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Identification of differences 
in  CD4+ T‑cell gene expression 
between people with asthma 
and healthy controls
Mauro Tutino 1,7*, Jenny Hankinson 1,7, Clare Murray 1,2, Lesley Lowe 1,2, Gina Kerry 1,2, 
Magnus Rattray 3, Adnan Custovic 4, Sebastian L. Johnston 4, Chenfu Shi 5, Gisela Orozco 2,5, 
Stephen Eyre 2,5, Paul Martin 5,6, Angela Simpson 1 & John A. Curtin 1

Functional enrichment analysis of genome‑wide association study (GWAS)‑summary statistics 
has suggested that  CD4+ T‑cells play an important role in asthma pathogenesis. Despite this,  CD4+ 
T‑cells are under‑represented in asthma transcriptome studies. To fill the gap, 3’‑RNA‑Seq was 
used to generate gene expression data on  CD4+ T‑cells (isolated within 2 h from collection) from 
peripheral blood from participants with well‑controlled asthma (n = 32) and healthy controls (n = 11). 
Weighted Gene Co‑expression Network Analysis (WGCNA) was used to identify sets of co‑expressed 
genes (modules) associated with the asthma phenotype. We identified three modules associated 
with asthma, which are strongly enriched for GWAS‑identified asthma genes, antigen processing/
presentation and immune response to viral infections. Through integration of publicly available 
eQTL and GWAS summary statistics (colocalisation), and protein–protein interaction (PPI) data, we 
identified PTPRC, a potential druggable target, as a putative master regulator of the asthma gene‑
expression profiles. Using a co‑expression network approach, with integration of external genetic 
and PPI data, we showed that  CD4+ T‑cells from peripheral blood from asthmatics have different 
expression profiles, albeit small in magnitude, compared to healthy controls, for sets of genes 
involved in immune response to viral infections (upregulated) and antigen processing/presentation 
(downregulated).

Abbreviations
GWAS  Genome-wide association study
SNP  Single nucleotide polymorphism
WGCNA  Weighted gene co-expression network analysis
GS  Gene-significance (i.e. gene-phenotype correlation)
GM  Gene-membership (i.e. gene-module correlation)
PTPRC  Protein tyrosine phosphatase receptor type C
MAAS  Manchester asthma and allergy study
eQTL  Expression quantitative trait loci

Asthma is a chronic inflammatory condition of the airways. Childhood asthma, usually linked with allergy 
and IgE production, has historically been associated with a Th2/Th1 imbalance with increased Th2  CD4+ T-cell 
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mediated responses and Th2 cytokines such as IL-4, IL-5 and IL-131. In recent years the so called Th2 hypothesis 
has been questioned by the observation of increased cell proportions of other  CD4+ cell types in the lungs of 
severe asthmatics, such as  Th12,3 and  Th173. Regulatory T-cells (Treg), a type of  CD4+ T-cell important in the 
negative regulation of inflammatory responses, were also found to be decreased in bronchoalveolar lavage fluid 
(BALF) from asthmatic children compared to healthy  controls4.

Further evidence of the importance of  CD4+ T-cells in asthma comes from large GWAS studies, which showed 
high enrichment for  CD4+ T-cell specific enhancer  marks5, regions of open  chromatin6 and gene  sets7.

It is therefore widely recognised that  CD4+ T-cells play an important role in asthma pathogenesis. Despite this, 
only one study specifically targeted  CD4+ T-cells8. The authors measured  CD4+ gene expression using Affymetrix 
microarrays in 12 severe asthmatics and 8 healthy controls from an adult population (average age 46 years) and 
identified a small number (n = 40) of differentially expressed genes. It is currently not known if these differences 
can also be identified in patients with controlled asthma or if these are specific for a severe phenotype.

For the current study, we sought to employ RNA-sequencing, a more sensitive technique compared to micro-
array, in a larger sample size to study the transcriptome of  CD4+ T-cells from well-characterised childhood 
asthma patients from the Manchester Asthma and Allergy Study cohort (MAAS)  cohort9 with well-controlled 
asthma and healthy controls.

