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Three‑way group decisions using 
evidence theory under hesitant 
fuzzy linguistic environment
Wenke Ding 1,2, Xingchen Li 1* & Xiajiong Shen 1,2

In the actual decision‑making process, there will be situations where decision‑makers with hesitant 
attitudes have difficulties in evaluating alternatives numerically, and hesitant fuzzy linguistic term 
sets can provide decision‑makers with an effective way to describe hesitancy in linguistic terms. In 
multi‑attribute group decision‑making, each decision maker typically holds different preferences. If 
the variation in decision makers’ assessment weights across evaluations of each attribute for every 
alternative is not adequately accounted for, it can result in a problem of coarse‑grained calculations, 
leading to information loss. Additionally, the three‑way decision model faces significant challenges 
in information fusion within the context of the hesitant fuzzy linguistic environment. Therefore, we 
propose a new three‑way decision‑making model under the hesitant fuzzy linguistic environment. 
The model obtains the confidence of different decision makers in attribute evaluations through 
the fusion of D‑S evidence theory, and can perform more fine‑grained fusion calculations on the 
evaluation information of different decision makers. In addition, the model considers the cost 
function of each alternative in different decision‑making actions under hesitant fuzzy linguistic 
environment, calculates the two thresholds of each alternative in the three‑way decision model, and 
derives the decision rules. The effectiveness of the model is verified through a numerical example 
and two comparative experiments, therefore, the model can be applied in intelligent classification or 
recommendation systems of hesitant fuzzy linguistic information systems.

In real life, decision-makers regularly generate uncertain information, thus the research of decision-making 
methods under the uncertain environment has received more and more  attention1–3. Three-way decision (3WD) 
is a powerful methodology to tackle the decision-making issue of uncertain and imprecise data by means of rules 
generation, and the theory is still expanding rapidly at present. The 3WD theory was originally proposed by  Yao4 
initially to give a reasonable explanation of the three regions in Decision Theory Rough Sets (DTRSs). For the 
three regions, they are interpreted as acceptance, non-commitment, and rejection three actions, respectively. 
Since it was proposed, many  scholars5 in different fields have expanded the theory and applied it in practice. For 
example, Yao et al.6 utilized the 3WD method for medical decision support and treatment plan decision. Zhang 
et al.7 presented a sequential 3WD model to address the decision-making issue with attribute increments. Lang 
et al.8 presented a three-way group conflict analysis model using Pythagorean fuzzy sets and the 3WD method 
for the treatment of conflict problems in multi-expert evaluations. Yao et al.9 provided a 3WD model on the basis 
of a ranking relation method to solve multi-attribute decision problems. There is a wide variety of fields in which 
the 3WD theory has been applied, including solid waste  management10 and green supplier  selection11, project 
resource  allocation12, person-job  fit13 and so on. In addition, given the wide application and good performance 
of artificial intelligence technology in various  fields14–20, Li et al.21 combined the 3WD model with a deep neural 
network and applied it in the field of image data analysis.

Multi-attribute group decision making (MAGDM)22 is an important research component in the field of 
decision-making, which can exploit the advantages of analyzing multiple attributes in multi-attribute decision 
making (MADM)23 and the fusion of multiple decision makers’ assessments in group decision-making (GDM)24. 
MAGDM is able to fuse the preferences of multiple decision makers for alternatives and obtain a ranking rela-
tionship of a set of alternatives through some decision  mechanism25. In practical decision-making issues, due to 
the differences in the description of uncertainty problems by decision-makers, the MAGDM model is usually 
combined into various uncertain  environments11. For example, Liang et al.26 utilize the hesitant probability fuzzy 
sets to describe decision makers’ preferences in decision-making, and proposed a MAGDM method with hesitant 
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probability fuzzy sets. Using interval-valued intuitionistic fuzzy sets, Liu et al.27 developed a hybrid MAGDM 
method. Yu et al.28 considered the differences in culture and knowledge background of decision-makers in an 
uncertain environment, and proposed a consistency model in the MAGDM problem to help decision-makers 
reach consensus. In addition, the use of linguistic terms by decision-makers on certain issues in real life can bet-
ter express the hesitancy and uncertainty in the evaluation of things, such as the issue of movie evaluation, etc. 
Rodríguez29 proposed a hesitant fuzzy linguistic term set (HFLTS), it enables evaluator to represent the hesitancy 
in assessments through hesitant fuzzy linguistic  terms11,30. In subsequent developments, researchers considered 
the relationship between decision makers and linguistic term sets from different perspectives. Zhang et al.31 
considered the situation where decision makers use different linguistic term sets for evaluation, and proposed a 
two-sided matching decision making method, thus giving decision makers a more flexible evaluation method. Li 
et al.32 established a personalized individual semantics learning model to obtain personalized numerical scales 
of linguistic terms for decision makers.

How to effectively aggregate the evaluation information of multiple decision-makers is also a subject of 
great concern in MAGDM. In the hesitant fuzzy linguistic information system, most of the current aggregation 
schemes fuse the evaluation of multiple decision makers through aggregation operators. However, this method 
will cause information loss during the aggregation  process33,34, for instance, decision makers’ personal prefer-
ences will be lost in the calculation  process33. The occurrence of such losses is primarily due to the fact that the 
weights assigned to decision makers are typically taken into account in the evaluation of each attribute of every 
alternative. However, each decision maker’s assessments may have varying weights compared to other decision 
makers. If all of a decision maker’s assessments are calculated using a fixed weight, it can lead to a loss of preci-
sion in their evaluations, resulting in an issue of information loss. To address this problem, researchers have 
introduced Dempster-Shafer evidence theory (DSET)35 to integrate the uncertain decision information between 
experts. Compared with the aggregation operator method, DSET can reduce information loss in multi-attribute 
group information fusion. This is based on the concept of DSET, where each decision maker’s assessment of an 
attribute is treated as evidence, and a more granular calculation of decision maker assessments is performed based 
on the confidence in the evidence. Therefore, we combine DSET with the 3WD method to fuse the evaluation 
preferences of multiple decision-makers under the HFL environment. In addition, more and more researchers 
are currently exploring the problems of information loss and information fusion in fuzzy information systems 
based on behavioral decision-making  theory36–39.

