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Proposed physical mechanism 
that gives rise to cosmic inflation
Bruce M. Law 

Early in the Universe a chemical equilibrium exists between photons and electron–positron ( e−e+ ) 
pairs. In the electron Born self-energy (eBse) model the e−e+ plasma falls out of equilibrium above 
a glass transition temperature T

G
= 1.06× 10

17

K  determined by the maximum electron/positron 
number density of 1/(2R

e
)3 where R

e
 is the electron radius. In the glassy phase ( T > T

G
 ) the Universe 

undergoes exponential acceleration, characteristic of cosmic inflation, with a constant potential 
energy density ψ

G
= 1.9× 10

50

J/m3 . At lower temperatures T < T
G

 photon-e−e+ chemical equilibrium 
is restored and the glassy phase gracefully exits to the �CDM cosmological model when the equation 
of state w = 1/3 , corresponding to a cross-over temperature T

X
= 0.94× 10

17

K  . In the eBse model the 
inflaton scalar field is temperature T  where the potential energy density ψ(T) is a plateau potential, 
in agreement with Planck collaboration 2013 findings. There are no free parameters that require fine 
tuning to give cosmic inflation in the eBse model.

The current cosmological paradigm for the expansion of the Universe contains many unexplained mysteries and 
consists of two adjoining theories: cosmic inflation (CI, Fig. 1 red curve)1–3, at early times t  , that joins smoothly 
onto the �CDM model (Fig. 1 black dashed and solid curves)3–5 at late times where ȧ , in Fig. 1, is the expansion 
or scale factor velocity. The �CDM model accounts for Big Bang Nucleosynthesis (BBN, the creation of light 
elements in the early Universe), the existence of a cosmic microwave background (CMB), and cold dark matter 
(CDM), as well as, a period of accelerated expansion due to Dark Energy (DE) or, equivalently, the cosmologi-
cal constant � at late  times4. For most of the �CDM model ȧ is decreasing with increasing t  corresponding to a 
decelerating expansion due to the attractive nature of gravity. Only recently for t > tda , where tda is the transi-
tion time from deceleration to  acceleration6, does ȧ increase with increasing t  , corresponding to an accelerating 
expansion due to �3–5. The �CDM model results in the following composition for the Universe: ~ 5% ordinary 
matter (baryons), ~ 25% CDM, and ~ 70% DE.

The CMB is remarkably homogeneous and isotropic with thermal fluctuations δT/T ∼ 10−5 − 10−4 in caus-
ally disconnected regions (the Horizon problem) where, additionally, the initial scale factor velocities ȧi are also 
very homogeneous in causally disconnected regions (the Flatness problem)3,7. A method that solves both the 
Horizon and Flatness problems is for there to be a period of exponential acceleration, or cosmic inflation, that 
precedes the �CDM phase and which joins smoothly onto the �CDM phase (a Graceful Exit). CI is now the 
accepted paradigm in cosmology because it so elegantly solves both the Horizon and Flatness problems. There 
are many unknowns in this description of the Universe. What is CDM? What is DE? What gives rise to CI?

In earlier  work8,9 the author proposed a model, based upon the electron Born self-energy (eBse), that quanti-
tatively explains many astrophysical observations attributed to DE with no adjustable parameters. In this model 
the electron is assumed to possess a finite, non-zero radius given  by8,10

where ε = 10.3 TeV 11 is the contact interaction energy between electron–positron collisions at the LEP 
(large electron–positron collider). Equation  (1) arises from the assumption that the relativistic energy 
ε = c

√

p2 +m2
e c

2 ≈ cp , at these high collision energies, where the momentum p = �/� ≈ �/Re . Here me , c , � , 
and � are, respectively, the electron rest mass, speed of light in a vacuum, reduced Planck’s constant, and electron 
wavelength at energy ε.