Results
Study population
The characteristics of the study population are shown in Table 1. As expected, asthmatics showed higher median 
values for measures of inflammation (fractional exhaled nitric oxide [FeNO]) and lower lung function meas-
urements (baseline forced exhalation volume in 1 s/forced vital capacity  [FEV1/FVC]) compared to controls. 
Moreover, 59% of participants with asthma were positive for house dust mite skin prick test, compared to only 
25% of healthy controls.

Weighted gene co‑expression network analysis (WGCNA)
Two samples did not pass the initial QC and were excluded from the analysis (Supplementary Materials Fig. E1), 
leaving 32 asthmatics and 11 controls. Differential expression analysis with DESeq2 did not identify any dif-
ferentially expressed genes (DEGs) (Supplementary Materials Fig. E2 and Supplementary Data S1). Post-hoc 
power calculation showed that, given the observed biological variation and read counts, a larger sample size (at 
least n = 52) would have been needed to achieve 80% power to detect differentially expressed genes with a fold 
change greater than 1.5 (see Supplementary Materials S1). Given the lack of power to detect DEGs, WGCNA was 
used instead. The network was built using the top 75% most variable genes (n = 9607) and identified 18 modules 
(Supplementary Materials Table E1, Supplementary Materials Figs. E3–E5 and ModuleGenes.xlsx S1). Logistic 
regression was used to identify associations between the module expression profiles and asthma status. Three 
modules were found to be associated with asthma (Table 2), the Green and Lightgreen modules, positively associ-
ated with asthma (i.e. the genes in these modules were generally over-expressed in asthmatics) and the Darktur-
quoise module, negatively associated with asthma. Sensitivity analyses adjusting for house dust mite skin prick 

Table 1.  Table of subject characteristics. IQR 25th–75th interquartile range, FeNO fractional exhaled nitric 
oxide, ppb parts per billion, FEV1 forced exhalation volume in 1 s, FVC forced vital capacity, BMI body mass 
index, HDM house dust mite, SPT skin prick test, PD15 dose of mannitol causing a 15% fall in  FEV1, LABA 
long-acting bronchodilator inhalers, SABA short-acting bronchodilator inhalers. *PD15 was only calculated for 
the participants who were positive to the mannitol challenge. **Mannitol challenge was missing for 2 asthma 
cases; p value from Fisher’s exact test for categorical and Wilcoxon rank sum test for numerical variables.

N
Asthmatics**
N = 33

Controls
N = 12 p-value

Female (%) 45 11 (33) 6 (50) 0.3

Current smoker (%) 45 3 (9.1) 0 (0) 0.6

Median FeNO (ppb, IQR) 45 24 (18–38) 14 (12–18) 0.008

Positive mannitol challenge (%) 42 17 (57) 3 (25) 0.063

Median  PD15 (IQR)* 20 187 (51–258) 554 (383, 584) 0.093

Median  FEV1/FVC (IQR) 45 84.0 (80.0–87.8) 87.3 (84.1–89.7) 0.088

Median BMI (IQR) 45 23.9 (21.6–25.8) 21.7 (20.3–23.2) 0.1

HDM SPT age 18 44 19 (59%) 3 (25%) 0.04

Age (years) 45 22.4 (21.8–22.7) 23.0 (22.8–23.1) 0.002

Medication

 None (%)

33

9 (27)

 Inhaled corticosteroids (ICS) (%) 9 (27)

 Combination Inhalers (contains both LABA and ICS) (%) 5 (15)

 SABA only (%) 10 (30)
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test and exclusion of the three current smokers from the asthma group did not alter the results, suggesting that 
the identified module associations are not driven by atopy or smoking (see Supplementary Materials Table E3).

