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A machine learning approach 
toward automating spatial 
identification of LAG3+/CD3+ cells 
in ulcerative colitis
Edward D. Bonnevie 1,3*, Eric Dobrzynski 1,3, Dylan Steiner 1, Deon Hildebrand 2, 
James Monslow 1, Mohan Singh 1, Vilma Decman 1 & David L. Krull 1

Over the past decade, automation of digital image analysis has become commonplace in both research 
and clinical settings. Spurred by recent advances in artificial intelligence and machine learning (AI/ML), 
tissue sub-compartments and cellular phenotypes within those compartments can be identified with 
higher throughput and accuracy than ever before. Recently, immune checkpoints have emerged as 
potential targets for auto-immune diseases. As such, spatial identification of these proteins along with 
immune cell markers (e.g., CD3+/LAG3+ T-cells) is a crucial step in understanding the potential and/or 
efficacy of such treatments. Here, we describe a semi-automated imaging and analysis pipeline that 
identifies CD3+/LAG3+ cells in colorectal tissue sub-compartments. While chromogenic staining has 
been a clinical mainstay and the resulting brightfield images have been utilized in AI/ML approaches 
in the past, there are associated drawbacks in phenotyping algorithms that can be overcome by 
fluorescence imaging. To address these tradeoffs, we developed an analysis pipeline combining the 
strengths of brightfield and fluorescence images. In this assay, immunofluorescence imaging was 
conducted to identify phenotypes followed by coverslip removal and hematoxylin and eosin staining 
of the same section to inform an AI/ML tissue segmentation algorithm. This assay proved to be robust 
in both tissue segmentation and phenotyping, was compatible with automated workflows, and 
revealed presence of LAG3+ T-cells in ulcerative colitis biopsies with spatial context preserved.

Inflammatory diseases affect a large portion of the population and have a significant impact on the quality of life 
of patients1. One such disease is ulcerative colitis (UC), a condition where T-lymphocytes (T-cells) cause chronic 
mucosal inflammation2. Several treatment options exist that target inflammatory signaling (e.g., the anti-TNF-α 
drug adalimumab); however, these treatments are not effective in all patients and other treatment options are 
warranted3. Recent evidence suggests that lymphocyte activation gene-3 (LAG3) is associated with inflammatory 
signaling and the resulting mucosal inflammation in UC4. Specifically, the prevalence of CD3+/LAG3+ T-cells 
is increased in UC, with the number of CD3+/LAG3+cells in inflamed UC greater than those observed in non-
inflamed UC, which in-turn is increased over healthy controls. LAG3 is a transmembrane protein upregulated 
on newly activated T-cells (e.g., CD4+ and CD8+ T cells) with increased co-expression on CD4+ cells rather than 
CD8+ cells5. In a similar fashion to PD1 and CTLA-4, LAG3 can function as an inhibitory co-receptor that binds 
to MHC class II6. Due to its prevalence in active inflammatory signaling in UC, LAG3 has therefore emerged as 
a therapeutic target in clinical investigation7.

Clinical trial endpoints have been supported by histology for decades. Classically, these endpoints have been 
informed by pathologist assessment of H&E-stained sections from trial biopsies. More specific to biological tar-
gets, immunohistochemical (IHC) stained slides using chromogenic stains have been used to identify specific cell 
types of interest. More recently, IHC stains have been developed to identify druggable targets, and during clinical 
trials, these assays can shed light on treatment responders versus non-responders. Additionally, as such assays 
are further developed and implemented in both research and clinical trials, they can prove useful for patient 
stratification and selection. Finally, as treatments emerge as a standard of care and the assay can predict patient 
response, some of these assays can be approved as a companion diagnostic assay. These assays are emerging as 
indispensable tools in determining the best treatment for a specific patient8. In line with these previous efforts, 
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the objective of this study was specifically to identify and quantify LAG3+ T-cells in ulcerative colitis samples 
with their spatial context preserved.