In Quantum Electrodynamics (QED) the electron is assumed to be a point particle ( Re → 0 ), thus, Eq. (1) 
would represent an upper bound to the electron radius within QED (namely, the actual electron radius would 
be less than this experimental estimate). Unfortunately, this point particle assumption for the electron (and the 
resultant mass renormalization to eliminate divergences) leads to a number of fundamental difficulties in QED 
which are not well recognized and are rarely discussed. Specifically, the non-local energy is not conserved for 

(1)Re = �c/ε = 1.9× 10−20m
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the electron where, in addition, the treatment of electrons and other charged particles are inconsistent with each 
other. These inconsistencies within Physics can only be resolved if the electron possesses a finite, non-zero radius, 
as is assumed in the eBse model. For any assumed electron radius, such as in Eq. (1), a necessary requirement 
is that this radius not produce any conflicts between theory and experiment within QED. These issues, and the 
interrelationship between QED and the eBse model, are discussed in the Supplementary Material.

The eBse description of DE is applicable to cosmological phenomena occurring at late times and small red-
shifts ( z ∼ 0− 2 ). Will a finite-sized electron have any other cosmological consequences and are these conse-
quences consistent with astrophysical measurements? In particular, the finite-size of an electron is likely to have 
a significant impact at very high densities (in the CI phase) when the separation distance between neighboring 
electrons and positrons is of order 2Re . The purpose of this current publication is to explore this ultrahigh density 
regime. We find that the eBse model in this region exhibits exponential acceleration, due to a constant potential 
energy density, in agreement with the expectations for CI.

This publication is set out as follows. The �CDM and cosmic inflation models are outlined in Section “ �CDM 
and cosmic inflation models”. Section “Electron Born self-energy model at ultrahigh densities” discusses the 
eBse model at ultrahigh densities. This publication concludes with a discussion in Section “Discussion”. The 
eBse model is an extension of QED. The interrelationship between the eBse model and QED is described in the 
Supplementary Material.

�CDM and cosmic inflation models
The cosmological expansion of the Universe is described by Einstein’s General Theory of Relativity (GR) which 
relates the space–time metric gµν to the energy–momentum tensor Tµν . If the Universe is homogeneous and 
isotropic, as is normally assumed during cosmic expansion, then the GR equations reduce to the Friedmann 
equations given below. A pedagogical description of this interrelationship can be found  in12 (Chapter 3). The 
expansion, during the �CDM phase, is usually described by the Friedmann equation for the scale factor velocity

where H is Hubble’s parameter, a the scale factor, κ the spatial curvature, and G Newton’s gravitational constant. 
The expansion in Eq. (2) is driven by the total energy density of intergalactic space �tot where, in the �CDM 
model,

has contributions from radiation ( R ), baryons ( B ), CDM , and DE , and the equation of state w = P/�(≈ −1) is 
the ratio of pressure P to energy density �.

Rather than considering the scale factor velocity, as in Eq. (2), a useful alternative is to consider the Friedmann 
equation for the scale factor acceleration ä which takes the form

According to Eq. (4) if w = P/� > −1/3 ( < −1/3 ) then the Universe decelerates (accelerates) because 
ä < 0 ( ̈a > 0 ). In the �CDM model, at late times ( t > tda ), where the expansion of the Universe is accelerat-
ing due to DE, astrophysical measurements indicate that w ≈ −113,14. In CI the acceleration of the Universe is 
also believed to be caused by w = −1 where, to obtain this value for w , the inflaton ϕ , a scalar field of unknown 
origin, is modeled as a classical scalar field. For a generic homogeneous scalar field ϕ one can readily  show12 (p. 
164) that the energy–momentum tensor takes the form Tα

β = −δα0 δ
0
β ϕ̇

2 + δαβ

[

1
2 ϕ̇

2 − ψ(ϕ)
]

 where K = ϕ̇2/2 
and ψ = ψ(ϕ) are, respectively, the kinetic energy density and potential energy density of the scalar field, δαβ 

(2)H2 =
(

ȧ

a

)2

= 8πG

3c2
�tot − κc2

a2
,

(3)�tot = �R

a4
+ �B +�CDM

a3
+ �DE

a3(1+w)
,

(4)
ä

a
= −4πG

3c2
(�+ 3P).