Over‑representation analysis of asthma‑associated module genes
The asthma-associated modules’ genes were found to be enriched in asthma related GWAS Catalog traits genes 
(Fisher’s exact test of enrichment for genes annotated to GWAS trait hits; Table 3). The Green module was 
enriched for genes associated with Childhood onset asthma/allergic disease (FDR = 0.01). The Darkturquoise 
module was also strongly enriched for asthma-associated genes (FDR = 4.4e−06), while the Lightgreen module 
was enriched for white blood cell (FDR = 0.03) and eosinophil counts (FDR = 0.01).

Query of the top 10 asthma-associated genes (by gene-significance [GS], see “Methods” for description) in 
each module (Supplementary Materials Fig. E6) in the GWAS Catalog and UK Biobank databases showed that a 
large proportion of the genes were associated with asthma, allergy and infection of the airways (Supplementary 
Materials Table E2). For the Green module, 7 out of 10 genes have been previously associated with asthma/allergy 
or viral infections. The top 10 Darkturquoise module genes were associated with asthma, prescription of allergic 
medication and infections of the airways. The Lightgreen module genes were mostly non-coding genes and most 
of them were not reported in the databases utilised. Those that were reported in the databases were associated 
with lung function and eosinophil counts.

Next, to identify the functional role of the asthma modules, we looked at the enrichment of genes in Biologi-
cal Processes (BP) from Gene Ontology (Fig. 1) and KEGG pathways. The asthma modules were found to be 
enriched for BP related to response to viral infections (Green module), histone modifications and chromatin 
reorganisation (Lightgreen module) and antigen processing/presentation (Darkturquoise module) (Fig. 1 and 
Supplementary Data S1). The enrichment analysis for KEGG pathways identified enrichments for Herpes Sim-
plex infection and endocytosis in the Green module and asthma and other pathways related to autoimmune 
diseases in the Darkturquoise module (Fig. 2 and Supplementary Data S1). No enrichment for KEGG pathways 
was identified in the Lightgreen module.

The Green module, a module enriched for pathways involved in the response to viral infections, was strongly 
enriched for childhood asthma and allergic disease traits GWAS-associated genes. The Darkturquoise module 
was enriched for antigen processing and presentation pathways, including the MHC class II genes HLA-DRB5 
and HLA-DOB, two genes previously associated with  asthma10,11. The Lightgreen module was enriched for 
pathways involved in chromatin and histone modification, and positive regulation of cytokinesis. Interestingly, 
out of 10 top asthma-asociated genes in the Lightgreen module, 7 were either pseudogenes or long non-coding 
RNAs. Only one of these, ENSG00000272477 (Lnc-EFHB-6) was reported in the literature as associated with 
the asthma-related trait eosinophil  counts12, while no information could be found for the other 6. A result that 
highlights the importance of studying non-coding genes in asthma.

Identification of master regulators of the asthma‑associated modules
It is difficult to disentangle the direction of effect between disease and differentially expressed genes, especially 
when taking into account the interaction between the pathways the genes belong to. Moreover, the WGCNA 
modules are comprised of hundreds of co-expressed genes, most of which would not have a genetically regulated 
component but, instead, regulated by the same genetically modulated master regulators, i.e. through eQTL. For 
this reason, we hypothesised that if the identified modules were a cause and not a consequence of the asthma 
pathogenesis, within the modules, we should have been able to identify genes whose expression has a genetically 
regulated component (i.e. co-localisation between eQTL and GWAS signals) and that are highly interconnected 

Table 2.  WGCNA modules significantly associated with asthma.

Beta p-value FDR

Green 6.81 0.02 0.14

Light green 7.05 0.02 0.14

Dark turquoise − 12.40 0.01 0.14

Table 3.  Asthma modules’ genes enrichment in GWAS catalog traits at FDR < 0.05. N = number of genes in the 
gene set; n = number of module genes overlapping the gene set.

