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White matter‑based brain network 
topological properties associated 
with individual impulsivity
Wi Hoon Jung 1* & Euitae Kim 2,3

Delay discounting (DD), a parameter derived from the intertemporal choice task, is a representative 
behavioral indicator of choice impulsivity. Previous research reported not only an association 
between DD and impulsive control disorders and negative health outcomes but also the neural 
correlates of DD. However, to date, there are few studies investigating the structural brain network 
topologies associated with individual differences in DD and whether self-reported measures (BIS-11) 
of impulsivity associated with DD share the same or distinct neural mechanisms is still unclear. To 
address these issues, here, we combined graph theoretical analysis with diffusion tensor imaging to 
investigate the associations between DD and the topological properties of the structural connectivity 
network and BIS-11 scores. Results revealed that people with a steep DD (greater impatience) 
had decreased small-worldness (a shift toward weaker small-worldnization) and increased degree 
centrality in the medial superior prefrontal cortex, associated with subjective value in the task. 
Though DD was associated with the BIS-11 motor impulsiveness subscale, this subscale was linked 
to topological properties different from DD; that is, high motor impulsiveness was associated with 
decreased local efficiency (less segregation) and decreased degree centrality in the precentral gyrus, 
involved in motor control. These findings provide insights into the systemic brain characteristics 
underlying individual differences in impulsivity and potential neural markers which could predict 
susceptibility to impulsive behaviors.

Impulsivity is considered both an aspect of personality and a prominent feature of various psychiatry disorders 
and abnormal behaviors, including attention-deficit/hyperactivity disorder (ADHD), addiction, and aggression1. 
Researchers suggest that impulsivity is a complex, multifactorial concept defined as a tendency to act without 
forethought, an inability to inhibit inappropriate behaviors, as well as intolerance of delay gratification (i.e., 
choosing short-term rewards over long-term ones, referred to as impulsive choice or reward-delay impulsiv-
ity)2–4. Accordingly, various measures including self-report personality questionnaires and behavioral tasks have 
been developed to assess impulsivity and each of its separate components, which represent different underlying 
processes5,6.

One widely used behavioral indicator of impulsivity (particularly for choice impulsivity) is delay discount-
ing (DD), the tendency to which individuals discount the outcome value based on the time to their receipt. An 
individual’s DD (quantified as a discount rate k) can be measured using a history of choices between small-
but-immediate and large-but-delayed rewards in an intertemporal choice task (also called DD task)6. In other 
words, DD values can be quantified by applying specific approaches to behavioral data obtained during the 
task7. For example, DD is quantified by estimating the k parameter according to a specific theoretical model 
(e.g., exponential model8 or hyperbolic9 model used in this study). Atheoretical methods can also be adopted to 
estimate DD (e.g., area under the indifference curve, AUC​10). In many previous studies, an association between 
DD (calculated as mentioned above) and disorders of impulsive control (such as ADHD and substance use 
disorder)11,12 and negative health outcomes in real life has been described (e.g., obesity and texting while driv-
ing)13,14. Therefore, investigating the neural mechanisms underlying DD can provide not only important clues 
about individual differences in DD but also potential neural markers to predict susceptibility to impulsive and 
addictive behaviors. Accordingly, various functional neuroimaging studies on DD have found DD-associated 
specific brain regions, including those encoding the subjective value of given options during the task (ventral 
striatum, medial prefrontal cortex, and posterior cingulate cortex)15–17; regions associated with cognitive control 
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(lateral prefrontal cortex and lateral parietal cortex)16–21; and regions associated with imagining prospective 
events (medial temporal lobe and anterior temporal cortex)22,23. In addition, neuroanatomical studies using dif-
fusion tensor imaging (DTI) have observed that DD is associated with structural connectivity in frontostriatal 
white matter and lateral prefrontal cortex tracts24–26.