a
.
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Figure 1.  Variation in scale factor velocity ȧ versus cosmic time t  . Big Bang Nucleosynthesis (BBN) at time 
tBBN ∼ 1s− 5min , Cosmic Microwave Background (CMB) at tCMB ∼ 380, 000yr , the deceleration-acceleration 
transition at tda ∼ 7Gyr , the cosmological constant � causes accelerated expansion.  �CDM model: black 
dashed and solid lines. Cosmic inflation (CI): red solid line. eBse model: exponential acceleration, during CI, 
terminates at a glass transition temperature TG at time tG ∼ 3× 10−11s.
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is the Kronecker delta, and α, β = 0, 1, 2, 3 . Hence, as the energy density � = −T0
0 where T0

0 is the time-time 
component, therefore,

Similarly, as the pressure P = Ti
i  where Ti

i  is the diagonal space-space component (which is the same for 
i = 1, 2, 3 ), therefore,

During the inflationary phase

and, consequently, w ≡ P/� = −1.
In traditional inflationary theory a form for ψ(ϕ) is surmised and then various parameters within this poten-

tial are fined tuned such that Eq. (7) holds for a time period  of15

where τCI is the characteristic time for CI. These requirements on the time scale of the exponential acceleration 
ensure that the CMB is sufficiently homogeneous and isotropic where, additionally, the flatness of the Universe 
is also guaranteed. Following the accelerated expansion, the issue for each ψ(ϕ) is, how does the accelerated 
expansion phase end where the inflaton energy is converted into energy associated with standard particle phys-
ics, in thermal equilibrium, so that the �CDM model can proceed? As different regions of the Universe are 
expected to exit CI at different time periods this gives rise to the Multiverse—causally disconnected Universes, 
each of which may possess differing physical constants. Equations (5)–(7) indicate that CI represents a strongly 
interacting solid phase, early in the Universe, whereas, Eq. (3) indicates that the �CDM model is a description of 
non-interacting free particle motion later in the Universe (as a potential energy term between particles is absent).

Astrophysical measurements of thermal fluctuations in the CMB allow one to evaluate how well a particu-
lar ψ(ϕ) describes the CMB anisotropy. These CMB measurements indicate that the inflationary phase is best 
described by a single scalar field possessing a plateau  potential16,17, namely, ψ(ϕ) is a very flat function of ϕ that 
ends precipitously at the end of the inflationary period.

Electron Born self-energy model at ultrahigh densities
Description of the physics, but without any equations
As much of the Physics, in Section “Electron Born self-energy model at ultrahigh densities”, may be foreign to 
astrophysicists and cosmologists, the Physics is described in words first, in the absence of any equations, as a 
guide to the reader. All of the arguments that arise come from soft matter physics, or condensed matter physics, 
in the vicinity of a glass transition. Due to the ultrahigh densities that are involved, where the average separa-
tion distance between particles is of order 2Re , soft matter physics concepts are necessary in order to describe 
the physics correctly.

For energies above 1MeV  there is a chemical equilibrium between the number of photons and the number 
of electron–positron ( e−e+ ) pairs in a given volume V  . This chemical equilibrium varies with temperature T . At 
higher and higher temperatures there are more photons, as well as, more e−e+ pairs in volume V  , namely, their 
number densities increase with increasing temperature. In the eBse model, as both the electron and positron 
possess a finite, non-zero radius, there will be a maximum number density, specifically, it is impossible to pack 
more than one electron (or positron) in a volume V = (2Re)

