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Inversion study on elastic–plastic 
material parameters of red 
sandstone in uniaxial compression 
test
Jianing Wu 1, Xiaobin Yang 1*, Yimin Song 2, Shun Liu 1, Shihao Li 1 & Jiawei Liu 1

In order to obtain the real material parameters of heterogeneous rock, the material parameters of 
red sandstone specimens under uniaxial compression tests are inverted based on the Digital Image 
Correlation (DIC) method and the Finite Element Model Updating (FEMU) method. The DIC method is 
employed to calculate the displacement field of red sandstone specimens during uniaxial compression 
loading. Concurrently, a uniaxial compression elastic–plastic finite element numerical model with non-
uniform material parameters is developed based on the FEMU method. The model adopts the Mohr–
Coulomb yield criterion and adjusts the boundary conditions in real-time to maintain consistency with 
the test. The vertical displacement field of the numerical model is juxtaposed with that of the test to 
construct the objective function. Optimization is achieved using the Artificial Fish Swarm algorithm, 
which enables the acquisition of the non-uniform distribution and evolution process of the material 
parameters of specimens at different loading moments. The results indicate that this method can 
spatially obtain the non-uniform distribution field of material parameters and temporally track the 
evolution of material parameters during the loading process. This research lays a solid foundation for 
enhancing the accuracy of intelligent coal mining and dynamic disaster monitoring and early warning 
in coal mines.

Rock material parameters serve as essential foundational data for theoretical analysis and numerical compu-
tation, playing a significant role in research fields such as dynamic disaster monitoring and intelligent coal 
 mining1–4. The complexity of rocks, which are composed of various minerals, influenced by geostress changes, 
structural geology, weathering effects, and contain numerous joints and fractures, results in pronounced spatial 
non-uniformity in their material  parameters5–8. Current research often assigns uniform rock material param-
eters from a macroscopic perspective or assumes that these parameters follow a specific probability distribution 
model, which is then input into numerical simulation software. However, such computational outcomes do not 
accurately represent the true mechanical response of rock materials. Conversely, the micro-fractures within the 
rock undergo rapid development and alteration when exposed to different external loads, leading to changes in 
the overall material properties of the rock in response to load variation. Therefore, performing inverse analysis 
on rock material parameters and conducting research on their non-uniformity and evolutionary laws are critical 
foundations for enhancing the accuracy of intelligent coal mining and dynamic disaster monitoring systems. 
This also enables the real-time monitoring of multi-scale and multi-index information, holding substantial 
theoretical and engineering value.

Research on rock material parameters often employs numerical simulation methods, which can be categorized 
into continuous methods, discontinuous methods, and coupled methods. Continuous methods encompass the 
Finite Element Method (FEM) and the Finite Difference Method (FDM), while discontinuous methods consist 
of the Discrete Element Method (DEM). Coupled methods include the Finite-Discrete Element Method (FDEM) 
and others. Techniques for characterizing the non-uniformity of rock materials involve the Digital Image Cor-
relation (DIC) and the assignment of specific probability distribution parameters. Notably, the Digital Image Cor-
relation is frequently combined with software such as ABAQUS, FLAC, PFC, and UDEC to conduct numerical 
simulations and analyze rock damage characteristics and damage  evolution9,10. The method of assigning specific 
probability distribution parameters often relies on the Realistic Failure Process Analysis (RFPA) model or the 
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Elasto-Plastic Cellular Automaton (EPCA) model, assuming that material parameters follow Weibull distribu-
tion, normal distribution, lognormal distribution, and so on, and establishing a damage and failure model for 
non-uniform material  parameters11,12. Regarding research on material parameter inversion, the primary meth-
ods include the Virtual Fields Method (VFM) and Finite Element Model Updating (FEMU). The VFM method 
utilizes full-field deformation measurement data, expresses the structural strain energy through the material 
constitutive relationship and the virtual displacement field that satisfies displacement boundary conditions and 
continuity conditions, and obtains the relationship between the measured deformation, load, and unknown 
material parameters in the constitutive model according to the virtual work  principle13. Guo et al.14 calculated 
the Young’s modulus and Poisson’s ratio of graphite materials. Jiang et al.15 used the VFM method to invert the 
elastic–plastic parameters of laser-welded joints. Zhang et al.16 employed the 3D Digital Image Correlation (DIC) 
to characterize the heterogeneous strain field of Carbon Fiber Reinforced Plastic (CFRP) specimens and derived 
the specimen’s Young’s modulus, shear modulus, and Poisson’s ratio using the VFM method. The principle of the 
FEMU method is to compare data obtained from tests with the results of finite element model calculations. The 
parameters of the finite element model are continuously revised to make the simulated values closely match the 
experimental values, thereby obtaining a finite element model that more accurately reflects the actual structural 
 characteristics17,18. Currently, the application of the FEMU method in rock materials is less common. Yin et al.19 
proposed a rock elastic parameter inversion method based on DIC and FEM, which obtained the fields of Young’s 
modulus and Poisson’s ratio under complex stress states. Song et al.20 and Wu et al.21 conducted inversions for 
the mechanical parameters of red sandstone and geotechnical analogous model materials, separately based on 
DIC and FEMU. Cong et al.22 developed a method using FEMU for determining sensitive complex material 
parameters associated with piezoceramic plates. Liu et al.23 conducted a study on the damage characteristics of 
IG11 graphite material under complex stress states based on FEMU. The FEMU method is widely used in the 
research of parameter identification of various  materials24–26.