Previous studies have often reported an association between DD and self-reported measures of impulsivity27,28. 
For example, DD is associated with some Barratt Impulsiveness Scale (BIS-11) scores27,29. The BIS-11, one of the 
most common used self-report measures, is the gold standard for assessing trait impulsivity with three compo-
nents: attentional (lack of focus on a task at hand), motor (acting without thinking), and non-planning impul-
siveness (lack of regard for the future)30. However, significant associations between these two measures (DD and 
BIS-11) of impulsivity are not consistently reported31, showing either an association of DD with total29 or certain 
BIS-11 subscale scores28,32,33; or no association at all (neither with total nor BIS-11 subscales)34–36. Therefore, the 
identity of most related aspects of trait impulsivity from BIS-11 to DD remains unclear. In addition, it is unclear 
whether DD and its associated BIS-11 subscales are based on the same or distinct neural correlates. In this regard, 
identifying common and distinct neural correlates between these measures could provide valuable insights into 
the nature of the brain systems underlying impulsive behaviors as well as therapeutic targets for the treatment 
of maladaptive impulsivity (e.g., targets for neuromodulation by transcranial magnetic stimulation (TMS) and 
transcranial direct current stimulation (tDCS)37).

Graph theoretical analysis (GTA) is used to investigate large-scale complex brain networks38,39. Particularly, 
GTA of DTI data can quantify the topological characteristics of a structural brain network constructed from 
region-to-region white matter connectivity39,40. An important global topological property of brain networks 
is its small-worldness38. The small-worldness metric reflects a balance between segregation and integration of 
information processing in the network, as it is calculated by comparing the clustering coefficient (which indicates 
the extent of local interconnectivity in the network as a measure of information segregation) and characteristic 
path length (which indicates the average length over all shortest paths in the network as a measure of informa-
tion integration) with those of matched random networks. Global efficiency and local efficiency are other global 
measures of information integration and segregation, respectively41,42. Global efficiency is inversely related to 
the characteristic path length as the measure of efficiency in information transmission among all pairs of nodes 
in the network, while the local efficiency is related to the clustering coefficient as the measure of efficiency in 
information transmission limited to neighboring nodes43.

Local topological properties in the network can be also captured by nodal characteristics including degree 
centrality [number of nodes (i.e., brain regions) connected to the current node in a network] and between-
ness centrality (number of times a node stands on the shortest path between other nodes in a network). These 
nodal metrics are used to determine important nodes as network hubs44. Previous GTA studies of DTI struc-
tural networks have revealed associations between network measures derived from GTA and cognitive function 
(e.g., intelligence quotient)45 and mental health symptoms46,47. However, to date, few studies have investigated 
associations between DD and the topological properties of structural and functional brain networks using DTI 
and resting-state fMRI data, showing that high discounters had reduced small-worldness48. In addition, to our 
knowledge, no research has explicitly compared the neural mechanisms underlying impulsivity assessed by DD 
and the BIS-11 (as behavioral and self-reported measures of impulsivity, respectively) using GTA.

Thus, we aimed to clarify whether the individual DD (i.e., the k parameter estimated by hyperbolic model;9) 
would be associated with global and local topological properties of a DTI-based structural network. To this 
end, we measured both the global network metrics (representing information integration [characteristic path 
length and global efficiency], information segregation [clustering coefficient and local efficiency], and the bal-
ance between them [small-worldness]) and local network metrics (including degree centrality and betweenness 
centrality). Based on previous research48,49, we hypothesized that the structural network underlying higher 
impulsivity would have lower global topological features, such as lower small-worldness. In addition, we inves-
tigated whether DD was associated with particular BIS-11 subscales, and whether these subscales share neural 
mechanisms in terms of the topological properties of the DTI-based structural network.

Materials and methods
Participants
Participants were part of the Psychological and Neural Mechanisms for Predicting Academic Achievement 
(PNMPAA) study. For the PNMPAA study, participants performed several behavioral tasks, including a modi-
fied incentive delay task, an intertemporal choice task, and a risk tolerance task, and underwent brain scans. The 
scanning session consisted of high-resolution T1-weighted anatomical Magnetic Resonance Imaging (MRI), 
resting-state fMRI, DTI, and fMRI during cognitive tasks. A previous report described the involvement of the 
posterior parietal cortex on regulatory focus (a motivational construct in goal pursuit50) using data from the 
modified incentive delay task. In the present study, we used behavioral data obtained from the tasks performed 
outside the MRI scanner before the scan.