GWAS trait N n P-value FDR

Green
Asthma (childhood onset) 266 14 6.8E−06 0.0118

Allergic disease (asthma, hay fever or eczema) 292 14 1.9E−05 0.0118

Lightgreen

Eosinophil counts 186 7 9.4E−05 0.0114

White blood cell count 221 7 2.7E−4 0.0309

Sum eosinophil basophil counts 160 6 3.0E−4 0.0327

Darkturquoise Asthma 337 11 2.9E−08 4.4e−06
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both within and between the disease-associated modules (hub genes). We therefore integrated publicly available 
eQTL and asthma-GWAS summary statistics. Colocalisation was used to identify signals with posterior prob-
ability of sharing a causal SNP (posterior probability 4 PP4) > 0.5 between eQTL and GWAS signals, restricted 
to genes in the asthma-associated modules (n = 886; see “Methods”, Supplementary Materials Fig. E9 and Sup-
plementary Data S1 for full results). For the asthma-GWAS signal, three of the largest asthma-GWAS studies 
were  used6,10,13. For the eQTLs,  GENCORD14 (T-cell) and  eQTLgen15 (whole blood) were used. GENCORD and 
eQTLgen identified different sets of genes with evidence of colocalisation with GWAS signals (Fig. 3A), with the 
majority of colocalised genes identified for eQTLgen (7 out of 11 unique genes). Only ZBTB38 showed evidence 
of colocalisation in both datasets. The list of genes with evidence of colocalisation was then integrated with the 
top 10% quantile genes for module membership (MM—correlation between module eigengene and gene expres-
sion profile, a measure of association between the gene and the module) and gene significance (GS—correlation 
between gene expression and asthma, a measure of association between the gene and asthma) to include genes 
that are highly representative of the asthma-module expression profile (n = 165). This set of top genes was used 
as input in STRING to build a network with further evidence of protein–protein interaction. STRING identified 
PTPRC (a gene in the Green module with evidence of colocalisation, Fig. 3A,B) as the protein with the highest 
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Figure 1.  GO enrichment. Top 10 enriched Biological Processes in each asthma module. GeneRatio refers to 
the ratio between the genes in the module and the ones in the tested gene set.
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number of interactions and, therefore, as a putative master regulator of the identified asthma-associated modules 
(Fig. 3C; hub protein permutation p-value = 0.01, Supplementary Materials Fig. E10).

Discussion
We presented the results of a Weighted Gene Co-expression Network Analysis on  CD4+ T-cells in patients with 
well-controlled asthma and healthy controls. Three modules, named Green, Lightgreen and Darkturquoise, were 
associated with asthma status and were found to be strongly enriched for asthma and allergy related biological 
processes and KEGG pathways such as antigen processing and presentation, and immune response to viral infec-
tions. Importantly, the identified modules were also strongly enriched for asthma and childhood-asthma GWAS-
identified genes, suggesting that the identified different expression profiles are partially genetically regulated by 
asthma-causal SNPs. In line with this observation, integration of publicly available asthma GWAS and blood 
eQTL summary statistics potentially identified a putative master regulator (PTPRC) of the asthma expression 
profiles with a genetically regulated component, possibly suggesting that the identified expression profiles are 
disease causing and not simply an asthma consequence.

WGCNA identified sets of co-expressed genes associated with asthma, and enriched for asthma and asthma-
related traits, but only by identifying causal master regulators it is possible to further our understanding of asthma 
pathogenesis and to identify new druggable targets and asthma biomarkers. Moreover, from gene expression 
alone, it is not possible to infer the direction of effect between the studied phenotypes and the observed gene 
expression. The identified differences in gene expression might, in fact, be the consequence and not the cause 
of the studied phenotype. We, therefore, integrated mRNA co-expression (WGCNA), eQTL, GWAS and pro-
tein–protein interaction data to identify hub genes–genes highly interconnected within the network and therefore 
putative asthma master regulators—whose expression has a genetically regulated component, i.e. eQTL, by an 
asthma causal SNP, identified by GWAS studies. We identified PTPRC, a gene previously identified in GWAS 
studies, which also showed evidence of colocalisation with T-cell specific eQTL from GENCORD, as a puta-
tive master regulator in  CD4+ T-cell asthma gene expression profile. Consistent with our findings (i.e. higher 
expression of PTPRC in asthmatics), eQTLs reported in GENCORD to be associated with increased expression 
of PTPRC are also reported to increase the risk of asthma in GWAS studies.