In the general 3WD method, the deduction of decision rules needs the support of conditional probability, so 
the evaluation of conditional probability is a crucial problem. At present, the conditional probabilities in many 
three-way decision models are obtained through the calculation of equivalence class and information  table40. The 
computation of equivalence classes needs to satisfy certain equivalence relations and requires decision attributes 
as one of the  prerequisites11,41,42. However, there may be no decision attribute in the actual decision information 
tables. Therefore, as a method that can evaluate the relative pros and cons of all the objects in the information 
table, the TOPSIS method has been applied in many 3WD models. For instance, Du et al.43 through TOPSIS 
and grey incidence analysis proposed a grey multi-criteria 3WD model. Zhang et al.44 use the TOPSIS method 
and 3WD theory to construct a classification and ranking decision method. At the same time, it also achieved 
good results in diverse fuzzy  sets45–49. Thus, due to the effectiveness of the TOPSIS method, we try to use it to 
calculate conditional probabilities in evidence-based information systems.

However, the research on the 3WD model under the HFL environment has rarely addressed the decision 
maker’s personal preferences and the connections between decision-makers. To reduce the loss of information 
fusion among decision makers and improve the group decision-making ability of 3WD under an HFL environ-
ment, we introduce Dempster-Shafer evidence theory and TOPSIS method into the 3WD theory. Overall, we 
construct a new 3WD model that can solve the evaluation problem in the HFL context with the help of evidence 
theory and the TOPSIS method. First, we assess the conditional probability in the HFL information system 
through the TOPSIS method based on evidence theory. Then, we consider the HFLTS cost function for each 
alternative and calculate the corresponding thresholds. At last, we present the whole derivation process of the 
3WD decision rules.

The main points of the remaining subsections of this paper are summarized as follows. Concepts related 
to the 3WD, HFLTSs, and DSET, are reviewed in “Preliminaries” section. “Three-way decision with HFLT 
expression of loss functions” section constructs the 3WD model with HFLT expression of cost functions. “The 
estimation of conditional probability” section utilizes the HFL TOPSIS method based on DSET to estimate the 
conditional probability. In “The decision-making steps and the algorithm“ section, an illustrative example of a 
green supplier’s selection problem is given to solve the hesitant fuzzy MAGDM problem by using our model. In 
Section 6, we analytically illustrate the effectiveness and applicability of the proposed model through a compara-
tive experiment of two examples. “Illustrative example” section sums up the proposed method and discusses 
future research and expansion.

Preliminaries
Three‑way decision
As a result of Yao’s  insight4, Bayesian risk decision-making was introduced into rough sets, and the classic 
three-way decision model was  proposed40. Similarly, in the classical 3WD model there is a set of states and a set 
of  actions40,50 according to the degree of conformity of the alternatives to expectations and the decisive actions 
taken, respectively. Suppose the set of alternatives U = {u1, u2, ..., um} is a set with m objects to be decided, and 
two states � = {X,¬X} for each alternative ui ∈ U can be interpreted as ui being in X and not in X, respectively.
The set of actions A = {aP , aB, aN } denotes the decision behavior in taking actions aP , aB and aN on alternatives 
ui ∈ U  classified to the positive region POS(X), the boundary region BND(X) and the negative region NEG(X), 
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i.e., denoted as taking the decisions of accepting, deferring and rejecting the alternatives.The decision costs of 
taking action aP , aB and aN when the alternatives belong to state X are ψPP , ψBP and ψNP , respectively; the decision 
costs of taking the same actions when an alternative belongs to state ¬X are ψPN , ψBN and ψNN , respectively. The 
expected cost E(a△|X)(△= P,B,N) for each alternative ui ∈ U  is calculated by the following formula:

where Pr(X|ui) denotes the conditional probability of ui belongs to state X. Which satisfies the condition 
Pr(X|ui)+ Pr(¬X|ui) = 1.

In view of the general process of Bayesian risk decision-making, the minimum cost decision rule can be 
derived as follows:

According to the actual semantic interpretation of the cost functions, we suppose that ψPP ≤ ψBP < ψNP and 
ψNN ≤ ψBN < ψPN . In addition, considering the condition Pr(X|ui)+ Pr(¬X|ui) = 1 , the above decision rules 
can be simplified as:

where

Hesitant fuzzy linguistic term sets
Suppose S = {sγ |γ =-h, · · · , 0, · · · , h} i s  a  l inguist ic  term set  (LTS) 51,  which is  a  dis-
crete finite set with 2h + 1 elements, where each element sγ  in the set denotes a linguis-
tic term (LT). For instance, when h = 3, a LTS with seven linguistic terms can be obtained, 
S = {s-3 : absolutely dislike, s-2 : dislike, s-1 : a little dislike, s0 : medium, s1 : a little like, s2 : like, s3 : absolutely like} . In addition, 
LTSs also has the following properties. Let sa and sb be two LTs. Then,

• Max operator: max(sa, sb) = sa, if sa > sb.
• Min operator: min(sa, sb) = sa, if sa < sb.
• The set is ordered: sa > sb ⇔ a > b.

Considering the hesitancy and uncertainty that experts have shown in the assessment process, HFLTSs were 
proposed as an effective way to express uncertainty to solve this issue by Rodriguez et al.29.

Definition 1 29 Let S = {sγ |γ =-h, · · · , 0, · · · , h} be a LTS. A finite ordered subset of successive LTs in S con-
stitutes an HFLTS HS on S.

Subsequently, the definition of HFLTSs was further extended with the concrete mathematical formulation 
by Liao et al.52.