All participants in the present study were young healthy adults who provided written informed consent before 
participation. All study procedures were approved by the Institutional Review Board of Gachon University. All 
methods were conducted in accordance with the relevant guidelines and regulations.

Of all data (n = 115) collected to date, 73 participants completed both the intertemporal choice task, BIS-11 
questionnaire, and brain scans. Four individuals out of the 73 were excluded due to missing DTI data. Another 
four participants were excluded for extreme decision preferences on the task performance (people who chose only 
the same one of two options across all trials). Therefore, 65 participants (37/28 male/female; age [mean ± standard 
deviation (SD)], 22.062 ± 2.766 years; duration of education, 15.046 ± 1.304 years; DD, 0.0164 ± 0.0137) were 
used in the final analysis.
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Intertemporal choice task
The task was performed outside the MRI scanner prior to the scan. Participants were asked to make a series of 
120 choices between a smaller-immediate reward, fixed at ₩10,000 (roughly $8–$9 USD) for all trials and a 
variable larger-delayed reward (Fig. 1A). The magnitude of the larger-delayed reward ranged from ₩11,000 to 
₩48,000, and the delay could be 2–180 days. Individual behavioral data were fit with a logistic regression func-
tion using maximum likelihood estimation to capture the probability of choosing the larger-delayed reward as a 
stochastic function of the difference in subjective value (SV) between the two options. Based on standard behav-
ioral findings6,9, we assumed that SV is a hyperbolic function of the reward amount (A) and delay (D): SV = A/
(1 + kD), where k is the participant’s discount rate. Larger k values represent a greater degree of discounting 
future rewards. The k (referred to as DD in this manuscript) was log-transformed to normalize the distribution 
before statistical analyses.

Barratt impulsiveness scale‑11
The BIS-11 is composed of 30 items rated with a 4-point Likert scale from 1 (rarely/never) to 4 (almost always/
always)30. The items are categorized into three subscales: attentional impulsiveness (attention and cognitive 
instability), motor impulsiveness (motor and perseverance), and non-planning impulsiveness (self-control and 
cognitive complexity). Higher scores represent greater impulsivity. All participants completed the BIS-11 (total 
score [mean ± SD], 49.708 ± 8.921; attentional impulsiveness, 14.031 ± 3.250; motor impulsiveness, 15.200 ± 4.032; 
non-planning impulsiveness, 20.477 ± 4.135). In this study, Cronbach’s alpha for the internal consistency reli-
ability was 0.82.

Image acquisition
All imaging data were acquired on a 3 T Trio MRI scanner (Siemens, Erlangen, Germany). High-resolution 
T1-weighted anatomical images were obtained using a 3D magnetization-prepared rapid-gradient echo 
(MPRAGE) sequence (repetition time [TR] = 1,900 ms, echo time [TE] = 2.52 ms, flip angle [FA] = 9°, voxel 
size = 1.0 × 1.0 × 1.0 mm3, 192 sagittal slices). DTI data were acquired using a single-shot multiband echo-planar 
imaging sequence (TR = 3,000 ms, TE = 70 ms, FA = 90°, multiband acceleration factor = 3, phase partial Fou-
rier = 6/8, voxel size = 2.0 × 2.0 × 2.0 mm3, 75 interleaved axial slices, and 64 diffusion directions with b-values of 
1,000 s/mm2 and eight images with b-values of 0 s/mm2).

