermore, deep and complex architecture, which often result 
in high AUROC, do not guarantee low SoE. This indicates that there exists a trade-off between the quantities 
giving more importance to the correctness of the predictions like AUROC and the others which focus on the 
consequences of the incorrect predictions like SoE. Therefore, when only the former is used for optimization 
during training, latter suffers. To understand this better consider the AUROC vs SoE plots shown in Fig. 3 for 
the Standard vs CRM and BCE vs HXE settings. The models falling in the upper left corner of the plot show high 
AUROC and low severity values. These models are more desirable compared to the other considered models for 
the task at hand. In the current analysis, Resnet18, Wideresnet50, Densenet121 and MobilenetV2 show the best 
severity to AUROC ratio and thus fall into the plot’s upper left corner region. In contrast, the models falling in 
the lower right corner region have low AUROC and high severity. Surprisingly Resnet50, which is one of the 
most popular choice of deep neural network architectures, is in lower right corner region after applying CRM 
and it, therefore, is a relatively less preferable model in the considered scenario. Furthermore, In the models like 
EfficientnetB4 (before and after the use of CRM) are relatively less suited for deployment. Figure 3 also indicates 
that while HXELoss reduces the severity of models, it is not able to train the models for a multilabel classification 
task properly and the models show low severity but also the low AUROC values.

Further the results indicate that:

• In general more complex and heavier models with large number of parameters generally had more severe 
errors than the ones having much simpler architectures. We believe this is mainly because big models often 
suffer from the sample memorization problem which adversly affects their performance on the test set.

• This inverse trend is also noticed for the AUROC and the F1 Score for the models where resnet18 performed 
better than resnet50 or wideresnet50.

• Further an unbalanced dataset does not point to the fact that the class with less number of samples will have 
the highest severity. This is depicted in the manuscript’s Fig. 5.

• Using an existing as well as modified post-inference technique in multilabel classification has the inverse 
effect i.e. rather than decreasing the SoE it increases it further and thus it is better to incorporate SoE into 
the model through a training procedure.

Thus, there is a need for better frameworks and optimization criteria that incorporate class taxonomy into the 
model training for various different tasks in the medical domain.

To understand the above observations better, we further consider label-wise SoE values for all the considered 
models that have been trained using the standard BCELoss, as shown in Fig. 4. These are obtained without using 
any severity-reducing frameworks. It is observed that the samples belonging to the nodes at level-1 of CheX-
pert hierarchy tree have severity values close to 2, which is an upper bound of severity value for an individual 
incorrect label prediction. This is because the samples in level-1 (Fracture, Support Devices, No Finding) are 
commonly misclassified into the classes in level-2 which belong to a different branch of the hierarchy tree. Thus 
the only common ancestor that they have is the root. One possible reason to such misclassification is that the 
total number of samples corresponding to level-2 is considerably higher than that of level-1, which can be seen 
from Fig. 5. Reducing the severity of these samples should thus involve the prediction of samples that lie in the 
same branch of the hierarchy tree.
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Figure 3.  Severity vs AUROC plot in (left) standard vs CRM setting and (right) BCE vs HXE setting. The 
models falling in the upper left corner region of the plot have a comparatively higher AUROC and lower severity 
and, thus are preferable. In contrast, the models falling in the lower right corner region are comparative less 
desirable.
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Another important observation in this work is that the frameworks which are designed to work well in 
multiclass classification setting fail to improve SoE in the multilabel setting. In addition frameworks like HXELoss 
fail in the redesigned multiclass classification setting for CheXpert dataset. This is due to the fact that these 
frameworks are designed for type-1 hierarchy whereas the CheXpert has type-2 hierarchy. Thus there is a need 
to look for severity reducing methods that take into account type-2 in a better way and can move AI closer to 
the stage of deployability in the medical domain.