Definition 2 52 Let V be a finite and non-empty universe, S = {sγ |γ =-h, · · · , 0, · · · , h} be a LTS. Then an HFLTS 
can be defined as HS = {< x, hS(x) > | x ∈ V} , where

where hS(x) is an HFLE which can indicate the degree of conformity of the object x ∈ V  belonging to the set HS , 
sγl are the continuous terms in S, L is the number of LTs in hS(x).

Definition 3 53Let S = {sγ |γ =-h, · · · , 0, · · · , h} be a LTS. The linguistic terms can be converted into member-
ship degree of equivalent information through the transformation function g :

(1)
E(aP |ui) = ψPPPr(X|ui)+ ψPNPr(¬X|ui),

E(aB|ui) = ψBPPr(X|ui)+ ψBNPr(¬X|ui),

E(aN |ui) = ψNPPr(X|ui)+ ψNNPr(¬X|ui).

(2)
(P0) If E(aP |ui) ≤ E(aB|ui),E(aP |ui) ≤ E(aN |ui), dicide ui ∈ POS(X);

(B0) If E(aB|ui) ≤ E(aP |ui),E(aB|ui) ≤ E(aN |ui), dicide ui ∈ BND(X);

(N0) If E(aN |ui) ≤ E(aP |ui),E(aN |ui) ≤ E(aB|ui), dicide ui ∈ NEG(X).

(3)
(P1) If Pr(X|ui) ≥ α, dicide ui ∈ POS(X);

(B1) If β < Pr(X|ui) < α, dicide ui ∈ BND(X);

(N1) If Pr(X|ui) ≤ β , dicide ui ∈ NEG(X).

(4)
α =

ψPN − ψBN

(ψPN − ψBN )+ (ψBP − ψPP)
,

β =
ψBN − ψNN

(ψBN − ψNN )+ (ψNP − ψBP)
.

(5)hS(x) = {sγl | sγl ∈ S, l = 1, 2, · · · , L; γl ∈ {-h, ..., 0, ..., h}}.

(6)g : [-h, h] → [0, 1], g(sγl ) =
(γl + h)

2h
.
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Definition 4 30 Let V be a finite and non-empty universe, S = {sγ |γ =-h, · · · , 0, · · · , h} be a LTS, and 
hS(x) = {sγl | sγl ∈ S, l = 1, 2, · · · , L; γl ∈ {-h, · · · , 0, · · · , h}} be a HFLE. The expectation value of hS(x) can 
be defined as:

Definition 5 30 Let A, B be two HFLTSs and x ∈ V, the following comparison rules are introduced for two 
HFLEs hSA and hSB:

Definition 6 Translation function TGH
29. Let S = {sγ |γ = -h, ..., 0, ..., h} be a LTS, the translation rules from 

linguistic expressions to HFLE are as follows:

• TGH

(
sγ
)
= {sγ | sγ ∈ S};

• TGH (less than sγ
)
=

{
sβ | sβ ∈ S and sβ < sγ

}
;

• TGH (at most sγ
)
=

{
sβ | sβ ∈ S and sβ ≤ sγ

}
;

• TGH (greater than sγ
)
=

{
sβ | sβ ∈ S and sγ < sβ

}
;

• TGH (at least sγ
)
=

{
sβ | sβ ∈ S and sγ ≤ sβ

}
;

• TGH (between sα and sβ
)
=

{
sγ | sγ ∈ S and sα ≤ sγ ≤ sβ

}

Dempster‑Shafer theory of evidence
As an uncertain reasoning approach, Dempster Shafer evidence theory (DSET)35 has certain advantages in fusing 
uncertain multi-source  information54. In addition, DSET has been used in various domains, for instance, gesture 
 recognition55, fault  diagnosis56, and so on.

Definition 7 57 Let � = {θ1, θ2, ...θn} be a frame of discernment (FOD) and 2� be the power set of � . The basic 
probability assignment(BPA) function demotes a mapping relationship m: 2� → [0, 1] and satisfies the follow-
ing conditions.

where ξ is a subset of 2� , ∅ is an empty set, and m(ξ) indicates the belief in set ξ of a proposition based on the 
current environment. For proposition ξ of m(ξ) > 0 , it is regarded as a focal element in the evidence theory. The 
probability m(�) assigned to � can be denoted as the degree of ignorance. It means the probability remaining 
after assigning all subsets of � . A body of evidence M consists of all focal elements, it is represented as follows:

Definition 8 57 Suppose M1 and M2 be two independent evidences derived by the same frame of discernment � , 
the fuse between them is indicated by M = M1 ⊕M2 , the evidence combination rules are as below:

where ξ1and ξ2 are focal elements from M1 and M2 , respectively. K represents the degree of conflict between 
the pieces of evidence.

Three‑way decision with HFLT expression of loss functions
In the classic 3WD model, it is usually necessary to utilize the information table and the cost matrix to deduce 
the 3WD decision rules according to the Bayesian minimum cost principle. Many researchers consider that the 
cost functions of each alternative are identical. In the classic 3WD model, it is usually necessary to utilize the 
information table and the cost matrix to deduce the 3WD decision rules according to Bayesian minimum cost 
principle, and many researches considers that the cost functions of each alternative are identical. However, dif-
ferent alternatives usually have different costs when taking the same decision action. For this reason, we consider 
the related cost functions for each alternative. In this section, we describe the cost function in the 3WD model 
using HFLTs and deduce the 3WD decision rules. The 3WD model with HFLTs includes a state set � = {X,¬X} 
and an action set A = {aP , aB, aN } as well. The cost function matrix of the alternatives can then be obtained by 

(7)G(hS(x)) =
1

L

L∑

l=1

g(sγl ).

(8)
(1) If G(hSA (x)) > G(hSB (x)), then hSA(x) > hSB (x);

(2) If G(hSA (x)) < G(hSB (x)), then hSA(x) < hSB (x);

(3) If G(hSA (x)) = G(hSB (x)), then hSA(x) = hSB (x).