Figure 1.   Distribution of individuals’ delay discounting (DD) rate and global topological measures of the 
structural network and their associations. (A) Sample trials (left panel) in the intertemporal choice task, 
hyperbolic curve fitting to behavioral data (middle panel), and distribution of individual DD values (right 
panel). Left panel: Participants were asked to make a choice between a smaller-immediate reward and a 
larger-delayed reward. Middle panel: Individuals’ DD rates were estimated from behavioral data during the 
task. We plotted each trial as a function of the delay on the abscissa and the relative amount, which is obtained 
by dividing the immediate amount by the delayed amount, on the ordinate. In addition to the two axes, we 
color-coded each trial by the proportion of participants who chose the delayed option and overlaid a hyperbolic 
function based on the mean discount rate k (black) across all participants, as well as all the individually fitted 
discount functions (gray). (B) Distribution of global topological properties of the structural brain network. 
For all participants, the structural network showed small-world architecture ( ϒ > 1, � ≈ 1 , and σ > 1). (C) 
Association between DD and small-worldness. Higher DD was associated with lower small-worldness. For 
illustration purposes, this partial correlation scatterplot was generated by performing Pearson correlation 
analysis between residuals after regressing out age, sex, and education years.
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Image preprocessing and network construction
Data were preprocessing using PANDA v1.3.151 (https://​www.​nitrc.​org/​proje​cts/​panda/): a pipeline software 
for diffusion MRI that uses functions of FSL (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/), Pipeline System for Octave 
and Matlab (PSOM), and the Diffusion Toolkit (https://​www.​nitrc.​org/​proje​cts/​track​vis/). Eddy current cor-
rection was applied to correct distortions and head movements. The average image of b0 images was used as 
reference to register the diffusion-weighted images. Whole-brain fiber tracking was conducted using the Fiber 
Assignment by Continuous Tracking (FACT) algorithm52,53 with the fractional anisotropy threshold set at 0.20 
and the tracking turning angular threshold set at 45°. Afterwards, spline filtering was applied to smooth the 
streamline tractography.

The 90 regions (45 per hemisphere) of the cerebrum from the Anatomical Automatic Labeling (AAL) atlas54 
were used as network nodes. Then, the network matrix with edges (i.e., structural connectivity) between 90 
nodes for each participant was estimated in the native diffusion space44,48; T1-weighted MPRAGE images were 
co-registered to the native space of the b0 images through linear transformation. Then, the co-registered T1 
images were nonlinearly registered to the Montreal Neurological Institute (MNI)-152 T1-template space. The 
obtained parameters were applied to warp the AAL template to the native diffusion space. Consequently, the 
connecting fiber number (FN) between two nodes (i and j), mean FA of the connecting fiber, and the average 
volume of the two nodes were calculated. Finally, we quantified the weights of the edges between two nodes by 
multiplying FN by the mean FA along the fibers connecting a pair of regions, normalized by dividing the average 
volume of the two connecting regions to reduce the bias, where larger cortical regions may receive more virtual 
fibers (Wij = FN × FA/volume)53,55,56.

Graph theoretical‑based network analysis
GTA was performed using the Graph Theoretical Network Analysis (GRETNA) toolbox (https://​www.​nitrc.​
org/​proje​cts/​gretna)57. Global and local (nodal) network topological properties were estimated for the weighted 
structural network matrix derived from each participant. The global measures included clustering coefficient 
(Cp), characteristic path length (Lp), small-worldness (σ), global efficiency (Eglob), and local efficiency (Eloc). The 
local topological measures included degree centrality and betweenness centrality.

The equations used to calculate these measures can be found elsewhere41,42. Briefly, Cp is defined as the 
average of the likelihood of a neighbor-to-neighbor connection over all nodes in a network; a greater value 
indicates a larger extent of local interconnectivity in a network58. Lp is defined as the average of all shortest path 
lengths between each pair of nodes in the network; a smaller value indicates a faster information transfer in the 
network59. To examine the small-world properties, the Cp and Lp values were normalized in comparison with 
those of 100º-matched random networks (ϒ = C

real
P

/C
rand
P

and� = L
real
P

/L
rand
P

; σ = ϒ/�)60. Typically, a small-
world network should meet the following criteria: ϒ > 1, � ≈ 1 , and σ > 158,61. Eglob is defined by the inverse of the 
average harmonic of the shortest path length between each pair of nodes62. The Eloc of a node i represents the fault 
tolerance level of the network when the first neighbors of a node i are removed from the network63. The global 
Eloc is defined as the average of the nodal Eloc values in the network. Degree centrality is defined as the connec-
tion of a node i with all other nodes in the network. Betweenness centrality is defined as the fraction of all the 
shortest paths in the network running through a node i64. Before statistical analyses, the degree centrality and 
betweenness centrality of a node i were normalized by dividing their average values of the network, respectively. 
Hubs were defined as regions with values > 1 SD above the average of all nodes in the network.