In the aforementioned studies, the rock material parameters are predicated on a certain assumption of a 
probability distribution function, which deviates from the actual parameter distribution. Additionally, numeri-
cal models often opt for elastic constitutive equations, and there is a dearth of research into the rock material 
parameters and their non-uniformity that change during the loading process. To address these issues, this paper 
proposes a method for the inversion of elastic–plastic constitutive material parameters in the uniaxial compres-
sion test of red sandstone, based on the Digital Image Correlation (DIC) and the Finite Element Model Updating 
(FEMU). The displacement field of the red sandstone uniaxial compression test is considered a known quantity, 
and the material parameters of the red sandstone specimen are inverted. The Artificial Fish Swarm algorithm is 
employed for optimization and solution. This approach enables the acquisition of the non-uniform distribution 
field of material parameters during the test loading process from a spatial perspective, and facilitates understand-
ing of the evolution process of material parameters with loading over time.

Inversion method of rock material parameters
The implementation of the inversion method for the non-uniform distribution of rock material parameters 
primarily relies on two techniques: the Digital Image Correlation (DIC) and the Finite Element Model Updating 
(FEMU). The inversion method is segmented into three components: acquisition of the experimental displace-
ment field via DIC, obtaining the simulated displacement field through finite element numerical analysis, and 
the parameter optimization process, as depicted in Fig. 1. Initially, a digital image acquisition system is employed 
to record the displacement field of rock specimens during the uniaxial compression test. Subsequently, based 
on the geometric dimensions of the specimens and the test boundary conditions, the finite element software 
ABAQUS is utilized to construct a uniaxial compression numerical model. Each element is assigned different 
material parameters according to the Weibull distribution, and finite element analysis calculations are executed. A 
Python script is composed to automatically output the simulated displacement field. Finally, within the MATLAB 
software, the experimental displacement field computed by DIC and the simulated displacement field calculated 
by ABAQUS are compared. The Artificial Fish Swarm Algorithm is employed to continuously update the material 
parameters of each element in the finite element model, minimizing the discrepancy between the experimental 
displacement and the simulated displacement. This process results in the acquisition of the material parameters 
that best correspond to the specimen.

The parameter inversion process is predicated on the joint utilization of MATLAB-Python-ABAQUS across 
multiple platforms. MATLAB governs the computational process, reading the experimental displacement field 
observed by DIC, and invoking Python scripts to read the simulated displacement field in the ABAQUS result file 
(.odb). It constructs an objective function by comparing the simulated displacement field with the experimental 
displacement field. An optimization algorithm is then employed for the iterative solution of the objective func-
tion. If the iterative process does not meet the convergence criteria, MATLAB must re-invoke the Python script 
to adjust the material parameters in the ABAQUS input file (.inp) and execute the ABAQUS computational 
routine. A Python script is subsequently invoked to read the simulated displacement field from the ABAQUS 
output database file (.odb).

Inversion process of rock material parameters
Test
A red sandstone material is chosen and processed into a rectangular specimen with dimensions of 
50 mm × 50 mm × 100 mm. The surface of the specimen is uniformly coated with a layer of black primer. Once 
the black paint is completely dry, random white spots are sprayed onto the surface, creating an artificial speckle 
field of white spots against a black background. The displacement field of the specimen is observed and calculated 
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using the DIC system, which comprises a CCD camera, cold light source, and a computer. The configuration of 
the experimental system is illustrated in Fig. 2.