3 and therefore the maximum electron/positron 
number density is 1/(2Re)3 . This maximum number density occurs at a glass transition temperature TG (see 
Eq. (14)) where the electrons and positrons are packed as closely together as is physically possible, given their 
size (i.e. they are physically in contact with each other). Of course, the packing will be random because e−e+ 
pair creation is random, hence, this solid phase will be random, namely, it will be a glass. For temperatures above 
TG the number density of photons can increase (because a photon is a boson), however, the number density of 
electrons and positrons will remain fixed at this maximum value. Hence, for T > TG , the photon-e−e+ process 
falls out of chemical equilibrium where there are too few e−e+ pairs compared with the number of photons. What 
this means is that provided the e−e+ pair creation process is sufficiently fast, compared with the expansion rate of 
the Universe, then the number density of electrons and positrons remains fixed at 1/(2Re)3 for T > TG . A fixed 
e−/e+ number density implies a constant potential energy density ψ for T > TG . A constant ψ , in cosmology, 
leads to an exponential acceleration of the Universe as described in Section “Electron–positron glass transition 
”. The specific value for this constant ψ (denoted ψG in Section “Potential energy density in the glassy phase”) can 
be estimated using standard arguments from solid state physics by noting that the number density in a random 
glassy phase is similar to the number density in a crystalline cubic phase. Hence, as the number densities are 
similar, therefore, the potential energy densities are also likely to be similar. The potential energy density ψG is 
therefore estimated by calculating this quantity for an ordered cubic phase of positive and negative charges (the 
positrons and electrons); this calculation is identical to the calculation of the potential energy density in sodium 
chloride table salt (see Eqs. (18)–(19)).

For T < TG the average particle separation distance, l  , will be greater than 2Re and at these lower temperatures 
photon-e−e+ chemical equilibrium is restored. The temperature dependence of the potential energy density 
ψ(T) , below the glass transition, can be calculated by an appropriate distance rescaling (see Eqs. (25)–(26)). 
The kinetic energy density K , that appears in Eqs. (5) and (6), can also be estimated by using arguments from 

(5)� = K + ψ .

(6)P = K − ψ .

(7)K << ψ

(8)∼ 50− 60 τCI ,
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colloidal particle physics in the vicinity of a glass transition. As the density of particles is very high an individual 
particle will experience Brownian motion which is characterized by a diffusion coefficient D and a viscosity η (see 
Eq. (27)) where the viscosity is divergent upon approaching a glass transition (Eq. (29)). Straightforward argu-
ments allow one to calculate the temperature dependence of the kinetic energy density K(T) (see Eqs. (28)–(32)). 
Once both ψ(T) and K(T) , for T < TG , are known then various transition points can be determined. The most 
important transition point is the transition to the �CDM model which will occur for an equation of state 
w = 1/3 , which corresponds to the equation of state for both photons and relativistic fermions. The w = 1/3 
requirement enables one to determine both the temperature, as well as, the potential energy density where the 
glassy phase transitions to the �CDM model (Eqs. (39)–(40)). A plot of ψ(T) and K(T) , for the eBse model, 
is provided in Fig. 2. Sections “Electron–positron glass transition” – “Transition between the glassy phase and 
�CDM” convert this description, in words, into a mathematical description.

Electron–positron glass transition
In the early universe, before Recombination, the Universe consists of an ionized plasma of photons, electrons, 
positrons, protons, anti-protons, and all the other particles of the Standard Model. The Universe also consists 
of a significant proportion of CDM, however, DE is thought to have played a negligible role. In the follow-
ing the behavior of electrons and positrons is traced back to earlier and earlier times. At a temperature of 
T = 1.2× 1010K , corresponding to an energy of 1MeV  , the conversion of photons to electron–positron pairs 
first makes its appearance

The γ in this equation represents one or more photons. In the Breit-Wheeler  process18 two photons are con-
verted to an e−e+ pair in order to conserve both energy and momentum. However, in the presence of a strong 
electric field (eg. that of a neighboring electron) one photon can be converted to an electron and positron. The 
later process is called triplet  production19. The Breit-Wheeler process is exceptionally rare and e−e+ pair creation 
normally occurs via triplet production.