Statistical analysis
To test whether individual differences in DD are significantly associated with either the structural network 
topological properties or BIS-11 scores, we performed Spearman’s rank correlation between the log-transformed 
DD rate and each global and local topological measure (and each BIS-11 score), after regressing out covariate 
effects (age, sex, and education years). In case that any BIS-11 scores were associated with individual DD rates, 
we further tested whether the score was associated with any network topological properties to clarify whether 
DD rates and BIS-11 scores are related to the same or distinct topological properties. The level of significance 
of all statistical tests was set at p < 0.05 based on previous GTA studies42,48,65–69. For local topological proper-
ties, we corrected the significance for the number of nodes using a less stringent false positive adjustment (i.e., 
p < (1/90) = 0.011) as reported in previous studies69–71.

Results
Global network properties associated with DD
The whole-brain structural network showed a small-world architecture ( ϒ > 1, � ≈ 1 , and σ > 1; Fig. 1B) for all 
participants ( ϒ [mean ± SD], 2.937 ± 0.185; � , 1.156 ± 0.033; σ, 2.543 ± 0.180).

The individual DD was negatively correlated with small-worldness (σ, r-/p-values =  − 0.252/0.043), indicating 
that higher DD was associated with less small-worldness (Fig. 1C). Other global properties were not associated 
with DD ( ϒ , r-/p-values = 0.140/0.267; �, − 02.40/0.055; Eglob, 0.113/0.369; Eloc, − 0.078/0.539).

Local network properties associated with DD
The identified hub regions were the right precentral gyrus, bilateral supplementary motor area, and bilateral 
precuneus based on degree centrality (di) and betweenness centrality (bi) values (Fig. 2). The bilateral medial 
superior frontal gyrus (SFGmed), right cuneus, left paracentral lobule, and left middle temporal gyrus were also 
considered hub regions based on degree centrality (Fig. 2A) whereas the left dorsal superior frontal gyrus and 
bilateral thalamus were added based on betweenness centrality (Fig. 2B).

https://www.nitrc.org/projects/panda/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.nitrc.org/projects/trackvis/
https://www.nitrc.org/projects/gretna
https://www.nitrc.org/projects/gretna
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Based on the significance threshold we set, individual DD correlated only with the degree centrality of the left 
SFGmed (r-/p-values = 0.330/0.008), a region identified as a hub (Fig. 2C). Other nodal centrality values showed 
no significant correlations with DD (all p > 0.011). The regions with the highest correlation coefficients (top 10%) 
between DD and degree centrality or betweenness centrality values are shown in Supplementary Information.

Association with BIS‑11
Among BIS-11 total and subscale scores, individual DD was positively correlated only with the motor impul-
siveness subscale (r-/p-value = 0.322/0.009; Fig. 3A), indicating that greater DD was associated with higher 
motor impulsivity. Other BIS-11 scores were not correlated with DD (attentional impulsiveness, r-/p-val-
ues = -0.018/0.886; non-planning impulsiveness, 0.205/0.102; total score, 0.219/0.080).

Figure 2.   Local topological measures of the structural network and DD. (A) Hub regions identified from 
degree centrality values. (B) Hub regions identified from betweenness centrality values. Most hubs were 
located in frontal and parietal areas. (C) Association between DD and the degree centrality of the left medial 
superior frontal gyrus; that is, a higher DD was associated with a greater degree centrality of the left medial 
superior frontal gyrus, associated with SV in the intertemporal choice task. For illustration purposes, this 
partial correlation scatterplot was generated by performing Pearson correlation analysis between residuals after 
regressing out age, sex, and education years. L, left; R, right; SFGmed, medial superior frontal gyrus; SMA, 
supplementary mother area; PCL, paracentral lobule; PCUN, precuneus; MTG, middle temporal gyrus; CUN, 
cuneus; THA, thalamus; SFGdor, dorsal superior frontal gyrus.