Prior to the test, all devices of the loading system and the DIC system are activated. The specimen is placed at 
the center of the lower pressure plate of the testing machine. The brightness of the cold light source is adjusted, 
along with the position, brightness, and focal length of the CCD camera, to ensure that each pixel of the speckle 
field on the specimen’s surface is clearly displayed in the DIC system. The cold light source continuously illu-
minates the specimen to maintain constant brightness of the speckle field throughout the loading process. 
Subsequently, the loading system is synchronized with the digital image acquisition system to ensure temporal 
consistency between the two systems. Upon commencement of the experiment, the loading device is activated. 
The digital image acquisition system captures images at a rate of 5 frames per second, with an image resolution 
of 1600 × 1200 pixels and an object surface resolution of 0.0887 mm per pixel. During the test, the upper pressure 
plate of the testing machine remains stationary, while the lower pressure plate applies upward displacement at a 
loading rate of 0.06 mm per minute. This continues until the specimen experiences failure, at which point load-
ing and data acquisition are terminated. Following the conclusion of the test, the acquired load data and speckle 
images are analyzed and processed to calculate the displacement field at different loading instants.

A total of 3825 speckle images were collected during the test. The corresponding stress–strain curve is shown 
in Fig. 3. The stress–strain curve under uniaxial loading of rock can be divided into the following four stages: (1) 
Pore fracture compaction stage, (2) Elastic deformation to microelastic fracture stable development stage (elastic 
stage), (3) Unstable fracture development stage (elastic–plastic stage), and (4) Post-fracture stage. During the 
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processing of the collected speckle images, the speckle image collected at the loading time corresponding to point 
0 in the figure (with the strain of 0.0017) was selected as the reference image. Points 1–12 were selected at equal 
strain intervals on the stress–strain curve, and the displacement field of the speckle images at the correspond-
ing loading moments was calculated. Notably, during the compression test, due to the difference in mechanical 
properties between the upper and lower ends of the loading and the rock specimen, relative motion between 
the loading ends and the rock will be generated during the loading process, resulting in relative displacement 
and friction between the loading end and the rock, which is referred to as end friction. The horizontal displace-
ment near the end is noticeably smaller than the horizontal displacement away from the end, and the farther 
the distance from the loading end, the smaller the influence of the end friction effect. Therefore, to reduce the 
influence of the end friction on the calculation result, the part with significant boundary effect should be removed 
from the calculation area. By referring to relevant  literature27–29 and combining with the specific conditions of 
this experiment, the upper and lower ends were indented by 25%, that is, 25 mm respectively. Since there is no 
loading end in the horizontal direction, the left and right sides of the speckle surface were indented by 10%, 
that is, 5 mm. The length of the entire calculation area is 40 mm and the height is 50 mm, as shown in Fig. 2. 
The calculation correlation window size is 29 × 29 pixels, with a step size of 5 pixels. A speckle image contains 
deformation data of approximately 10,000 pixels in the calculation area.

Numerical model
A three-dimensional finite element model of uniaxial compression is constructed in ABAQUS. The model dimen-
sions are 50 mm × 50 mm × 100 mm, and the element properties consist of 8-node hexahedral fully integrated 
elements (C3D8), with an element size of 5 mm. The specimen comprises a total of 2541 nodes and 2000 ele-
ments. The parameter inversion calculation area aligns with the DIC calculation area in terms of location and 
size, with a length of 40 mm and a height of 50 mm, consisting of 80 elements and 99 nodes. The model adopts 
the Mohr–Coulomb yield criterion, the formula for which is:

In Eq. (1), τ represents the shear stress on the oblique section, σ denotes the normal stress on the oblique sec-
tion, ϕ is the internal friction angle with a range of 0 ≤ ϕ≤90°, and c stands for the cohesion. Material parameters 
are assigned to the finite element model according to the Weibull distribution, serving as the initial values for the 
computation of element material parameters. This process generates the displacement field of the finite element 
model. The computation formula for the Weibull distribution function is:

In Eq. (2), α denotes the material parameters of each element, while α0 represents the mean of material 
parameters, expressed as the elastic modulus E0 , Poisson’s ratio µ0 , internal friction angle ϕ0 , and cohesion c0 . 
The probability density function is represented by f (α) , which is a random number between [0,1]. The shape 
parameter of the Weibull distribution function is denoted by m, which characterizes the degree of non-uniformity 
of the rock. The larger value of m indicates a more concentrated distribution of the rock material parameters, 
suggesting a stronger uniformity of the rock. Conversely, a smaller value of m implies a more dispersed distribu-
tion of the rock material parameters, indicating a stronger non-uniformity of the rock. According to relevant 
 references30–36, given the Weibull distribution shape parameter m = 5, the mean parameters E0=20 GPa, µ0=0.15, 
c0=20 MPa, ϕ0=40°. a Python script is used to assign the generated material parameters to the finite element 
model. Figure 4 shows the schematic diagram of the material parameter distribution, with the distribution of the 
elastic modulus E0 , Poisson’s ratio µ0 , internal friction angle ϕ0 , and cohesion c0 as shown in Fig. 5. In accordance 
with the vertical displacement field of different loading stages in the uniaxial compression test, the boundary 
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conditions of the finite element numerical model are adjusted in real-time to maintain consistency between 
the numerical model and the test. Finite element calculations are then performed on the model to obtain the 
displacement field of the model.

Objective function and optimization
During the experimental loading process, the deformation of the rock is calculated using the DIC method, which 
directly yields the displacement field data. On the other hand, in a uniaxial compression test, axial displacement 
provides the most intuitive deformation data. Therefore, the vertical displacement (axial displacement) is adopted 
as the computation object for the objective function.

The objective function is defined as the sum of the squares of the differences between the experimental 
measurement displacement and numerical simulation displacement for all nodes within the computation area 
in the vertical direction, as shown in Eq. (3). In this equation, vexpi  represents the vertical displacement calculated 
in the experiment through DIC method, vnumi  represents the vertical displacement calculated in the numerical 
simulation, and n represents the number of nodes in the finite element model within the computation area.

Figure 4.  The schematic diagram of the material parameter distribution.
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To precisely compare the experimental measurement displacement field with the finite element model dis-
placement field, the DIC computation point coordinates, the vertical displacement, and the finite element mesh 
node coordinates are taken as known values. Considering the finite element grid density and node coordinates, 
the experimental displacement field data corresponding to the finite element model node coordinates are com-
puted using cubic spline interpolation in MATLAB. A schematic of the finite element model node interpolation 
is shown in Fig. 6. The white dots represent the finite element nodes, while the background cloud diagram rep-
resents the vertical displacement field cloud diagram computed using the DIC method. It should be particularly 
noted that according to the calculation principle of the DIC method, a pixel that is consistent with the gray level 
of the calculation point is searched in the half calculation correlation window around the calculation point. This 
pixel is considered to be the calculation point after deformation. Consequently, the calculation result will inevi-
tably sacrifice the pixel point of half the calculation correlation window (29 pixels in the calculation), meaning 
that the specimen boundary will be indented by 14 pixels.

Given the global optimization capabilities of the Artificial Fish Swarm algorithm and its ability to avoid 
issues such as solution dependence on initial values, it is employed to optimize and solve the objective function. 
During the computation process, to prevent the numerical differences in material parameters from significantly 
impacting the results, normalization is applied to the four different material parameters. This ensures that all 
material parameters fall between 0.1 and 0.9. These normalized parameters are then input into the optimization 
program. After the computation is completed, all material parameter calculation results are reverse-normalized. 
The computation process is shown in Fig. 7. The fish swarm size is set to 320, the maximum number of probing 
attempts is set to 4, the perception distance is set to 0.1, the crowding factor is set to 0.618, and the step size is set 
to 0.05. After the initialized fish swarm undergoes foraging, swarming, and trailing behaviors, the position with 
the smallest objective function is selected, otherwise, the iteration process is repeated. Once the computation 
is completed according to the given number of evolution times, the program automatically selects the global 
optimal solution, which are the material parameters that best match the specimen. For instance, the change in 
the global optimal value of point 12 during the iteration process is shown in Fig. 8. The objective function reaches 
convergence after 1500 iterations.