The equilibrium process in Eq. (9) can be viewed as a chemical reaction where, because the pair production 
process is so prolific, the number of electrons N−  is to a good approximation equal to the number of positrons 
N+ . The chemical potential of a photon µ = 0 and, for the current situation, the chemical potential for both the 
electron and positron is also zero µ− = µ+ = 020. The number of electrons or positrons in volume V  is given 
by an integral over the momentum p20

We are most interested in the situation at very high temperatures T >> mec
2/kB , where the relativistic energy 

ε = c
√

p2 +m2
e c

2 ≈ cp , and therefore Eq. (10) reduces  to20 (p. 316)

The number of photons in volume V  is given  by20 (p. 187)

At earlier and earlier times, corresponding to higher and higher temperatures, the number of photons, elec-
trons, and positrons increases within volume V  . In QED where the electron and positron are assumed to be 
point particles, photon and fermion gases can be taken to arbitrarily high temperatures with no restriction on 
their densities. However, if electrons and positrons possess a finite, non-zero radius Re (Eq. (1)), then there will 
be a maximum number density given by

According to Eqs. (11) and (13) this maximum number density is reached at a glass transition temperature of

corresponding to an energy of EG = 9.1 TeV  . For temperatures T > TG this photon-e−e+ system falls out of 
equilibrium; namely, in volume V  , although the number of photons can increase to an arbitrarily large number in 
accordance with Eq. (12) (because the photon is a boson), the number density of electrons/positrons is restricted 
to the value given in Eq. (13) (as these particles are fermions). Thus, as the temperature increases the number 
density of photons increases, whereas, the number density of electrons and positrons remains constant. In this 
non-equilibrium situation, when the Universe expands and cools the average number density of electrons and 
positrons decreases. However, locally, at the level of electrons and positrons the number density is controlled by 
Eqs. (11) and (12) and the system realizes that it’s not in chemical equilibrium (there are too few electrons and 
positrons) and the number density of electrons and positrons increases to its maximum value given by Eq. (13). 
In this constant density electron/positron glassy phase the potential energy dominates the kinetic energy because 
the electrons and positrons are restricted by the Pauli exclusion principle from moving into any neighboring 

(9)γ ↔ e− + e+.

(10)N− = N+ = V

π2�3

∞
∫

0

p2dp

eε/kBT + 1
.

(11)N− = N+ = 0.183 (kBT/�c)
3V .

(12)Nγ = 0.244 (kBT/�c)
3V .

(13)(N±/V)max = 1/(2Re)
3.

(14)TG = �c

2(0.183)1/3RekB
= 1.06× 1017K ,
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spaces. The physics of this glassy phase will be very different compared with lower temperatures T << TG where 
electrons and positrons are free to move as an ideal degenerate relativistic fermi gas.

In this glassy phase where K ≈ 0 and ψ is constant, for a flat Universe ( κ = 0 ), Eqs. (2) and (5) have solution

where aP is the scale factor at Planck time tP , while the CI time scale

Equation (15) allows one to estimate the number of e-folds at the glass transition time tG , corresponding to 
the glass transition temperature TG,

In this calculation it has been assumed that a ∼ 1/T (which arises from VT3 = const for an adiabatic expan-
sion) is valid up to the Planck  temperature3. In the glassy phase this relationship may no longer hold because pho-
tons experience significant scattering and therefore obey the diffusion equation rather than the wave  equation21. 
Future considerations may need to improve upon this assumption.

Potential energy density ψ in the glassy phase
In the glassy phase ψ(ϕ) can be estimated by assuming that the potential energy density for a random close-
packed phase of electrons and positrons possesses a similar potential energy density as an ordered close-packed 
crystalline cubic phase of alternating positive and negative charges. This approximation is expected to be reason-
able because the packing fraction for cubic packing 0.5222 (p. 16) is similar to the packing fraction for a random 
loose packed glassy phase 0.5623. For a crystalline structure the electrical potential at site ri is given  by22

where the summation is over sites j at coordinate �rj , zj is the sign (+ or -) of the jth charge, and the separation 
distance rij =

∣

∣�ri − �rj
∣

∣ , the nearest neighbor distance ro = 2Re , q is the charge, and M is the Madelung constant 
that depends upon the crystallographic structure. For a cubic crystal M = 1.7522 (p. 91). As the energy of an 
electron at site i is Ui = qVi , therefore, the total potential energy density is

Equation (19) assumes that the “hard sphere” interaction dominates and that there is insufficient room for 
both a spin up and spin down electron at site i . If spin up and spin down electrons can be including at site i 
then one should multiply Eq. (19) by a factor of 4 (because there would be a charge of 2q at each site). Equa-
tions (18)–(19) are identical to the calculation of the potential energy density for ordinary table salt, sodium 
chloride, which possesses a crystalline cubic structure.