Figure 3.   Global and local topological measures of the structural network and BIS-11 motor impulsiveness 
subscale. (A) Positive association between DD and motor impulsiveness subscale score. (B) Association between 
motor impulsiveness subscale score and local efficiency; that is, higher motor impulsiveness was associated with 
lower local efficiency. (C) Association between motor impulsiveness subscale score and the degree centrality of 
the right precentral gyrus; that is, higher motor impulsiveness was associated with less degree centrality of the 
right precentral gyrus, involved in controlling motor movement. For illustration purposes, these scatterplots 
were generated by performing Pearson correlation analysis between residuals after regressing out age, sex, and 
education years.
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The motor impulsiveness score was negatively correlated with local efficiency (Eloc; r-/p-values =  − 0.280/0.024; 
Fig. 3B) and the degree centrality of the right precentral gyrus (r-/p-values =  − 0.384/0.002; Fig. 3C), indicating 
that higher motor impulsivity correlates less with these two topological properties. There were no significant 
correlations between the motor impulsiveness score and global (σ, r-/p-values =  − 0.146/0.247; ϒ, − 0.110/0.383; �
, − 0.227/0.069; Eglob, = 0.156/0.213; arz, − 0.044/0.726) and local topological properties (all ps > 0.011). The regions 
with the highest correlation coefficients (top 10%) between motor impulsivity and degree centrality or between-
ness centrality values are presented in Supplementary Information.

Discussion
In this study, we aimed to determine whether individual DD (a representative behavioral indicator of choice 
impulsivity) estimated from the intertemporal choice task, is associated with the topological properties of the 
large-scale structural brain network constructed based on region-to-region white matter connectivity using 
GTA. We found an association between DD and certain global and local topological properties of the structural 
brain network. Among the global topological properties, a higher DD (i.e., steeper DD) was associated with less 
small-worldness. In addition, DD had the strongest positive association with the degree centrality in SFGmed, 
a region known to encode SV. We then tested the association between individual DD and total and subscale 
scores of the BIS-11 (the gold standard, self-reported measure of impulsivity) and found a significant positive 
relationship between individual DD and the motor impulsiveness subscale score. We further investigated whether 
DD and its associated BIS-11 subscale (motor impulsiveness subscale score) are linked to the same or distinct 
topological properties of the structural brain network. Contrary to findings with DD, the motor impulsiveness 
subscale score was associated with local efficiency and the degree centrality of the precentral gyrus, a region 
associated with motor control. These results suggest that these two associated measures are related to different 
network topological properties. Collectively, our findings suggest that global and local topological properties 
of the DTI-based structural brain network underline individual differences in impulsivities measured by the 
intertemporal choice task (DD) and BIS-11 self-report questionaries (BIS-11 motor impulsiveness subscale score) 
but they (i.e., the DD and BIS-11) are associated with different topological properties.

A small-world network is considered the most efficient model allowing efficient communication over both 
short and long distances, as it is characterized by a high extent of local interconnectivity and short path length 
between nodes (i.e., brain regions) in a network58. In the present study, all DTI-based structural brain networks 
from each participant exhibited a small-world architecture. We also found that individual DD was negatively 
associated with small-worldness, which indicates that people with higher DD (greater impatience) had lower 
small-worldness (less balance between segregation and integration in the structural brain network), consistent 
with previous findings in healthy young adults48. Therefore, based on our current and previous findings, it appears 
that efficient communication throughout all brain regions (an optimal balance between network segregation and 
integration) is important in controlling impulsiveness, particularly impulsive choice. Indeed, previous studies in 
clinical patients who lacked impulsive control showed abnormal small-worldness in functional and structural 
brain networks72–75.