In addition to IHC staining, immunofluorescence (IF) staining has emerged as a gold standard for histology-
based assays in many research labs. While dual (and higher plex) chromogen based IHC enables simultaneous 
detection of multiple markers on a single tissue section, the use of IF has enabled robust identification of addi-
tional markers on single sections, in some cases 7 or more markers9. The advantage of IF over IHC is readily 
evident in digital image analysis. Chromogen-based detection of multiple markers is traditionally captured in 
a single brightfield image, and subsequent deconvolution analyses are necessary to isolate individual stains10. 
This post-hoc image processing of stain deconvolution can be effective but maintains a degree of complexity 
when two or more markers may overlap. In IF analyses, image files are constructed as planes of monochromatic 
images, captured individually through the combination of specific fluorophores with their corresponding spectral 
wavelength filters. That is, the colors are separated at image acquisition and color deconvolution is not necessary. 
However, collection of IF images poses alternate limitations compared to brightfield IHC. Visual inspection of a 
brightfield image allows a trained scientist or pathologist to easily identify tissue sub-compartments due to the 
tissue texture and morphology that is visible within a brightfield image. In a similar fashion to manual identifica-
tion or segmentation of tissue compartments, brightfield images can be optimal for computer vision approaches 
developed for the same task11. Further, AI/ML computer vision approaches trained by manual annotation of H&E 
staining have emerged as a method to enhance throughput and repeatability in image analysis12.

Here, we describe development of an analysis pipeline to support ulcerative colitis clinical trials. Specifically, 
this pipeline includes staining assays and image analysis algorithms that identify the spatial abundance of CD3+/
LAG3+ T-cells. In this pipeline, tissue sections are first stained with a dual-plex immunofluorescence assay to 
detect CD3 and LAG3, then imaged. The same sections are then stained with H&E and imaged a second time. 
Using an AI/ML approach applied to the H&E images, a first algorithm segments colon subregions (colonic crypts 
and lamina propria). A second algorithm then identifies CD3+/LAG3+ T-cells within the tissue compartments 
following image co-registration. Consequently, the method described takes advantage of both IF and brightfield 
imaging, where IF is used for cell/target identification and H&E is used for tissue segmentation and annotation. 
This technique, coupling two imaging techniques for the spatial identification of cells expressing a therapeutic 
target of interest, may shed light on responders versus non-responders in a clinical trial and may be useful in 
pre-screening of patients prior to treatment.

Results
Development of a dual‑plex LAG3/CD3 chromogenic assay for digital image analytical quanti-
fication of CD3 and LAG3
Because of its prevalence as the ‘gold standard’ in clinical pathology, we first tested the suitability of a dual-plex 
CD3/LAG3 chromogenic IHC assay for downstream digital analysis. While dual chromogenic staining can enable 
simultaneous visualization of multiple markers, limitations exist in digital image analysis. For example, stain 
identification and isolation can be difficult in regions where signal colocalization and/or diffuse staining occurs. 
In contrast, chromogenic staining using brightfield illumination allows robust visualization of tissue structure 
and texture, two features that are advantageous when training AI/ML approaches for tissue segmentation. As 
such, we set out to determine if sufficient stain isolation for the two proteins of interest, could be conducted using 
a dual chromogenic staining approach, which would then allow the same brightfield illuminated images to be 
used for robust tissue segmentation using AI/ML. An initial approach combined yellow and purple chromogens 
to detect CD3 and LAG3, respectively. With this chromogen combination, target colocalization is predicted to 
result in a red signal, however the purple chromogen can often overshadow the yellow chromogen (Fig. S1). 
Unfortunately, the alkaline phosphatase (AP) signal amplification used in the yellow chromogen protocol resulted 
in a diffuse staining pattern for CD3, thus limiting downstream detection and co-localization analyses with the 
LAG3 stain. This diffuse staining pattern for CD3 was consistent across several AP-based chromogens, and of 
note, this staining increased the risk of false positive cell identification (Fig. S1). In response to this limitation, 
we substituted the AP-signal amplification step for a horseradish peroxidase (HRP)-based signal amplification 
(and subsequent HRP-based chromogen) in the CD3 staining protocol. This resulted in the specific staining for 
CD3 confined to T-cell plasma membranes, and LAG3 expression within the T-cell population, as expected. 
However, despite this optimization of the dual-plex staining protocol, downstream image analysis for CD3 and 
LAG3 proved problematic. Specifically, the still diffuse staining of CD3 critically increased the probability of false 
positive cell detection as the chromogen signal was more likely to be detected in the vicinity of CD3-negative 
cells, especially in hypercellular regions (Fig. S2). Pathologist review of this technique determined that it was 
inaccurate due to false positive identification, and therefore inadequate as a rapid, automated, whole slide image 
analysis method for the detection of CD3 and LAG3.