Similar to our study design, Do et al. used WGCNA to study differences in gene expression profiles from 
nasal brushings between healthy controls and severe asthmatics. They then applied a probabilistic causal net-
work analysis to identify possible master regulators of the asthma-associated modules. Despite using a different 
analytical method, applied to a different cell type, they also identified PTPRC as a master regulator of a persis-
tent asthma module, which was enriched in inflammatory response  pathways16. Our study, therefore, builds on 
existing evidence that PTPRC, and its downstream gene pathway, is important in the asthma pathogenesis. It 
also suggests that the expression profiles observed in  CD4+ T-cell from peripheral blood recapitulate those from 
tissue-resident  CD4+. Valette et al., using a combination of functional mapping tools, also reported PTPRC as a 
candidate causal gene and a potential asthma drug  target13.
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Figure 2.  KEGG enrichment. Top 10 enriched KEGG pathways for each asthma module. The Lightgreen 
module did not show any enrichment.
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PTPRC is a member of the protein tyrosine phosphatase family and encodes for the tyrosine phosphatase 
CD45. CD45, also known as leukocyte common antigen (LCA), plays an important role in T- and B-cell 
antigen receptor signal transduction via the Src family kinase Lck, and it is known to be associated with 
 immunodeficiency17. CD45 has been shown to regulate several asthma related traits such as  cytokine18, IL-619 
and  IgE20 production but its role in the asthma pathogenesis has yet not been determined.

To date, only one other transcriptome study on asthma focused on  CD4+ T cells. Tsitsiou et al. identified 40 
differentially expressed genes (fold change > 1.5) between 12 severe asthmatics and 8 healthy  controls8. While 
they also had data on 4 non-severe asthmatics, the small sample size did not allow them to properly study this 
subgroup. The observed small differences led the authors to conclude that severe asthma is not associated with the 
activation of circulating  CD4+ T cells. Of the 40 DEGs genes identified by Tsitsiou et al. 5 were part of the asthma-
associated modules such as S100A9 (S100 Calcium Binding Protein A9), S100A8 (S100 Calcium Binding Protein 
A8) and MNDA (Myeloid Cell Nuclear Differentiation Antigen) which belonged to the Darkturquoise module, 
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i.e. lower expression in asthmatics. Consistent with our observation that S100A9 and S100A8 are under-expressed 
in  CD4+ T-cells from asthmatics, knock-out mice for S100A9 were shown to have increased Th2 cytokine levels 
and impaired Treg-mediated suppression of lung inflammation, compared to wild-type, after being challenged 
with the extracts from the allergenic mold Alternaria alternata21. MNDA, although not reported as associated 
with asthma, allergy or blood cell counts in GWAS studies, contains an interferon-stimulated response element 
in its 5’-UTR, and is reported to be an interferon induced  gene22,23.

This study comes with several limitations. In line with Tsitsiou et al.  findings8, the identified differences 
were generally small between the groups, which did not allow us to use conventional differential expression 
approaches. The fact that we did not identify any differentially expressed gene despite a larger sample size and a 
more sensitive technique than the one used by Tsitsiou et al. suggests that future asthma studies on  CD4+ T cells 
should use even larger sample sizes or perform the analysis under stimulatory conditions. For this purpose, our 
study will serve as a reference for the required sample size. Nevertheless, our strict experimental design (using 
well-characterised asthma participants, who were followed up from birth until age 21 years and who showed 
asthma symptoms throughout their lives, the isolation of cells within 2 h from collection, the employment of a 
single operator from cell isolation to library preparation and the usage of UMIs) reduced non-biological hetero-
geneity to a minimum and, combined with sophisticated analysis techniques, such as WGCNA corrected for cell 
type proportions from bulk RNAseq deconvolution, allowed us to identify small differences between the groups.