(9)
∑

ξ∈2�

m(ξ) = 1 andm(∅) = 0.

(10)M =
{
(ξ ,m(ξ)) | ξ ∈ 2�,m(ξ) > 0

}
.

(11)m(ξ) =
1

1− K

∑

ξ1∩ξ2=ξ

m1(ξ1)m2(ξ2), ξ �= ∅, m(∅) = 0.

(12)K =
∑

ξ1∩ξ2=∅

m1(ξ1)m2(ξ2).
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expert evaluation of the alternatives under the HFL decision environment. The cost matrix of an alternative is 
shown in Table 1.

In Table 1, we can obtain the cost ψhS
△△ (△= P,B,N) of each decision action for the alternative in different 

states. Where ψhS
PP , ψhS

BP and ψhS
NP represent the cost with HFLE of taking actions aP , aB, aN , when the alternative 

ui ∈ U satisfies the condition of state X, respectively. Similarly, ψhS
PN , ψhS

BN and ψhS
NN represent the cost with HFLE 

of taking actions aP , aB, aN , when the alternative ui ∈ U  satisfies the condition of state ¬X , respectively. Mean-
while, according to Definition 3, taking the state set � = {X,¬X} as a non-empty finite universe, we can obtain 
H1
S = {ψ

hS
PP ,ψ

hS
PN } , H

2
S = {ψ

hS
BP ,ψ

hS
BN } , and H3

S = {ψ
hS
NP ,ψ

hS
NN } three HFLTSs. However, there will be different 

costs in practical decision-making issues for each alternative ui ∈ U  , so we should consider the cost function 
for each alternative.

The cost of making the right decision about an alternative in real life is usually less than the wrong and pend-
ing decision, then the cost function with HFLE should satisfy the following relation:

According to Definition 5, we can get the following relation:

Then, according to the classic three-way decision process mentioned in Section 2, we can calculate the expected 
costs of taking different actions for each alternative ui , ui ∈ U  as follows:

Subsequently, the decision rules are deduced according to the principle of minimum cost:

Decision rules (P1)-(N1) can be rewritten as (P3)-(N3).

where

(13)ψ
hS
PP � ψ

hS
BP ≺ ψ

hS
NP .

(14)ψ
hS
NN � ψ

hS
BN ≺ ψ

hS
PN .

(15)G(ψhS
PP) � G(ψhS

BP) ≺ G(ψhS
NP).

(16)G(ψhS
NN ) � G(ψhS

BN ) ≺ G(ψhS
PN ).

(17)

E(aP |ui) = G(ψhS
PP)Pr(X|ui)+ G(ψhS

PN )Pr(¬X|ui),

E(aB|ui) = G(ψhS
BP)Pr(X|ui)+ G(ψhS

BN )Pr(¬X|ui),

E(aN |ui) = G(ψhS
NP)Pr(X|ui)+ G(ψhS

NN )Pr(¬X|ui).

(18)
(P2) If E(aP |ui) ≤ E(aB|ui),E(aP |ui) ≤ E(aN |ui), dicide ui ∈ POS(X);

(B2) If E(aB|ui) ≤ E(aP |ui),E(aB|ui) ≤ E(aN |ui), dicide ui ∈ BND(X);

(N2) If E(aN |ui) ≤ E(aP |ui),E(aN |ui) ≤ E(aB|ui), dicide ui ∈ NEG(X).

(19)
(P3) If Pr(X|ui) ≥ α, dicide ui ∈ POS(X);

(B3) If β < Pr(X|ui) < α, dicide ui ∈ BND(X);

(N3) If Pr(X|ui) ≤ β , dicide ui ∈ NEG(X).

(20)

α =
(G(ψhS

PN )− G(ψhS
BN ))

(G(ψhS
PN )− G(ψhS

BN ))+ (G(ψhS
BP)− G(ψhS

PP))
,

β =
(G(ψhS

BN )− (G(ψhS
NN ))

(G(ψhS
BN )− G(ψhS

NN ))+ (G(ψhS
NP)− G(ψhS

BP))
.

Table 1.  The cost matrix with HFLTs.

X ¬X

aP ψ
hS
PP

ψ
hS
PN

aB ψ
hS
BP

ψ
hS
BN

aN ψ
hS
NP

ψ
hS
NN



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22766  | https://doi.org/10.1038/s41598-023-49086-1

www.nature.com/scientificreports/

The estimation of conditional probability
In Section 3, we describe the determination of decision rules for a 3WD model with multiple cost functions 
under the HFL environment. At the same time, conditional probability calculation is also an essential issue in 
the decision-making procedure of the 3WD  model40. In this section, we first discuss the construction of the 
evidence matrix. Subsequently, we discuss the computation of conditional probabilities utilizing methods based 
on DSET and TOPSIS.

Construction of evidence matrixes based on the information system with HFL
In the decision-making process of 3WD, the calculation of the expected cost of taking the corresponding decision 
action for each alternative ui ∈ U  and the derivation of the decision rule requires the support of the conditional 
probability Pr(X|ui) , as shown in Eqs. (17)–(19). Generally, the conditional probability was computed employ-
ing information tables and equivalence classes divided by equivalence relations. Nevertheless, in real situations, 
the equivalence relation cannot be obtained directly and the information loss will be caused by fusing multiple 
information tables through the aggregation operator in the group decision environment. Therefore, we utilize 
the DSET-based TOPSIS method to calculate conditional probabilities.

Let U = {u1, u2, · · · , um} be denoted as the set of alternatives to be evaluated and each alternative is assessed 
by a set of experts E = {e1, e2, · · · , et} . P = {p1, p2, · · · , pn} represents the attribute set of the HFL informa-
tion systems. The weight vector is defined as : W = {w1,w2, · · · ,wn}

T , it meets the relations: 0 ≤ wj ≤ 1 and ∑n
j=1 wj = 1 . Let S = {sγ |γ = -h, ..., 0, ..., h} be an LTS, which also serves as the frame of discernment in DSET. 