Development of a robust dual‑plex LAG3/CD3 immunofluorescent assay
Due to the deficits of chromogen-based detection described above, we implemented a dual-plex immunofluo-
rescence-based protocol for co-identification of CD3 and LAG3. To determine the robustness of the dual-plex 
assay, we tested positive and negative control tissues (Fig. S3), and the concordance of dual-plex IF assay to the 
individually validated single-plex IF-assays for each protein target. Three serial sections were mounted and 
stained for CD3, CD3/LAG3, and LAG3 respectively. Image analysis was conducted on co-registered regions of 
interest (ROIs) across the three tissue sections to determine concordance (Fig. 1a–e). In addition to development 
of a robust automated staining assay, a reliable downstream automated image analysis algorithm was necessary 
for semi-automation of the entire experimental pipeline. Using HALO image analysis software, cell identification 
based on the 2 fluorophores was conducted. DAPI was utilized for nuclear detection and implementation of a cell 
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simulation approach. In cell simulation, the nuclear segmentation masks were dilated by a specified thickness 
(1 μm) and the region of dilation was analyzed as a surrogate for cell membrane or cytoplasmic staining. While 
this technique is difficult to apply to cell types with irregular morphology (e.g., fibroblasts), the identification of 
T-cells (with a largely rounded morphology) is well-suited for the implementation of this approach (Fig. 1a). To 
determine the accuracy of the algorithm, 10 human colorectal pinch biopsies were stained, imaged, and assessed 
by 3 trained, independent observers to first determine the ‘ground truth’. The three observers manually counted 
CD3+, LAG3+, and CD3+/LAG3+ cells within a randomly sampled grid covering at least 30% of the tissue area. 
These manual counts were then compared to the results from the automated image analysis algorithm. That 
algorithm was then manually tuned to minimize errors between the observations and automated cell counts 
(Fig. 1f–h, Fig. S4). Following tuning and implementation of the algorithm, the accuracy was assessed by a 
pathologist and deemed fit for purpose to identify CD3+ and LAG3+ cells in colorectal tissue.

Increased localization of LAG3+ T‑cells in Ulcerative Colitis
Using the validated staining procedure and image analysis algorithm, human colorectal tissue was assessed to 
determine alterations in T-cell localization in normal versus ulcerative colitis tissue (Fig. 2). In this analysis, 5 
biopsies for each of normal tissue and ulcerative colitis were assessed in 2 ROIs of ~ 100,000 μm2 (average 784 
cells/ROI, max: 1345 cells, min: 511 cells). Generally, there was an increased presence of T-cells in ulcerative 
colitis tissue compared to normal colon (Fig. 2a-b); however, when quantified via image analysis (Fig. 2c,d), 
this difference between groups was not statistically significant (Fig. 2e; 11.6% of cells normal colon, 17.4% of 
cells UC; p = 0.07). Interestingly, there was a substantial increase in LAG3+ cells (Fig. 2f; 0.80% of cells normal 
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Figure 1.   (a) Single plex assays for CD3 and LAG3 were compared to the dual plex assay to determine 
multiplex concordance with UC tissue shown in example (Top row, IF images; Bottom row, image analysis 
markup; Scale bars denote 50 μm). Image analysis for CD3+ cells (b,d) and LAG3+ cells (c,e) revealed strong 
concordance between assays. Image analysis was validated by comparing the algorithm to three trained and 
independent observers. This analysis revealed robust and repeatable image analysis algorithms for CD3+ (f), 
LAG3+ (g), and CD3+/LAG3+ dual positive (h) cells (a–e: N = 10 samples: 5 UC, 4 normal colon, 1 tonsil; f–h 
N = 10 samples all UC). Dashed lines denote 95% confidence intervals, colored by individual observer.
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colon, 3.2% of cells UC; p = 0.0038), and CD3+/LAG3+ T-cells (Fig. 2g, 0.58% of cells in normal colon, 2.9% of 
cells UC, p = 0.0022). This finding indicated that the algorithm was sufficiently able to identify recently activated 
T-cells (i.e., LAG3+) that can contribute to the inflammatory cascade of UC. Further, visual inspection qualita-
tively revealed the potential to identify differential localization of LAG3+ cells in the colon sub-compartments. 
Generally, T-cells reside in the lamina propria with rare presence in the colonic crypts. However, in UC T-cells 
can be found within the crypts13. This finding is of importance due to their proximity to the gut space, and 
consequently, we sought to develop a technique to quantify the localization of CD3+ and LAG3+ T-cells within 
the colon sub-compartments.