Hubs are important regions crucial for efficient communication in a network76. Most identified hubs were 
located in frontal and parietal areas, regions which functionally belong to association areas, except for the pre-
central gyrus (primary area) and the thalamus (subcortical area). Association areas are high-order multimodal 
parts of the cerebral cortex that receive inputs from diverse areas to integrate information from various areas 
of the brain77. In the present study, individual DD was positively associated with the degree centrality of the 
left SFGmed. That is, people with greater impatience had higher degree centrality in the left SFGmed. A previ-
ous meta-analysis of fMRI studies on reward processing showed that the SFGmed is involved in both positive 
and negative effects of SV on neural activity, suggesting that this region is associated with signals of arousal or 
salience78. Moreover, recent studies have demonstrated that the SFGmed (i.e., dorsomedial prefrontal cortex) 
encodes SV across the self and other in the intertemporal and risky choice tasks79,80. Given that the degree cen-
trality of a node indicates its number of connections41,42 and that, in the present study, the SFGmed was a hub in 
the network, the SFGmed might have more connections from various areas than other areas. Thus, impatience 
may be related to aberrations in structural white matter connectivity (e.g., redundant fiber bundles and reduced 
prefrontal pruning)81,82 in this region, associated with SV in the intertemporal choice task.

In the present findings individual DD was positively associated with the motor impulsiveness (acting without 
thinking) subscale scores of BIS-11. Albeit inconsistently, associations between DD and BIS-11 as a representative 
behavioral and self-report measure of impulsivity respectively have been repeatedly reported. For instances, some 
studies have reported the association of DD with attentional28,32, motor83, non-planning impulsiveness subscale 
scores28,33 or total scores of BIS-11 while others have reported no association between DD and BIS-11 (total nor 
subscales) scores34–36. One explanation proposed by de Wit et al.33 for these discrepancies is that self-report meas-
ures of impulsivity (i.e., BIS-11) reflect participants’ perceptions of their behaviors across various situations and 
times whereas the intertemporal choice task for DD measures a specific behavior (choices between two options) 
at a specific time point in an experimental context. Another explanation could be differences in sample charac-
teristics; that is, participants’ demographic and personal characteristics may affect their responses. For example, 
individual differences in DD have been associated with age84,85, intelligence quotient33, and extraversion86. In 
addition, some studies have reported the impact of affective state on the association between DD and BIS-11, 
especially with respect to the motor impulsiveness subscale83,87. McLeish and Oxoby83 observed that the results 
on the motor impulsiveness subscale were associated with DD only after receiving negative feedback. Moreover, 
Koff and Lucas87 reported that individuals with high negative affect showed a stronger relationship between DD 
and the motor impulsiveness subscale than those with low negative affect and, based on the negative urgency (the 
tendency to behave rashly in response to negative affect mentioned by Whiteside and Lynam88), they suggested 
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that individuals may engage in impulsive behaviors to decrease negative emotions; in other words, an individual 
may choose more immediate rewards under negative affective states. Therefore, further research is needed to 
clarify whether there of the affective state has an influence on the association between DD and the BIS-11 subscale 
we observed as well as their neural correlates.

In the present study, while individual DD was negatively associated with small-worldness among global 
topological measures, the BIS-11 motor impulsiveness subscale, associated with DD, was negatively linked to 
local efficiency. In other words, people with higher motor impulsiveness had lower local efficiency. Given that 
the local efficiency of a network is defined as the average of local efficiencies (the efficiency of information 
transfer from a node to its neighboring ones) of all nodes and that it indicates the degree of segregation in the 
network41,63, people with higher motor impulsiveness may have weaker communication between close areas. 
Regarding nodal topological measures, while individual DD was positively associated with the degree centrality of 
the left SFGmed, motor impulsiveness was negatively associated with the degree centrality of the right precentral 
gyrus. Given that the precentral gyrus, referred to as the primary motor cortex, is responsible for the control of 
motor movement, people with high motor impulsiveness may have aberrant structural connections with regions 
involved in response inhibition. For instance, Hampton et al.26 found that motor impulsivity (as measured by go/
no-go task) was associated with individual differences in structural connectivity between dorsal striatum and 
motor areas of response inhibition, including supplementary motor area. Future research should aim to clarify 
the disruption of structural connectivity associated with response inhibition in people with motor impulsivity.