In the evaluation problem of the alternative ui , according to Definition 2, we make the attribute set P as a finite 
and non-empty universe, and the evaluation of ui regarding the attribute pj as an HFLE defined in S. At the same 
time, it is also a proposition in S, and all HFLEs on alternative ui constitute an HFLTS. The evaluation of the 
alternative ui regarding the attribute pj by expert ek is denoted as dkij , and the evaluation of all alternatives by expert 
ek is expressed in a hesitant fuzzy linguistic decision matrix Dk = [dkij]m×n . The decision matrix is shown below:

In the decision matrix, experts describe the evaluation results using linguistic expressions, thus we can transform 
linguistic expressions into HFLEs by Definition 6. After translation, the evaluation of the alternative ui regard-
ing the attribute pj by expert ek is denoted as d̃kij , and the decision matrix is denoted as D̃k = [d̃kij]m×n . We apply 
the belief matrix computation method proposed by Liu et al.34 in the context of double hesitant fuzzy linguistic 
environment to the HFL environment, while making certain additional enhancements.Then we calculate the 
evidence group decision matrix by the following steps.

• First we need to calculate the distance between two elements d̃kij and d̃rij . Let S = {sγ |γ =-h, ..., 0, ..., h} be a 
linguistic term set and d̃rij , d̃

k
ij = {sγl | sγl ∈ S, l = 1, 2, · · · , L } are an HFLE, they denoted the evaluation of 

the alternative ui regarding the attribute pj by experts er and ek , respectively. The distance between two HFLEs 
can be calculated using Hamming distance: 

 where gkij(γl), g
r
ij(γl) denoted that the transformation function.

Remark 1 Note that the lengths Lkij , L
r
ij of the two HFLEs d̃kij , d̃

r
ij may be different, this will cause the Hamming 

distance to not be calculated properly. Assumption Lkij > Lrij , there will be Lkij − Lrij missing values in d̃rij , then we 
fill in the missing values by calculating the mean value m by the following formula:

• Calculate the similarity degree between the HFLEs d̃kij , d̃
r
ij by 

 where sim
(
d̃kij , d̃

r
ij

)
 represents the evaluated similarity degree of the alternative ui regarding the attribute pj 

by expert ek and er.
• Calculate the support degree between two HFLEs of the experts. 

Dk =




dk11, dk12, . . . , dk1n
dk21, dk22, . . . , dk2n
.
.
.

.

.

.
. . .

.

.

.

dkm1, d
k
m2, . . . , dkmn




(21)H
(
d̃kij , d̃

r
ij

)
=

1

L

L∑

l=1

|gkij(γl)− grij(γl)|.

(22)m =
1

Lrij

Lrij∑

l=1

γl .

(23)sim
(
d̃kij , d̃

r
ij

)
= 1−

H
(
d̃kij , d̃

r
ij

)

2h
.
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 where t denotes the total number of experts in the set E.
• Calculate the belief degree. 

• Generate a group decision matrix based on the evidence. In the light of Liu et  al.58, LTS 
S = {sγ |γ = -h, ..., 0, ..., h} able to act as a FOD, let d̃kij(k = 1, 2, ...t) denotes all experts’ evaluations of alter-
native ui with respect to attribute pj . A focal element set Fij = {d̃kij|k = 1, 2, ..., t} over alternative ui on attrib-
ute pj is composed of all d̃kij together. And the BPA values of a focal element can be derived from the belief 
degrees of  experts34. Then, the belief sets of different experts over alternative ui on attribute pj can be con-
structed, denoted by d̃ij =

{(
d̃kij , bel

(
d̃kij

))
|k = 1, 2, ..., t

}
(i = 1, 2, ...,m; j = 1, 2, ..., n) , and the evidence 

group decision matrix can be denoted by: 

Extended TOPSIS method based on DSET for HFLEs
In Section 4.1, we discuss the determination of the group decision matrix based on DSET under the HFL envi-
ronment. The TOPSIS method is extended to group decision matrices based on evidence in the following and 
discuss the computation of conditional probabilities in the HFL information system.

The process of the TOPSIS method is to calculate the positive and negative ideal solutions in the information 
table separately and sort the alternatives according to their distance from the positive and negative ideal solu-
tions. We can calculate the expected value of the d̃ij over alternative ui on attribute pj according to the expected 
function of the d̃ij as follows:

where |d̃ij| represents the cardinality of the set d̃ij.
Then, we can obtain the evidence expected value group decision matrix denoted by:

According to the general process of the TOPSIS method, we calculate the conditional probability through the 
following steps:

• The conversion of reverse indicators. In the decision matrix, the decision attributes include benefit type and 
cost type, and the two types of attributes have different evaluation scales. Therefore, we need to converse the 
attribute value of cost type. Let eic represents the evaluation value of the alternative i in the cost attribute c, 
max(ec) represents the maximum value of all alternatives under attribute c, and the conversion formula is as 
follows: 

 where m is the number of alternatives.
• Above all, we calculate the positive ideal solution set x+i = (e+,i

1 , e+,i
2 , · · · , e+,i

n ) , and the negative ideal solu-
tion set x−i = (e−,i

1 , e−,i
2 , · · · , e−,i

n ) , according to the evidence expected value group decision matrix, where 

• After that, the distances d+i  and d−i  between the alternative ui ∈ U  and the positive and negative ideal solu-
tions are calculated by the following equations, respectively: 

(24)sup
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(
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.

(30)eic = max(ec)− eic(i = 1, 2, ...,m).