Development of an AI/ML algorithm for Ulcerative Colitis Tissue Segmentation
Preliminary efforts using DAPI-based tissue segmentation on the immunofluorescence CD3/LAG3 images were 
not adequate to accurately delineate the lamina propria and crypt tissue sub-compartments. As such, we tested a 
method where an AI/ML tissue segmentation algorithm was trained on H&E-stained UC tissue sections that had 
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Figure 2.   CD3+ and LAG3+ cells were identified in (a) normal and (b) ulcerative colitis colons using dual 
immunofluorescence and quantified using image analysis. (c) Example region of a UC sample with (d) 
corresponding analysis markup showing negative, CD3+, and CD3+/LAG3+ cells. While the percentage of 
cells positive for (e) CD3+ cells trended higher (p = 0.07), the proportion of (f) LAG3+ cells, and (g) CD3+/
LAG3+ cells significantly increased (p = 0.003 and p = 0.0002, respectively). Graphs represent n = 10 specimens 
(5 normal, 5 UC; 2 analysis regions per sample). Scale bars denote 50 μm.
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first been stained using the immunofluorescence protocol to detect CD3/LAG3 (Fig. 3). The assay was designed 
as follows; first, the tissue sections were stained using the multiplex IF protocol, and a whole slide image was 
captured. The same slides were then stained with H&E and imaged a second time. Importantly, the same slide 
scanner and objectives were used to capture both the IF and brightfield images. This technique enabled robust 
and repeatable image registration between the two slide scans (Fig. 3).

To develop an AI/ML tissue segmentation algorithm to delineate colonic crypts from the lamina propria, a 
VGG-16 (Visual Geometry Group) convolutional neural network (e.g.,14) was trained using Halo AI software. 
Briefly, nine H&E-stained UC specimens had portions of the tissue manually annotated (Fig. 4a) and these 
annotated regions were used for training the AI/ML algorithm. Since the algorithm is developed by minimizing 
cross entropy between the model and the training regions (Fig. 4b), it is important to validate accuracy on tissue 
not included in the ground truth of the algorithm (Fig. 4c). For algorithm validation, a pathologist assessment 
was utilized to determine the accuracy of the model. In an iterative approach, the model was updated or refined 
until the accuracy of the model passed the pathologist quality control assessment. While the present study focuses 
on the method and model development for deployment in a clinical trial (i.e., NCT03893565), it is important to 
note that the implementation of the model was independently validated by a second pathologist on the tissues 
in the clinical trial similarly to an independent test set. Additionally, to screen relevance across disease states, 
we tested the algorithm for both tissue segmentation and phenotyping on morphologically normal tissue to 
confirm the ground truth incorporated into the training and development of the phenotyping algorithm were 
able to accurately capture this tissue state (Figs. S5 and S6).

Following the development of a robust and repeatable tissue segmentation algorithm that identified colonic 
crypts and lamina propria, the next step in the analysis pipeline was to transfer tissue masks generated from the 
H&E images (Fig. 5a) to the corresponding IF images for each tissue section (Fig. 5b) using image co-registration. 
Visual inspection of the image registration revealed accurate transfer of the masks to the IF images. Additionally, 
as a quantitative check, we performed nuclear segmentation based on the hematoxylin staining and the DAPI 
staining for the two images (Fig. 5c) and compared nuclear counts in the masked ROIs (Fig. 5d). Across all ROIs 
there was a strong positive correlation in the number of identified nuclei (R2 = 0.9844). As an additional check 
of image co-registration accuracy, triangulation landmarks were applied to an IF image in Halo image analysis 
software and corresponding landmarks were automatically applied to the corresponding H&E image. In this 
experiment, three sets of three landmarks each were used to triangulate at both high and low magnification. At 
low magnification (Fig. 6a), comparison of the triangulation areas revealed robust co-registration of the images 
across the tissue section. Additionally, inspection at high magnification (Fig. 6b) revealed co-registration was 
accurate down to the individual cell between the two images. This process was repeated in 6 more regions across 