A Coulomb potential has been assumed in the sum in Eq. (18) without any accounting for virtual electrons 
and positrons that may screen the charge. At nearest neighbor separation distances of 2Re , between an electron 
and positron, one might wonder if these quantum QED polarization effects could significantly alter the interac-
tion away from the assumed Coulombic potential. At close separation distances r between (point) charges q and 
q′ , for r << �/mec ≈ 10−12m , the interaction potential energy (including virtual e−e+ screening) is given by 24,25

where the fine structure constant α ≈ 1/137 and γ ≈ 1.781 . From Eq. (20) one finds that

where the factor of 0.024 arises from these virtual e−e+ screening effects. Thus, inclusion of virtual e−e+ fluctua-
tions would increase the value in Eq. (19) by ~ 2%. In this publication we shall ignore all virtual e−e+ screening 
effects.

(15)a(t) = aP exp

[

t − tP

τCI

]

(16)τCI =
(

8πGψ/3c2
)−1/2

.

(17)
tG − tP

τCI
= ln

(

aG

aP

)

= ln

(

TP

TG

)

= 34.83.

(18)Vi =
q

4πεo

∑

j �=i

zj

rij
= q

4πεoro
M

(19)ψG = q2M

8πεoRe(2Re)3
= 1.9× 1050J/m3.

(20)U(r) = qq′

4πεor

{

1+ 2α

3π

[

ln

(

�

mecr

)

− 5

6
− ln γ

]

+O(α2)+ ...

}

(21)U(2Re) =
qq′

8πεoRe
{1+ 0.024}



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21798  | https://doi.org/10.1038/s41598-023-49106-0

www.nature.com/scientificreports/

From Eqs. (16) and (19) one finds that

which, if Eq. (17) holds, gives the glass transition time

In the glassy phase it is necessary that the time scale for e−e+ pair production be much, much smaller than tG . 
The Borsellino formula for the creation of e−e+ pairs via triplet  production19 at TG (corresponding to a reduced 
initial photon energy of k = kBTG/mec

2 = 1.8× 107 ) has a total cross-section of σ = 2.7× 10−30m2 , therefore, 
the characteristic time for triplet production is

using a number density of n = 2.4× 1058/m3 . As required te+e− << tG , namely, an e−e+ pair is created in the 
glassy phase as soon as sufficient space becomes available during this accelerated expansion of the Universe.

Transition between the glassy phase and �CDM

As T decreases below TG the spacing between adjacent charges increases and, therefore, the potential energy 
density decreases as

where l  is the average spacing between charges. The form taken in Eq. (25) arises because ψG ∼ (2Re)
−4 in 

Eq. (19). From Eq. (11), at a given temperature, l  is determined from

It is readily shown, using Eqs. (14) and (26), that the second equality in Eq. (25) follows.
At T ≤ TG the kinetic energy density K  that contributes to the total energy density of intergalactic space 

is also required. For a particle of radius Re the time for this particle to diffuse its own radius, due to Brownian 
motion, is given  by26

where D is the diffusion coefficient and η is the solvent viscosity. For our system the average velocity is therefore 
given by

Near a glass transition the viscosity is divergent according  to26,27

where φ is the volume fraction at a given temperature T < TG while φm is the packing fraction for the glassy 
phase ( φm = 0.52 for a simple cubic structure). As the spacing l  between particles increases then the volume 
fraction changes according to

Note: as φ → φm then η → ∞ and v → 0 , hence, K → 0 as required. In Eq. (29) η0 is the viscosity far from 
the glass transition, namely, the viscosity of a very dilute gas. For a hard sphere non-interacting  gas28 (p. 545)

Finally, the kinetic energy density can be calculated from

where v is determined from Eqs. (28)–(31) and l  from Eq. (26). The calculation of K , in Eq. (32), is an approxi-
mation that assumes that the “hard sphere” nature of the electron and positron and, therefore, the divergent 
viscosity η (Eq. (29)), predominantly determines the behavior of K . Improvements to this model would need to 

(22)τCI = 9.2× 10−13s

(23)tG = 3.2× 10−11s.