Scope for future work
The concept of SoE is being introduced for the multi-label classification framework. The proposed approach is 
very general. Here we have used it for images using models designed specifically to handle feature extraction 
for images. However, the proposed method would work for any data type, including time series data, for a 
classification-based task using a suitable deep learning model provided that the data is organized in some 
hierarchical structure. One such example in the medical datasets would be ECG  datasets32, 33 which can be used 
for classification using LSTMs. However as currently formulated it is difficult to integrate it into the training 
paradigm. This is due to the non-differentiable nature of the LCA function. Thus this is an open problem for 
the future. Further, work needs to be done to make it an integral component of AI model development pipeline 
for medical applications. The future scope of the work also includes the development of dedicated severity-
reducing frameworks for multi-label datasets having type-2 hierarchies. This can be attempted through the use 
of quadratic weighted kappa (QWK)34 is a loss function that can be integrated with severity as it is designed to 
penalize an error that is farther from the ground truth. Vargas et al.35–37 explore leveraging ordinal classification 
of data to improve classification, and data augmentation techniques for medical and quality assessment fields. 
These methods require ordinal data where each label can be considered as a part of a set Cq . These methods 
require a hierarchical decomposition of the labels according to their order. Vargas et al. use ordinal classification 
techniques for weapon stock quality assessment where each label is distributed into sets and an ensemble method 
is used to predict each label which leverages these sets that are prepared in an ordinal manner. Mondero et al. 
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leverage a hierarchical model for the classification of Melanoma in patients to develop better decision support 
systems (DSS). These approaches factor in the order of a given data as they are not currently utilized in datasets 
that have complex hierarchies and further where each node can be a label. Further, the methods have been 
utilized for the standard classification task while a multi-label classification scenario has not been attempted 
while considering the severity of error or hierarchical datasets. Thus, ordinal classification techniques can also 
be seen as a useful way of introducing severity into problems where a direct hierarchy tree is not available from 
the data but some order can be derived due to the nature of the data and further SoE can be used to improve 
upon ordinal classification tasks. Thus, this is a valuable open problem that needs to be solved for the current AI 
models to become deployable in the medical space.

Conclusion
This work introduces the concept of error severity for the deep learning based medical data analysis methods. 
Commonly used performance measures like accuracy and AUROC fail to take into account the consequences 
of errors made by the classifiers. However, the push towards deployable AI in healthcare can only be carried out 
if the model is trusted to produce minimal errors of the least associated risk. While a model may appear very 
accurate, it is difficult to tell if it can make errors bearing a low cost. This work infers that such apprehensions 
are not unreasonable as many high accuracy/AUROC models with complex frameworks produce errors of high 
severity that can lead to potentially dangerous consequences if taken at face value. The proposed SoE is a potential 
parameter that can be considered when performing a classification/labelling task. Through this work, it can also 
be concluded that the SoE of a model internally depends on its ability to achieve a specific performance on a 
label; however, it is not guaranteed that even at the same AUROC, a more complex will have a better severity 
value (Tables 1, 2). The severity-reducing frameworks considered here are effective in reducing the severity in a 
multiclass classification setting however, they are not suitable for the multilabel datasets having type-2 hierarchies 
that are common in the medical domain. This work lays down the foundation for error severity of deep learning 
models. In particular the idea of severity is generalized from multiclass to multilabel settings.

P
ne

um
on

ia

L
un

g
O
pa

ci
ty

L
un

g
L
es
io
n

N
o
F
in
di
ng

P
le
ur
al

O
th
er

C
ar
di
om

ed
ia
st
in
al

Su
pp

or
t
D
ev
ic
es

P
ne

um
ot
ho

ra
x

P
le
ur
al

E
ffu

si
on

E
de

m
a

C
ar
di
om

eg
al
y

Fr
ac
tu
re

A
te
le
ct
as
is

C
on

so
lid

at
io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

·105

N
o.

of
Sa

m
pl
es

Figure 5.  Number of samples in each class of the CheXpert dataset.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21903  | https://doi.org/10.1038/s41598-023-49185-z

www.nature.com/scientificreports/

Data availability
The main data (CheXpert data) used for experiments is available at https:// aimi. stanf ord. edu/ chexp ert- chest-x- 
rays for users with credentialed access.

Code availability
The code for the set of experiments is available in the following repository: https:// github. com/ Satwik- S9/ Sever 
ity- of- Error- in- Hiera rchic al- Datas ets.
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