Figure 3.   The semi-automated analysis process consisted of both an (a) assay pipeline and (b) analysis pipeline. 
(a) In the assay pipeline, FFPE tissue sections were stained using multiplex IF to detect CD3 and LAG3 with 
DAPI counter stain for nuclear detection. Subsequently, the coverslip was removed and the same sections were 
stained with H&E. Whole slide images of the IF and H&E stains were captured on a slide scanner capable of 
both fluorescence and brightfield imaging. (b) In the analysis pipeline, an AI/ML algorithm was implemented to 
segment the tissue sub-compartments based on the H&E image. The fluorescence image and brightfield images 
were co-registered using commercial software (Halo, Indica Labs). The same software was utilized to perform 
spatial cell analysis in annotated regions transferred from the AI/ML algorithm.
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two samples and the distances from the dropped pins to the expected sub-nuclear localizations were measured 
(Fig. S7). Across the 18 tests, the average distance between the dropped pin and the expected location (i.e., 
distance error of registration) was 2.49 ± 0.64 μm (mean ± standard deviation) indicating the error in image 
registration was less than the diameter of a single nucleus. It should be noted that this degree of accuracy in 
image co-registration would likely not be feasible with serial sections as nuclei move in and out of plane and 
section warping (i.e., swelling, wrinkling, or tearing) prior to mounting on a slide would limit accuracy between 
individual sections. Additionally, it is important to note that the accuracy of image co-registration (i.e., within 
2.49 μm) is smaller than the thickness of a serial section.

Implementation of Image Analysis Pipeline in Ulcerative Colitis Biopsies
Following validation, the pipeline described above (Fig. 3) was implemented on ulcerative colitis pinch biopsies 
(n = 18) that were not included in the assay and image analysis validations. The semi-automated process enabled 
spatial quantification of total number of cells, CD3+ cells, LAG3+ cells, CD3+/LAG3+ cells, and CD3-/LAG3+ 
cells. Due to the size and cellularity of the biopsies, the variation in number of cells identified in both the lamina 
propria and the crypts spanned an order of magnitude across the cohort (Fig. 7a). Further, greater numbers of 
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Figure 4.   Development of an AI/ML algorithm for UC tissue segmentation. (a) The commercial image analysis 
software, HALO, was utilized for model development and implementation. In this process, H&E-stained 
images were annotated by a trained histology technician and these annotated images were fed into a built-in 
VGG-based algorithm. Following initial training, the accuracy of the model was assessed by a pathologist and 
either sent for additional annotation/refined training or passed along to model implementation. Following 
implementation, the model was validated by a second pathologist independent of the model training and initial 
testing. (b) Regions of tissue that were included in the annotations used in model training. (c) Regions of tissue 
segmented by the algorithm that were not included in the training set of annotations. In (b) and (c) the left 
column is the raw H&E image and the right column is the masked image following model implementation 
(green—crypt, red—lamina propria). Scale bars represent 500 μm (a) and 50 μm (b,c).
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cells were identified in the lamina propria compared to the crypts largely due to comparatively higher tissue area 
covered by the lamina propria. Generally, the pipeline identified T-cells in the lamina propria with high subject 
variability between ~ 20% and ~ 80% of cells presenting CD3. In the crypts, T-cells were less abundant accounting 
for ~ 10% to ~ 40% of identified cells (Fig. 7b). As LAG3+ cells should represent a subset of CD3+ cells, LAG3+ 
cells were found to be less abundant than CD3+ cells, accounting for up to 5% cells in the lamina propria and 
3% of cells in the crypts (Fig. 7c). In most cases CD3+/LAG3+ cells accounted for the majority of LAG3+ cells 
identified by the algorithms (Fig. 7d). However, one case identified a substantial proportion of cells identified 
as LAG3+ that were CD3- (Fig. 7e). This biologically unexpected finding is addressed in the subsequent section. 
Comparing the tissue sub-regions, the number of identified CD3+ cells in the colonic crypts correlated with the 
number of CD3+ cells in the lamina propria (R2 = 0.78), indicating the presence of T-cells in the crypt may be 
associated with the total number of T-cells identified within these study samples (Fig. 7f). However, the localiza-
tion of CD3+/LAG3+ cells was more spatially variable. In several instances, the presence of CD3+/LAG3+ cells in 
the lamina propria diverged from the presence of CD3+/LAG3+ cells in the colonic crypts (Fig. 7g). Specifically, 
there were instances where high numbers of CD3+/LAG3+ cells in the lamina propria did not correspond to 
high numbers of CD3+/LAG3+ cells in the crypt. Consequently, this method of spatial identification of LAG3+ 
T-cells provides additional information not readily available from raw cell counts. That is, the total number of 
LAG3+ T-cells within colonic crypts is not predictable on a single patient level based on total LAG3+ T-cells in 
a tissue section. As such, this spatial information may inform clinical efficacy or patient screening where cell 
localization is of interest to clinical trial development and analysis. In short, this assay may provide information 
that general cell population analyses cannot.