(31)x+j = max
1<i<m
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(32)x−j = min
1<i<m

{eij}.
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• At last, according to the positive and negative ideal solutions of the alternative ui ∈ U  , the comprehensive 
score value of ui can be calculated as follows: 

 Due to the effectiveness of the TOPSIS method in MADM, Liang et al.42 and Wang et al.40 argue that the 
comprehensive score value can be regarded as the conditional probability Pr(X|ui) that the alternatives belong 
to X. This is due to the ability to use the TOPSIS method to calculate scores for alternatives in the information 
table, which typically reflect the similarity of each decision option relative to the ideal solution. These scores 
can be used as a representation of conditional probabilities because they provide the likelihood that each 
alternative will be selected as the best decision. The greater the likelihood, the greater the probability of being 
in the positive region. Therefore, for each alternative ui ∈ U  , the conditional probability Pr(X|ui) = RCi.

The decision‑making steps and the algorithm
In light of the the description of the various processes of decision-making above, the key steps of our proposed 
3WD model based on DSET are described as follows: 

Step 1:  Transform the linguistic expression result matrices into decision tables according to the transformation 
functions TGH in Section 4.1.

Step 2:  Calculate the Hamming distance, the similarity degree, the support degree, and the belief degree by 
Eqs. (21), (23), (24) and (25), respectively.

Step 3:  Obtain the BPA values of the focal elements in the decision tables according to Definition 6 and Step 
5 in Section 4.1.

Step 4:  Construct the evidence group decision matrix D =
(
d̃ij

)
m×n

 with the aid of the focus elements and 
their BPA values.

Step 5:  Calculate the expected values of the evidence by equations Eqs. (27) and (28).
Step 6:  Determine the attribute type and convert the cost attribute using Eq. (30). After that, the conditional 

probability of each alternative is calculated based on the expected values matrix and Eqs. (31)–(35).
Step 7:  Calculate thresholds α and β for each alternative using Eq. (20) and the cost matrices.
Step 8:  Divide alternatives into three regions with the aid of decision rules (P3) - (N3).

Subsequently, the specific description of the proposed 3WD model based on DSET is shown in Algorithm 1.

Remark 2 In Algorithm 1, the time complexity of Step 1 and Step 6 is O(mn), the time complexity of Step 2, Step 
4, and Step 5 is O(n2m) , and the time complexity of Step 3, Step 7, and Step 8 is O(m), so the time complexity 
of Algorithm 1 is O(n2m).

(33)d+i =

√√√√
n∑

j=1

wj

(
x+j − eij

)2
.

(34)d−i =

√√√√
n∑

j=1

wj

(
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)2
.

(35)RCi =
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Algorithm 1.  The algorithm of the proposed 3WD model

Illustrative example
In this section, we utilize a case study on postgraduate course evaluation to illustrate the decision process of our 
proposed 3WD model, which is a case of the MAGDM issue adapted from Liu et al.34

Problem description
Let U = {u1, u2, u3, u4} be four courses to be evaluated, P = {Practicability (p1) , Completion of task (p2) , Effective-
ness (p3) , Attraction (p4) } be four evaluation criteria for assessing the quality of postgraduate courses. In addition, 
all the course quality assessment results are expressed in linguistic terms by four experts E = {e1, e2, e3, e4}.

In this issue, each course has two states � = {X,¬X} representing the assessment of course quality as quali-
fied or unqualified, respectively. Furthermore, each course has action set A = {aP , aB, aN } , which represents the 
decision actions of accepting, delaying, and rejecting, respectively. In addition, experts expresses the evaluation 

Table 2.  Course evaluation results provided by expert 1.

p1 p2 p3 p4

u1 Between medium and a little good Medium Between a little bad and medium Between a little bad and medium

u2 Medium Between a little bad and medium A little bad Between a little bad and medium

u3 Between good and very good A little bad Between a little good and good Good

u4 A little bad Medium Bad Between a little bad and medium

Table 3.  Course evaluation results provided by expert 2.

p1 p2 p3 p4

u1 A little bad Medium Between a little good and good Between very bad and bad

u2 A little bad Between medium and a little good Medium Between bad and a little bad

u3 Between medium and a little good A little bad Bad Between a little bad and medium

u4 Between a little bad and medium Medium A little good Between medium and a little good
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Table 4.  Course evaluation results provided by expert 3.

p1 p2 p3 p4

u1 Good Very good A little bad Between medium and a little good

u2 Between medium and a little good Good Between a little bad and medium Between bad and a little bad

u3 Good Between medium and a little Good Medium Between good and very good

u4 Between medium and a little good Good Between a little bad and medium A little good

Table 5.  Cost matrices of four courses.

PP BP NP PN BN NN

u1 {s-3} {s-1, s0} {s3} {s2, s3} {s-1} {s-3}

u2 {s-3, s-2} {s-1} {s2, s3} {s2, s3} {s0, s1} {s-2}

u3 {s-2} {s0, s1} {s2, s3} {s3} {s0} {s-2}

u4 {s-3, s-2} {s-1, s0} {s3} {s2, s3} {s0} {s-3, s-2}

Table 6.  Initial decision matrix of expert 1.

p1 p2 p3 p4

u1 {s0, s1} {s0} {s-1, s0} {s-1, s0}

u2 {s0} {s-1, s0} {s-1} {s-1, s0}

u3 {s2, s3} {s-1} {s1, s2} {s2}

u4 {s-1} {s0} {s-2} {s-1, s0}

Table 7.  Initial decision matrix of expert 2.

p1 p2 p3 p4

u1 {s-1} {s0} {s1, s2} {s-3, s-2}

u2 {s-1} {s0, s1} {s0} {s-2, s-1}

u3 {s0, s1} {s-1} {s-2} {s-1, s0}

u4 {s-1, s0} {s0} {s1} {s0, s1}

Table 8.  Initial decision matrix of expert 3.