(24)te+e− = 1

σnc
= 5.2× 10−38s

(25)ψ(T) = ψG

(

2Re

l

)4

= ψG

(

T

TG

)4

, T ≤ TG

(26)l = �c

kBT(0.183)1/3
.

(27)τD = R2
e

2D
= 3πηR3

e

kBT

(28)v = Re

τD
= kBT

3πηR2
e

.

(29)η = η0 exp

[

1.15φ

φm − φ

]

(30)φ = Vsphere

l3
= 4

3
π

(

Re

l

)3

.

(31)η0 =
0.553

√
mekBT

4πR2
e

.

(32)K = mev
2
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take into account the interactions between electrons and positrons; such improvements would undoubtedly give 
rise to a far more complicated form for K.

According to Eq.  (4) the acceleration-deceleration transition corresponds to w = P/� = −1/3 or, 
equivalently,

using Eqs. (5)–(6). If one solves Eqs. (25)–(33) for the transition temperature then one finds that

where the constant

Hence, the acceleration-deceleration transition temperature

where the potential energy density

Cosmic inflation is expected to cross-over to the �CDM model when w = 1/3 corresponding to the equation 
of state for photons and relativistic  fermions20. In the scalar field description this occurs when

i.e. β = 0.5 and, therefore, from Eq. (34) the cross-over temperature

and cross-over potential energy density

It can readily be shown, from Eqs. (26)–(32), that the kinetic energy density is given by

where the function

Figure 2 provides a plot of ψ(T) and K(T) versus T , determined from these calculations, using Igor Pro 4.09. 
In this calculation we ran into numerical issues, that arise when (TG/T)

3 − 1 ≈ 0 , in the calculation of B(T) for 

(33)βK = ψ , withβ = 2

(34)T = 2TG

[

3

4π

φm

1− 2.3
ln(A/β)

]1/3

(35)A = 18 (0.553)2(0.183)1/3
R4
eψG

�c
= 0.0025.

(36)TT = 0.96× 1017K

(37)ψT = ψ(TT ) = 1.3× 1050J/m3.

(38)K = 2ψ

(39)TX = 0.94× 1017K

(40)ψX = ψ(TX) = 1.2× 1050J/m3.

(41)K(T) = kBT

9(0.553)2R3
e

(

T

TG

)3

B(T)

(42)B(T) = exp

[

− 2.3

(TG/T)3 − 1

]

.

3.0

2.5

2.0

1.5

1.0

0.5

0.0

ψ
01(

K/
05

m/J
3 )

2.01.81.61.41.21.00.80.6
T (1017

K)

TG
TX

ψG ψ(T)
�(T)

ψ X

Figure 2.  Potential energy density ψ (red solid line) and kinetic energy density K (black dashed line) versus 
temperature T . Cross-over to the �CDM model occurs at TX , a glass transition occurs at TG , and cosmic 
inflation occurs for T ≥ TG with ψG = ψ(TG) . The potential energy density ψ is a plateau potential where ψ is 
constant for T ≥ TG.
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T very close to TG . These numerical issues were avoided by assuming that B(T) = 0 when T > 0.96TG while, at 
lower temperatures ( T ≤ 0.96TG ), B(T) is described by Eq. (42).