Advantages of a CD3/LAG3 multiplex IF assay to limit false positive detection
An added advantage of the dual-stained (IF and H&E) approach used in this study is that an IF multiplex image 
can be directly compared to its corresponding H&E image for elucidating tissue morphology. This method can 
provide a higher degree of accuracy over separate IF and H&E stains using serial sections, especially when there 
is a need to interrogate the spatial composition of low abundance cell types. As mentioned above, we identified 
one case where a substantial proportion of LAG3+ cells were CD3- (Fig. 7e). While other cell types besides CD3+ 
T-cells may express LAG3 (e.g., Natural Killer cells,15), visual inspection of the H&E staining for this sample 
identified abundant eosinophil infiltration. Eosinophils are known to be autofluorescent and are often identi-
fied as such in flow cytometry using gated autofluorescence forward scatter16,17. Additionally, eosinophils are 
known to be active in subsets of UC patients18. Image registration between the IF and H&E images revealed that 
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much of the signal in the LAG3 channel could be attributed to eosinophils (Fig. S8). This finding indicates the 
importance of assaying CD3 and LAG3 co-expression to identify true LAG3+ T-cells. Because an abundance of 
eosinophils can overshadow rare cell populations like LAG3+ T-cells, multiplexing with CD3 and solely counting 
the double positive cells can mitigate false positives that could occur by counting solely LAG3+ cells. As such the 
combination of these two markers will enable the identification of T-cells expressing LAG3+, but other potential 
cell types expressing LAG3+ will not be identified.

Image Registration Overview

CD3 LAG3 DAPI Hematoxylin and Eosin

Zoom on Triangulation Areas

a

b

Figure 6.   Assessment of image co-registration via triangulation points in UC tissue. (a) Triangulation 
landmarks were manually applied to the immunofluorescence image in Halo (3 sets of 3 points) and their 
corresponding locations were automatically applied to the H&E image. (b) Zoom in views on each of the three 
sets revealed co-registration was accurate to the single cell level.
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Outlook
Here, we describe the development of a novel assay for spatial identification of LAG3+ T-cells in UC biopsies. 
LAG3+ T-cells are associated with active inflammation in UC and pose a viable target for immunotherapies2,4,6. 
While previous work in flow cytometry and gene expression have identified LAG3 as a potential biomarker and 
therapeutic target4, those assays need additional steps in handling and sample processing that may fall outside 
the remit of standard practices while biopsy collection and paraffin processing remain standard. In addition to 
relying on standard sample handling techniques, the spatial information preserved by this technique may add 
valuable insight into both the treatment and disease progression of lesions. For example, oral administration of 
a LAG3 targeted therapy may localize better to the colonic crypts and be less reliant on passive drug transport 
mechanisms to reach the targeted cell population. While T-cell localization in the lamina propria was associated 
with T-cells in the colonic crypts, the presence of LAG3+ cells were less predictable without the spatial informa-
tion afforded by the present method (Fig. 7f,g). This method enables robust identification of spatially-resolved 
LAG3+ T-cells in UC and may guide future patient selection for clinical trials targeting this disease. Looking 
forward, a limitation of this assay is its reliance on multi-step staining and imaging for assay automation. Future 
efforts may be targeted at incorporating additional morphology markers into the IF panel (e.g., a pan cytokeratin 
marker) to enable robust tissue segmentation using the IF image in the absence of the H&E stain. Further, since 
the ground truth of the algorithm training did not contain potential variations in biology due to a LAG3-targeting 
therapy, independent validation of the model upon implementation is recommended. In this case, a second 
independent pathologist determined accuracy of the model upon implementation in a clinical trial. Additionally, 
future efforts may seek to incorporate the spatial presence of CD3+/LAG3+ cells in the context of disease state, 
demographic data, and treatment response to better understand disease progression and treatment potential.