A further limitation of the study is that asthma treatments, which could affect gene expression, were not taken 
into account in the analysis. Despite this, the strong enrichment for genes annotated to asthma, and asthma-
associated traits, GWAS hits, and the identification of an asthma master regulator with a genetically regulated 
component suggest that the identified effects are at least partially genetically regulated and not a consequence 
of confounders.

In conclusion,  CD4+ T-cells have been previously identified as a critically important cell type in asthma. 
Despite this,  CD4+ T-cells have been greatly understudied. Using a network-based approach, we showed that, 
albeit small in magnitude,  CD4+ T-cells from participants with well-controlled asthma exhibit a different expres-
sion profile compared to healthy controls and that the three asthma-associated modules are strongly enriched for 
genes identified through GWAS studies. By integrating publicly available genetic and protein–protein interaction 
data, we identified PTPRC, a gene previously identified as a master regulator of asthma gene expression profile 
from nasal brushing, as a master regulator in peripheral  CD4+ T-cells. The identification of a  CD4+ T-cell master 
regulator provides an important step towards the discovery of new druggable targets and possible biomarkers for 
asthma diagnosis. Finally, our results can also be used as a reference for future, better powered studies aiming at 
identifying differences between people with well-controlled asthma and healthy controls.

Methods
A more detailed description of the methods can be found in the Supplementary Materials S1.

Participants
Participants from the MAAS  cohort9, who showed asthma symptoms throughout their lives and who have had 
asthma symptoms within 12 months prior to the year 18 + visit were recruited into the asthma cases group 
(n = 33), while participants with no prior history of asthma were recruited as control subjects (n = 12). The study 
was approved by the North West—Greater Manchester East Research Ethics Committee and it was performed 
in accordance with relevant guidelines and regulations. Informed consent was obtained from all participants 
and/or their legal guardians.

Cell isolation and RNA extraction
CD4+ T-cells were isolated from blood by negative selection within 2 h from collection. The RNA was extracted 
using the RNeasy mini extraction kit and processed according to the manufacturer’s protocol (Qiagen). All the 
samples had RNA integrity number (RIN) score > 9 and were taken forward for downstream processing.

Library preparation and sequencing
Libraries were generated with the QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen) and the protocol was 
followed without modifications. Samples were split into 4 batches for library preparation, balanced by sex and 
case–control status, pooled together and sequenced on a single NextSeq4000 flow cell (single-end 150 bp) to an 
average read depth of ~ 8 million reads.

Read mapping and UMI deduplication
Reads were quality trimmed with  Trimmomatic24 and poly-G and poly-A tails were removed with  Cutadapt25. 
FastQC was used to assess read quality, before and after trimming, and duplication rate. STAR 26 was used to map 
the reads (hg38) using the parameters as recommended by Lexogen bioinformatics support. Reads mapping to 
the same genomic coordinates were deduplicated based on UMI sequence with UMI-tools27 and gene counts 
were calculated with  HTSeq28.

QC and weighted gene co‑expression network analysis (WGCNA)
Only genes with at least 5 counts in at least 10 samples were retained for further analysis. Hierarchical cluster-
ing of samples using the top 100 most expressed genes was used to identify outliers. Post-hoc power calculation 
was carried out with the R package RnaSeqSampleSize. Read counts were normalised by sequencing depth and 
transformed with VST using DESeq2 v3.1429. DESeq2 was used for differential expression analysis. A weighted 
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gene co-expression network was built using the top 75% most variable genes with  WGCNA30 (see Supplementary 
Materials S1). Sex, sequencing batch, number of PCR cycles and cell type proportions (for cell with average pro-
portions > 5%) were included as covariates in the DESeq2 model and were regressed out prior to WGCNA (Sup-
plementary Materials Figs. E3, E4). A network of type “signed hybrid” was chosen (soft threshold = 6), i.e. only 
positive correlations between the genes were used to build the network. Sets of highly co-expressed genes were 
then grouped into modules. The average expression profile of each module was calculated (moduleEigengenes).

The per-module eigengene values were used to test for differences between asthmatics and non-asthmatics 
using logistic regression. Given the small differences in gene expression observed from the DESeq2 analysis, an 
FDR of 20% was considered significant and results were further investigated.