It is interesting to note the involvement of SFGmed and precentral gyrus in choice impulsivity and motor 
impulsivity, respectively. Because this would strengthen the hypothesis that medial and lateral prefrontal areas are 
crucial sites for what are called “hot executive functions (EFs)” and “cold EFs”, respectively89. Choice impulsivity 
and motor impulsivity are each types of impulsivity, but belong to different EFs. Hot EFs are involved in process-
ing information derived from the context of emotion, reward, and motivation (e.g., DD and emotion regulation) 
and mainly engage the medial and orbitofrontal cortex (OFC). Cold EFs, on the other hand, involve purely 
cognitive information processing (e.g., response inhibition and working memory) and are mainly associated 
with the lateral prefrontal cortex including dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal 
cortex89,90. In the present study, the DLPFC and OFC, which are involved in the DD91,92, were not included in the 
hubs identified through GTA. Considering that the present study used the structural connectivity network, the 
hub would be an area with many direct connections (i.e., fibers) between brain regions. Therefore, areas involved 
in organizing information that comes from various other areas (associated with complex functions including hot 
and cold EFs and sensory and motor information, e.g., association areas) may act as hubs.

Many previous studies have investigated the effect of neuromodulation on impulsivity by TMS and tDCS37,93. 
Especially, the vast majority of neuromodulation studies in DD have targeted the DLPFC, OFC, ventromedial 
prefrontal cortex, and temporoparietal junction, but the results of these studies are inconsistent (e.g., either 
increases or decreases in DD37,92). The regions (the left SFGmed and right precentral gyrus) identified in the 
present study may be proposed as potential targets for neuromodulation of impulsivity. Considering that these 
identified regions were based on the degree centrality of white matter connectivity (i.e., the fibers directly con-
necting brain regions), it is expected that stimulating these regions can have a direct effect on several regions 
connected to them. Future research is needed to validate this notion.

Several limitations in the present study should be mentioned. First, this study included only young, healthy 
adults. It is thus necessary to corroborate this results in people with impulsive disorders or older people (given 
the effect of age on DD). Second, given that structural connectivity networks are considered as the physical 
substrate of functional connectivity networks, our explanations for the present findings are mostly based on 
previous functional research. Future studies need to uncover the role of the SFGmed and precentral gyrus on 
DD and their functional connection with other brain regions using fMRI data. Finally, based on many previous 
studies48,65–69, an uncorrected p value of 0.05 was used to examine the association of global topological features 
with DD. This threshold has been widely adopted as the empirical significance level for statistical models in 
many GTA studies48,65–69, though the results do not guarantee against false positives. Additionally, to date, few 
studies have investigated the association between whole-brain organization patterns (i.e., whole-brain network 
topological features) and DD. Therefore, to comprehensively explore whole-brain network topological features 
relevant to DD, the liberal statistical threshold may provide more information about the association between 
them compared to overly conservative multiple comparison corrections.

Conclusions
In summary, the present study examined the neural mechanisms underlying individual differences in DD (a 
behavioral indicator of choice impulsivity) and further investigated whether a DD-associated self-report measure 
of impulsivity (the BIS-11 subscale) would be based on common or distinct neural mechanisms, as shown by 
the global and local topological properties of a white matter-based structural connectivity network determined 
using DTI. Our findings showed an association between DD and small-worldness and the degree centrality 
of the SFGmed, suggesting the importance of a balance between information segregation and integration and 
the connection with the SFGmed, a region which encodes SV, in impulsive choice. Our findings also showed 
an association between DD and the BIS-11 motor impulsiveness subscale but the neural mechanisms differed 
between these two impulsivity measures. In addition, the motor impulsiveness subscale was associated with local 
efficiency and the degree centrality of the precentral gyrus, suggesting a role in information segregation and 
motor control. These findings provide insights into the brain characteristics underlying individual differences 
in impulsivity and suggest potential therapeutic targets for the treatment of impulsivity.
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Data availability
The datasets generated and analyzed for the present study are available from the corresponding author on rea-
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