Materials and methods
Method overview
Human biological samples were sourced ethically from commercial vendors (BioIVT/Asterand and Discovery 
Life Sciences) that have been approved by GSK human biological sample management ethical committee. Prior 
to sample acquisition informed consent for general research was obtained by commercial vendors that covered 
the research conducted in this study. All methods and validation processes followed GSK Standard Operating 
Procedures with standardization of instrument calibration and qualification where records of repairs and routine 
maintenance, and any non-routine work, are tracked. Automated instrumentation, quality-controlled reagents, 
and control slides were used to identify run-to-run and intra-run variability. FFPE tissue blocks, normal colon 
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Figure 7.   Implementation of the semi-automated pipeline on a cohort of ulcerative colitis biopsies. (a) total 
cells identified in the lamina propria and crypts. (b) CD3+, (c) LAG3+, (d) CD3+/LAG3+, (e) CD3-/LAG3+ 
cells identified within the tissue sub-compartments. (f) Correlation of CD3+ T-cells in the lamina propria versus 
crypt. (g) Correlation of CD3+/LAG3+ cells in the lamina propria versus crypt (one subject was removed due 
to high false positive LAG3 identification, Grubbs’ test: G = 3.893). N = 18 pinch biopsies, ** denotes p, 0.01, *** 
p < 0.001, **** p < 0.0001.
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(n = 10), ulcerative colitis (n = 25) and control tissues (tonsil, n = 2; skeletal muscle, n = 7) were obtained from 
various commercial sources.

All immunohistochemical chromogenic (IHC) and immunofluorescence (IF) assays were performed on the 
Ventana Discovery Ultra automated system (Ventana, Tucson, AZ), using Ventana reagents. Whole slide images 
were captured using the Vectra Polaris slide scanner (Akoya Biosciences, Marlborough, MA). H&E staining was 
performed using standard protocols on the Symphony automated staining platform (Ventana, Tucson, AZ). 
Digital image analyses were performed using HALO image analysis software (Indica Labs, Albuquerque, NM).

Dual‑plex immunohistochemistry
IHC assays were carried out on the automated Ventana Discovery Ultra autostainer. Briefly, 3.5 µm sections were 
prepared from FFPE tissue blocks and mounted onto Autofrost IHC glass slides and dried overnight at ambi-
ent conditions. All slide processing with the exception of coverslipping was performed on the Discovery Ultra. 
Deparaffinization followed by heat induced epitope retrieval was performed using Tris-based (EDTA) buffer 
solution (CC1, Ventana, Tucson, AZ). Prior to initial primary antibody incubation, Discovery Inhibitor and 
Discovery Antibody Block were applied to each slide for peroxidase quenching and blocking non-specific bind-
ing, respectively. The mouse anti-human LAG3, Clone 17B4 (LifeSpan BioSciences Inc., Seattle WA) was added 
and incubated for 32 min at 36 °C at 1 µg/mL. Detection of the mouse primary antibodies were performed by a 
12-min incubation at 36 °C followed by the anti-Mouse HQ conjugated mAb and a 12-min incubation with anti 
HQ-HRP (both from Ventana, Tucson, AZ). Chromogenic detection was achieved by application of Discovery 
Purple (Ventana, Tucson, AZ) for 16 min. Other chromogens were assessed but not reported in the present 
manuscript. Slides were rinsed and the pre-diluted rabbit anti-human CD3, Clone 2GV6 (Ventana, Tucson, 
AZ) was applied and incubated for 32 min at 36 °C. Detection of the rabbit primary antibodies were performed 
by a 16-min incubation at 36 °C with anti-Rabbit NP followed by a 16-min incubation with anti NP-AP (both 
from Ventana, Tucson, AZ). Chromogenic detection was achieved by application of Discovery Yellow (Ventana, 
Tucson, AZ) for 16 min. Tissue sections were counterstained with hematoxylin II and bluing reagent (both from 
Ventana, Tuscon, AZ) for 4 min each. Following washing, dehydration, and clearing, slides were coverslipped 
using the Ventana Symphony (Ventana, Tucson, AZ).