Result analysis
Inversion results of displacement field
Parameter inversion is conducted based on the vertical displacement field data at points 1 to 12. Specifically, 
the contour maps of the experimental vertical displacement field of points 1 to 12 in the calculation area are 
shown in Fig. 9, and the contour maps of the vertical displacement field resulting from finite element inversion 
are depicted in Fig. 10. In particular, to reduce the influence of the upper and lower ends of the specimen on the 
calculation results, the calculation area is selected as the central part of the speckle surface of the specimen. By 
comparing Figs. 9 and 10, it can be observed that the distribution characteristics of the vertical displacement field 
from the finite element inversion result are in agreement with those of the experimental vertical displacement 
field. Within the calculation area, five points are selected along the vertical direction, as shown in Fig. 11a. The 
changes in the vertical displacement field of the finite element inversion result and the experimental vertical 
displacement field during the loading process are calculated respectively, as shown in Fig. 11b. In this figure, ’exp’ 
denotes experimental displacement, and ’num’ stands for model displacement. For the elastic and plastic loading 
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stages corresponding to points 1 to 12, the magnitude and trend of the experimental vertical displacement are 
generally consistent with those of the vertical displacement in the finite element model.

Inversion results of parameter field
The inversion results of the elastic modulus E, Poisson’s ratio µ , internal friction angle ϕ , and cohesion c within 
the calculation area are presented as contour maps and boxplots, as depicted in Figs. 12 and 13. The mean value 
of material parameters at different loading times are calculated to understand the overall characteristics of the 
material parameters. Furthermore, to clearly comprehend the changing trend of the mean value of material 
parameters during the loading process, the material parameters obtained from the inversion results are normal-
ized, as shown in Fig. 14.

The mean value of the elastic modulus peaks at 26.72 GPa at point 4 and dips to its lowest at 23.37 GPa at 
point 11. During the elastic stage, the mean value of the elastic modulus experiences minor fluctuations, then 
decreases upon transitioning into the elastic–plastic stage, and slightly increases in the early failure stage. In the 
later stages of loading, the mean value of the elastic modulus decreases by 5.51% compared to the initial loading 
stage. The mean value of Poisson’s ratio peaks at 0.2379 at point 4 and dips to its lowest at 0.2117 at point 1. The 
mean value of Poisson’s ratio initially increases then decreases during the elastic stage, decreases upon entering 
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the elastic–plastic stage, and increases in the early failure stage. In the later stages of loading, the mean value of 
Poisson’s ratio increases by 6.89% compared to the initial loading stage. The mean value of the internal friction 
angle peaks at 42.93° at point 1 and dips to its lowest at 42.09° at point 8. The mean value of the internal friction 
angle gradually decreases during the elastic stage, increases upon entering the elastic–plastic stage, and slightly 
decreases in the early failure stage. In the later stages of loading, the mean value of the internal friction angle 
decreases by 1.20% compared to the initial loading stage. The mean value of the cohesion peaks at 26.24 MPa at 
point 7 and dips to its lowest at 24.36 MPa at point 2. After slight fluctuations during the elastic stage, the mean 
value of the cohesion remains essentially unchanged, then gradually decreases upon entering the elastic–plastic 
stage. In the later stages of loading, the mean value of the cohesion increases by 2.34% compared to the initial 
loading stage.

The non-uniform parameters obtained from the inversion are fitted to a Weibull distribution. The cumulative 
distribution function F(a) and the probability density function f (a) of the Weibull distribution are as follows:
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In the aforementioned equations, m is the shape parameter, which signifies the non-uniformity of the mate-
rial parameters, α represents the material parameters for each element in the model, and α0 is the mean value 
of the material parameters. Given the known material parameter α , the objective is to solve for the mean value 
α0 and the shape parameter m. By taking the double logarithm on both sides of the cumulative distribution 
function F(a) , we obtain:

The equation is rewritten in the form of Y = BX + A:
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Figure 10.  The contour map of the vertical displacement field of inversion results.
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The coefficients are solved using the method of least squares:

(9)X = ln(a)

(10)A = −m · ln(α0)

(a) Distribution of elastic modulus (unit: GPa)

(b) Distribution of Poisson's ratio
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Point 7 Point 8 Point 9 Point 10 Point 11 Point 12

11.00 14.75 18.50 22.25 26.00 29.75 33.50 37.25 41.00

0.1000 0.1313 0.1625 0.1938 0.2250 0.2563 0.2875 0.3188 0.3500

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

Point 7 Point 8 Point 9 Point 10 Point 11 Point 12

Figure 12.  Inversion results of material parameters.
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(11)B =