Bulk RNA‑seq decomposition
To correct for differences in the abundance of specific  CD4+ sub-populations between samples and/or for  CD4+ 
isolation efficiency, the cell-type abundance of different  CD4+ T cells was estimated using the  BisqueRNA31 R 
package. Single-cell RNA-seq gene counts were extracted from three T-cell datasets (SRA814476, SRA794656, 
SRA665712) using the R package  rPanglaoDB32.  Seurat33 was used to label the cells by mapping the datasets to 
the Seurat-provided annotated CITE-seq references. The R package  BisqueRNA31 was used to estimate cell type 
proportions. The cell type proportions of cells with average proportions > 5% across samples were used as covari-
ate for WGCNA module association with asthma (see Supplementary Materials Figs. E7, E8).

Over representation analysis (ORA)
Modules were tested for enrichment (Fisher’s exact test) in Gene Ontology (GO) Biological Processes (BP) and 
 KEGG34 pathways using  ClusterProfiler35,36. Enrichment for GWAS  Catalog37 traits was assessed using  FUMA38.

Colocalisation of eQTL and asthma GWAS signals for the asthma‑associated modules’ genes
Summary statistics of three of the largest asthma GWAS studies were  downloaded6,10,13. The lead-SNP for each 
study was obtained from the GWAS catalog. The GWAS hits (and their proxy SNPs;  R2 ≥ 0.7 in the European 
population 1000G phase III) were annotated to protein-coding genes based on the following criteria: (1) the 
SNP position overlapped the gene body coordinates; (2) closest preceding/following gene; (3) the SNP position 
overlapped a locus that interacted with the gene promoter in  CD4+ T-cells (promoter capture Hi-C interaction 
matrix from Javierre et al.39). The annotated GWAS hits were then filtered to only retain signal for genes present 
in the asthma-associated modules. The eQTL summary statistics for  GENCORD14 and  eQTLgen15 were obtained 
from the European Bioinformatics Institute and eQTLgen websites, respectively. GWAS and eQTL summary 
statistics were filtered to retain only signals involving genes from the asthma-associated modules. For the regions 
with overlapping signals between the GWAS and eQTL datasets, the R package  Coloc40 was used to test for 
colocalisation (Supplementary Materials Fig. E9).

Identification of master regulators within the asthma‑associated modules
To identify the asthma-gene master regulators, a set of top asthma-genes was constructed: (1) genes with a pos-
terior probability (PP4) of a shared causal SNP between eQTL and GWAS summary statistics ≥ 0.5; i.e. genes 
whose expression has a genetically regulated component by an asthma causal variant; (2) top 10% quantile of 
genes based on module membership (MM—correlation between module eigengene and gene expression profile; 
i.e. genes strongly representative for the module expression profile); (3) top 10% quantile of genes based on gene 
significance (GS—correlation between gene expression and asthma; i.e. genes strongly associated with the asthma 
phenotype). A protein–protein interaction network (PPI) was built using this list of genes with  STRING41 and 
visualised in Cytoscape v3.9.142. Since the set of genes was derived from WGCNA modules, to avoid redun-
dancy of information, the STRING interaction sources “co-expression”, “neighbourhood” and “gene fusion” 
were deselected. The protein with the largest number of PPI (number of edges in the network—hub protein) 
and with evidence of colocalisation was considered a putative master regulator. To determine the significance of 
the identified hub protein, we compared the number of edges of the identified hub protein to the distribution of 
number of edges of “hub proteins” from random gene sets. Starting from the combined set of proteins from the 
asthma-associated modules, we build 10 thousand PPI networks from random sets of the same size as the set of 
top asthma-genes. The distribution of the maximum number of edges from each permutation was then used to 
estimate the hub protein p-value.

Data availability
The datasets generated and/or analysed in the current study have been deposited in NCBI’s Gene Expression 
Omnibus (GEO) and are accessible through GEO Series accession number GSE217904.
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