p1 p2 p3 p4

u1 {s2} {s3} {s-1} {s0, s1}

u2 {s0, s1} {s2} {s-1, s0} {s-2, s-1}

u3 {s2} {s0, s1} {s0} {s2, s3}

u4 {s0, s1} {s2} {s-1, s0} {s1}

Table 9.  Evidence group decision matrix with attributes p1 , p2.

p1 p2

u1 { ( {s0, s1} , 0.3382 ), ( {s-1} , 0.3309) , ( {s2} , 0.3309) } { ( {s0} , 0.6764 ), ( {s3} , 0.3235 ) }

u2 { ( {s0} , 0.3357 ), ( {s-1},0.3310) , ( {s0, s1} , 0.3333 ) } { ( {s-1, s0} , 0.3325 ), ( {s0, s1} , 0.3374), ( {s2} , 0.3301) }

u3 { ( {s2, s3} , 0.3341 ), ( {s0, s1} ,0.3293 ), ( {s2} , 0.3365 ) } { ( {s-1} , 0.6714), ( {s0, s1} , 0.3286 ) }

u4 { ( {s-1} , 0.3333 ), ( {s-1, s0},0.3357 ), ( {s0, s1} , 0.3310) } { ( {s0} , 0.673 ), ( {s2} , 0.3269) }
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in the form of linguistic expressions based on a LTS S = {s-3, s-2, s-1, s0, s1, s2, s3} = {very bad,bad, a little bad,  
medium , a little good , good , very good }, and the original results of the expert evaluation are shown in Tables 2, 
3 and 4. In this case, we let the weight matrix corresponding to the criteria set P to be W = {0.45, 0.2, 0.25, 0.1}T , 
and the cost matrix is shown in Table 5.

Decision process based on the proposed model
With help from the proposed DSET-based 3WD method, in this subsection, we describe the decision-making 
process for the course quality assessment issue, and the specific steps are shown below:

Step 1: For all three linguistic expression results matrices of experts, we can transform the linguistic expres-
sion into three individual decision tables d̃kij(k = 1, 2, 3) with HFLEs through the transformation function TGH 
in Section 4.1, as shown in Tables 6, 7 and 8.

Step 2: Based on Tables 6, 7, and 8, we can calculate the Hamming distance, the similarity degree, the support 
degree, and the belief degree by Eqs. (21), (23), (24) and (25), respectively.

Step 3: According to Definition 7 and Step 5 in Section 4.1, we can obtain the BPA values for the focal ele-
ments in information tables.

Step 4: Evidence group decision matrix D =
(
d̃ij

)
m×n

 , which is shown in Tables 9 and 10, can be constructed 
from focal elements and their BPA values.

Step 5: Based on the evidence group decision matrix, the evidence obtained can be used to calculate its 
expected value by Eqs. (27) and (28), which is shown in Table 11.

Table 10.  Evidence group decision matrix with attributesp3 , p4.

p3 p4

u1 { ( {s-1, s0} , 0.3374), ( {s1, s2} , 0.3277 ) ,({s-1} , 0.3350) { ( {s-1, s0} , 0.3382), ( {s-3, s-2} , 0.3284), ( {s0, s1} , 0.3333 )

u2 { ( {s-1} , 0.3325) , ( {s0} , 0.3325) , ( {s-1, s0} , 0.3349) } { ( {s-1, s0} , 0.3301), ( {s-2, s-1} ,0.6698 ) }

u3 { ( {s1, s2} , 0.3317 ), ( {s-2} , 0.3292), ( {s0} , 0.3391 ) } { ( {s2} , 0.3382 ), ( {s-1, s0} ,0.3260 ),( {s2, s3} , 0.3358) }

u4 { ( {s-2} , 0.3309), ( {s1} , 0.3309 ) ,( {s-1, s0} , 0.3382) } { ( {s-1, s0},0.3310 ), ( {s0, s1},0.3357 ), ( {s1} , 0.3333 ) }

Table 11.  Expected values of the evidence in the matrix.

p1 p2 p3 p4

u1 0.5833 0.6618 0.498 0.3627

u2 0.4726 0.6104 0.4167 0.305

u3 0.7788 0.4155 0.4732 0.7255

u4 0.444 0.609 0.4167 0.556

Table 12.  Conditional probability outcome values for alternatives.

u1 u2 u3 u4

Conditional probability 0.4219 0.2402 0.7264 0.3696

Table 13.  Thresholds α and β for each alternative.

u1 u2 u3 u4

α 0.583 0.571 0.545 0.556

β 0.364 0.417 0.5 0.417

Table 14.  Conditional probability outcome values for alternatives.

u1 u2 u3 u4 u5 u6

Conditional probability 0.6271 0.3810 0.7536 0.5624 0.4345 0.7028
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Step 6: In this case, all attributes are benefit type attributes, thus we don’t need to convert using Eq. (30). Based 
on the expected values matrix, the conditional probability of each alternative can be calculated by Eqs. (31)–(35) 
and the results are displayed in Table 12.

Step 7: Based on Table 5, we collect the HFLEs cost evaluation results for each alternatives. Then, Eq. (20) 
can be used to calculate thresholds α and β for each alternative, which is shown in Table 13.

Step 8: In light of the decision rules (P3) - (N3), alternatives can be divided into three decision regions i.e. 
POS(X) = {u3} , BND(X) = {u1} , NEG(X) = {u2, u4} . Therefore, the decision results of the proposed model can 
be interpreted as: after combining the assessments of three experts, the course quality evaluation of u3 is quali-
fied, and u2 and u4 are unqualified. Meanwhile, u1 needs to make further judgments based on more information.

Comparative analysis
In this section, we will illustrate the effectiveness and practicability of our proposed model through comparative 
analysis in four cases.

Comparative analysis with the method for MAGDM in the DSET framework
First of all, we compare our model with a MAGDM  method58 in the DSET framework and this method can handle 
the MAGDM problem with HFL information. In this comparison experiment, we mainly verify the effectiveness 
of the model’s fusion method under hesitant fuzzy linguistic environment, and compare the differences in fusion 
results and the differences in the classification of alternatives between three-way decision-making and two-way 
decision-making. Therefore, we employ the case study conducted by Liu et al.58 on green supplier selection for 
the purpose of comparative analysis.