∑
(

Xi − X
)(

Yi − Y
)

∑
(

Xi − X
)2

(12)A = Y − BX

(13)m = B

(c) Distribution of internal friction angle (unit: °)

(d) Distribution of cohesion (unit: MPa)

35.00 36.88 38.75 40.63 42.50 44.38 46.25 48.13 50.00

Point 1 Point 6Point 5Point 4Point 3Point 2

Point 7 Point 9 Point 11 Point 12Point 10Point 8

15.05 17.54 20.04 22.53 25.03 27.52 30.01 32.51 35.00

Point 1 Point 6Point 5Point 4Point 3Point 2

Point 12Point 11Point 10Point 9Point 8Point 7

Figure 12.  (continued)
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The shape parameter m, as derived from the fitting, is depicted in Fig. 15. During the elastic stage, the shape 
parameter of the elastic modulus remains relatively stable, but increases upon entering the elastic–plastic stage, 
resulting in a decrease in non-uniformity. Prior to failure, the shape parameter decreases, leading to an increase 
in non-uniformity. The shape parameter of Poisson’s ratio exhibits significant fluctuations during the elastic stage 
and gradually decreases during the elastic–plastic stage and the period preceding failure, thereby enhancing 
non-uniformity. The shape parameter of the internal friction angle initially decreases during the elastic stage 
and then stabilizes, with substantial fluctuations occurring during the elastic–plastic stage and the period before 
failure, with the general trend being an increase. The shape parameter of cohesion initially increases and then 
decreases during the elastic stage, decreases during the elastic–plastic stage and the period preceding failure, 
thereby intensifying non-uniformity.

The points 1 to 12 depicted in Fig. 3 fall within stages 2 and 3. During the elastic stage, the micro-cracks within 
the specimen undergo rapid closure. The underdeveloped state of these cracks over a short duration does not 
induce significant changes in rigidity, but it does result in certain elastic deformations within the specimen. Upon 
transitioning into the elastic–plastic stage, the micro-cracks within the rock specimen undergo rapid develop-
ment, leading to a slight decrease in the overall strength. Prior to the specimen’s failure, the micro-cracks rapidly 
evolve into macro-cracks, resulting in a reduction in strength at the crack site, an increase in lateral deformation, 
a decrease in the mean of the elastic modulus, an increase in the mean of Poisson’s ratio, and an enhancement in 
non-uniformity. The mean of the internal friction angle increases upon entering the elastic–plastic stage, while 
the mean fluctuation of cohesion decreases. This is consistent with the trends in the evolution of the material 
parameters in the inversion results, and aligns with the conclusion drawn in  references37–39, which state that dur-
ing the failure process of rock materials, the internal friction angle gradually increases during the elastic–plastic 
stage, and the cohesion gradually decreases.

(14)a0 = exp[−
(Y − BX)

m
]
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Figure 13.  Boxplots of material parameters.
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Conclusions

1. This study presents a novel approach for the inversion of elastic–plastic constitutive material parameters in 
rock, leveraging the Digital Image Correlation (DIC) and Finite Element Model Updating (FEMU) tech-
niques. This method facilitates the capture of the spatially non-uniform distribution field of rock specimen 
material parameters. Furthermore, it provides insights into the temporal evolution of these material param-
eters throughout the loading process.

2. Utilizing uniaxial compression tests, the objective function is defined as the sum of the squares of the differ-
ences between the experimentally measured displacements and the numerically simulated displacements in 
the vertical direction. The Artificial Fish Swarm algorithm is employed to optimize this objective function, 
thereby deriving the material parameters that best correspond to the test specimen.
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Figure 14.  The normalized result of the mean value of material parameters.
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3. The material parameters of the red sandstone uniaxial compression specimen are inverted. The distribution 
characteristics of the vertical displacement field from the finite element inversion results align with those 
of the experimental vertical displacement. The values and trends of the experimental vertical displacement 
and the numerical vertical displacement are fundamentally consistent.

4. As microcracks rapidly develop under loading, the mean value of the elastic modulus decreases, and its 
non-uniformity initially decreases and then increases. The mean value and non-uniformity of Poisson’s ratio 
both increase. The mean value of cohesion decreases, and its non-uniformity increases. The mean value of 
the internal friction angle increases, and its non-uniformity decreases.

Data availability
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able request.
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