Dual‑plex immunofluorescence
Immunofluorescence was performed on 3.5 µm sections prepared similarly to the description above. Briefly, 
deparaffinization followed by heat induced epitope retrieval (HIER) was conducted using Tris-based (EDTA) 
buffer solution, CC1 at 97 °C for 8 min. Discovery Inhibitor (Ventana, Tuscon, AZ) was applied and incubated for 
12 min, followed by a 12 min incubation with Antibody Block (Ventana, Tuscon, AZ). The primary anti-LAG3 
mouse mAb (17B4 LifeSpan BioSciences) was added and incubated for 32 min at 36 °C at 1 µg/mL, followed by 
a 16 min incubation with the anti-mouse-HQ conjugated antibody (Ventana, Tucson, AZ) at 36 °C. Anti-HQ-
HRP (Ventana, Tucson, AZ) was applied and incubated for 16 min at 36 °C. Immunofluorescent detection was 
achieved by the application of Discovery Cy5 (Ventana, Tucson, AZ) for 4 min followed by Cy5 H2O2 (Ventana, 
Tucson, AZ) for 1 h and 32 min. A second HIER step was applied for 16 min at 91 °C using a citrate-based solu-
tion (CC2, Ventana, Tucson, AZ). DISC Inhibitor was added and incubated for 8 min, followed by the second 
primary antibody, anti-CD3 rabbit mAb (2GV6, Ventana) at 0.4 µg/mL for 32 min at 36 °C. Anti-Rabbit-HQ 
conjugated antibody (Ventana, Tucson, AZ) was applied for 16 min at 36 °C, followed by anti-HQ-HRP (Ventana, 
Tucson, AZ) application for 16 min at 36 °C. Immunofluorescent detection was achieved by Rhodamine 6G 
(Ventana, Tucson, AZ) for 4 min followed by Rho 6G H2O2 (Ventana, Tucson, AZ) for 1 h and 32 min. Tissue 
sections were counterstained with Spectral DAPI (Akoya Biosciences, Marlborough, MA) for 32 min, washed, 
and coverslipped using Prolong Gold (Invitrogen, Carlsbad, CA). Slides were scanned using optimized exposure 
settings on the Akoya Vectra Polaris (Malborough, MA) whole slide scanner.

H&E tissue staining
Following whole slide scan of the IF-stained samples, coverslips were carefully removed. Slides were then stained 
using a standard H&E protocol on the Symphony automated staining platform (Ventana). Slides were then 
coverslipped a second time and whole slide scans were conducted using the same slide scanner (Polaris) used 
in the above assay.

Image acquisition and analysis
HALO image analysis software (v2.3 and v3.5) was used for all analyses. The H&E tissue classifier was trained 
by manual annotation of crypt and lamina propria regions of the tissues and trained using a VGG-based algo-
rithm. The training resulted in a semantic segmentation algorithm that was qualified as fit-for-purpose via an 
iterative approach overseen by a pathologist. As the model was passed through training steps, the pathologist 
would review the model accuracy and either annotations used in the training would be altered or further train-
ing would be applied. Upon model implementation on clinical trial samples, a second independent pathologist 
oversaw accuracy in an independent testing of the model.

Upon H&E image segmentation based on the machine learning algorithm, the tissue classification was trans-
ferred to the immunofluorescence whole slide scans. Co-registration of IF and H&E images was conducted via 
co-registration procedures built into the analysis software and was visually inspected for accuracy. As a second 
check of registration accuracy, the number of nuclei based on both DAPI and hematoxylin staining were counted 
via nuclear segmentation algorithms applied to the IF and H&E images, respectively.

Identification of individual cells and cells positive for markers of interest was conducted using a cell simu-
lation-based phenotyping algorithm. Briefly, individual cells were identified via segmentation based on DAPI 
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signal and declumping/object separation using Halo algorithms with small and large object discard thresholds at 
11 and 550 μm, respectively. Following identification of individual nuclei, cell body/membranes were simulated 
by dilating the nuclear objects by 1 μm and subtracting the nuclear objects leaving an annular object for each 
cell representing the cell body/membrane. The average fluorescent signals were then calculated across the pixels 
representing the cell body and cutoff thresholds were identified (e.g., 36 and 19 for CD3 and LAG3, respectively 
on the 0–255 scale). Accuracy of the algorithm was calculated by comparing algorithm counts to the positive 
cells identified by 3 independent observers.

Statistical analysis
Statistical analyses were conducted, and graphs were developed using Graphpad Prism 8. Linear regressions are 
depicted along with R2. In certain cases, 95% confidence intervals are included (dashed lines) and p values denot-
ing non-zero slope of the linear regression. For nuclear count data, a linear Poisson regression was conducted 
and pseudoR2 is presented. Analyses comparing normal and UC tissue were conducted using a non-paired two-
tailed t-test. Analyses comparing crypt and lamina propria in UC samples were assessed using a paired (crypt vs 
lamina propria within individual specimens) two-tailed t-test. Where appropriate, outliers were identified with 
a Grubbs’ test. A significance threshold (denoted by *) was set at p < 0.05. Notations for other p value thresholds 
are noted in figure captions.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its 
supplementary materials. Access to additional raw data (e.g., images) and Halo algorithms are available upon 
reasonable request to the corresponding author.
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