Discussion
A physical mechanism that gives rise to cosmic inflation has never previously been identified. The scalar field ϕ 
is normally an unknown and the form for the potential energy density ψ(ϕ) can only be surmised. Invariably, 
for a particular model of ψ(ϕ) , this function contains a number of adjustable parameters that are fine tuned 
in order that the model gives rise to cosmic inflation for a sufficient number of e-folds (Eq. (8)). Additionally, 
questions arise as to how inflation ends, as well as, how the energy contained in the inflaton ϕ decays and is 
converted to particles in the Standard Model, at thermodynamic equilibrium, such that the �CDM model can 
proceed as normal, giving rise to BBN and the CMB, etc. Planck collaboration 2013 results have ruled out many 
forms for ψ(ϕ) as they do not conform with a plateau  potential17. These issues have led to an intense debate as to 
whether or not cosmic inflation, in the form proposed in the literature, can account for the isotropy, homogene-
ity, as well as, magnitude and distribution of thermal fluctuations δT/T ∼ 10−5 − 10−4 within the  CMB16,29. In 
comparison to these earlier cosmic inflation models, the eBse model discussed here, does not suffer from any of 
these drawbacks. There are no adjustable parameters in the eBse model. The inflaton has been identified to be 
temperature T , in this model, where the inflaton potential energy density ψ(T) (Fig. 2) is a plateau potential and 
can be explicitly calculated. Cosmic inflation, with exponential acceleration, occurs naturally above the glass 
transition temperature TG where the eBse model “Gracefully exits” to the �CDM model below a temperature TX.

In summary, in earlier  work8,9 we have shown how the eBse model quantitatively explains many features 
attributed to Dark Energy at small redshifts, of order z ≈ 0− 2 , and low intergalactic densities, with baryon 
number density n ≈ 1/(4m3) . If the eBse model is to provide a valid description of the Universe then, at early 
times, a crucial test will be the behavior that this model exhibits at very high plasma densities ( n ≈ 1058 m−3 ) 
where the separation distance between electrons and positrons is of order 2Re . In the current publication we 
demonstrate that in this high density region the eBse model undergoes exponential acceleration due to a con-
stant potential energy density ψ(T) (Fig. 2), akin to CI, caused by the non-equilibrium conversion of photons 
to e−e+ pairs above a glass transition temperature of TG = 1.06× 1017K (14). This model naturally crosses over 
to the �CDM model below a temperature TX = 0.94× 1017K  (39). ψ(T) is a plateau potential in conformity 
with Planck collaboration 2013 analysis of the CMB  anisotropy16,17,30. There are no adjustable parameters in the 
eBse model, however, this model for CI is still incomplete as photonic transport in the glassy phase is not yet 
understood, the presence of other Standard Model particles has not been considered, and quantum fluctuations, 
that may account for thermal fluctuations δT/T in the CMB, remain to be studied.

An anonymous reviewer has pointed out that the assumption of a point-like electron in QED is a historical 
misunderstanding, as there are no point-like states in Quantum Field Theory, and the notion of the size of a 
quantum object, in general, can only be provided by its cross-section in specific processes. It is therefore an open 
question whether or not the electron cross section, at the energy scales of relevance for the onset of inflation (i.e. 
before inflation has started), is sufficiently large to trigger the proposed mechanism where additionally the effec-
tive electron radius remains large enough for the required number of e-foldings during the inflationary period.

In this manuscript we have chosen to study an over-simplified model where the “Universe” consists of pho-
tons, electrons, and positrons at very high densities. This over-simplified model allows one to identify a generic 
mechanism that naturally gives rise to cosmic inflation while allowing the explicit calculation of TG , ψG , ψ(T) , 
and K(T) . In this generic mechanism, that gives rise to cosmic inflation, all that is necessary is that the particle 
under consideration possess a finite, non-zero radius. Thus, if quarks possess a finite, non-zero radius, cosmic 
inflation will occur during the quark/anti-quark creation process (from photons) above the corresponding glass 
transition temperature. If the quark radius is similar to the electron radius, assumed in Eq. (1), then the quark/
anti-quark ψG is likely to dominate the electron/positron ψG by perhaps a factor of ~ 100 because the strong 
nuclear force is a factor of ~ 100 larger than the electromagnetic force.

Data availability
All data generated or analyzed during this study are included in this published article.
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