In this question, six green suppliers U = {u1, u2, u3, u4, u5, u6} are evaluated by four experts E = {e1, e2, e3, e4} , 
and each supplier contains five evaluated attributes P = { p1 , p2 , p3,p4 , p5 }. In addition, we use the same attribute 
weight vector W = {0.2, 0.15, 0.2, 0.2, 0.25}T and linguistic term sets. Subsequently, the conditional probabilities 
of each alternative can be obtained after the calculation of our proposed model as shown in Table 14.

Based on the research conducted by Liu et al., a DSET-based two-way decision-making method is used, and 
the decision-making result is represented by a ranking relation u3 ≻ u6 ≻ u1 ≻ u4 ≻ u5 ≻ u2 . However, this 
decision-making method does not consider the cost function of each alternative, suppliers can only be selected 
according to the ranking result. The TOPSIS method used in this paper can not only be used as a calculation 
method of conditional probability but can rank the alternatives. Therefore, we can convert the conditional prob-
ability to the ranking relationship according to the size of the value for comparative analysis, and the conversion 
result is u3 ≻ u6 ≻ u1 ≻ u4 ≻ u5 ≻ u2.

In light of the ranking results, it can be learned that our method is the same as the ranking results of Liu et al. 
for suppliers. Further analysis, according to Table 15, it can be found that our model calculates a larger span of 
score values between alternatives, while the span of score values in the  literature58 is smaller, which can indicate 
the fusion of the models in this chapter. Computational methods have better discrimination between alternatives. 
In addition, corresponding to the three-way decision-making model, if the thresholds are the same, alternatives 

Table 15.  Comparison of the score values of six alternatives.

u1 u2 u3 u4 u5 u6

Our model 0.6271 0.3810 0.7536 0.5624 0.4345 0.7028

The model of Liu et al.58 0.659 0.535 0.677 0.662 0.570 0.667

Table 16.  Cost functions of six suppliers.

PP BP NP PN BN NN

u1 {s-3} {s-1, s0} {s3} {s2, s3} {s-1} {s-3}

u2 {s-3, s-2} {s-1} {s2, s3} {s2, s3} {s0, s1} {s-2}

u3 {s-2} {s0, s1} {s2, s3} {s3} {s0} {s-2}

u4 {s-3, s-2} {s-1, s0} {s3} {s2, s3} {s0} {s-3, s-2}

u5 {s-2, s-1} {s0} {s1, s2} {s2} {s-1} {s-3}

u6 {s-3} {s-2} {s2} {s3} {s0} {s-2, s-1}

Table 17.  The comparison of decision results.

Methods POS(X) BND(X) NEG(X)

Method in  reference58 {u1, u3, u6} ∅ {u2, u4, u5}

Our method {u1, u3, u4} {u6} {u2, u5}
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can be better classified with higher discrimination. In our model, the conditional probability is calculated by the 
TOPSIS method, which can reflect the superiority of the alternative over other alternatives, and therefore can be 
analyzed as the comprehensive score of the alternative.

In addition, the cost of taking different actions for suppliers is considered in our model. Therefore, we will 
compare the impact on ranking results when considering the cost of action. Assuming that the supplier cost 
functions given by the experts is shown in Table 16. In this case three suppliers need to be selected, so we can 
transform the ranking relationship into the the positive region POS(X) = {u1, u3, u6} and the negative region 
NEG(X) = {u2, u4, u5} . From Table 17, we can learn that the decision result after adding the cost functions is 
different from the decision result in  reference58. The difference according to our results is that, supplier u4 is 
classified into POS(X) from NEG(X), and supplier u6 is classified into BND(X) from POS(X). The reasons for 
this can be summarized as follows.

• Our proposed approach takes into account the decision cost of each alternative and makes decisions on the 
basis of the principle of minimum cost. However, the cost caused by decision-making action is not considered 
in the method of Liu et al.58. This will lead to differences in decision-making.

• In our method, we use evidence-based TOPSIS method to analyze the distance between the alternatives and 
the optimal and worst ideal solutions in the information table, thus, the alternatives can be calculated based 
on the same standard, and our results can better reflect the difference between the alternative’s relative rela-
tionship. When the TOPSIS method is not used, the decision results of alternatives are presented in Table 18. 
According to the comparison results, we find that the method without TOPSIS classifies u2 into the BND(X), 
because this method can not obtain more information to make decisions on u2 . Therefore, our method can 
more accurately reflect the gap between the alternatives, which leads to more reasonable decision results.

Comparative analysis of several models for HFLTSs with possibility distributions
In the multiple attribute group decision-making, the decision-making based on the probability distribution of 
the hesitant fuzzy linguistic term sets is also a popular decision-making method. For example, in  reference59, the 

Table 18.  The comparison of decision results without TOPSIS.

Method in  reference58 {u1, u3, u6} ∅ {u2, u4, u5}

Our method {u1, u3, u4} {u6} {u2, u5}

Our method(without TOPSIS) {u1, u3, u4} {u2, u6} {u5}

Table 19.  Conditional probability outcome values for alternatives.

u1 u2 u3 u4

Conditional probability 0.45796 0.67507 0.59237 0.48285

Table 20.  Ranking comparison with model based on VIKOR.

Model Case 1 Case 2

VIKOR based model in  reference59

u2 ≻ u3 ≻ u1 ≻ u4 u2 ≻ u3 ≻ u1 ≻ u4

u2 ≻ u3 ≻ u4 ≻ u1 u2 ≻ u3 ≻ u4 ≻ u1

u2 ≻ u3 ≻ u1 ≻ u4 u2 ≻ u3 ≻ u4 ≻ u1

Our method u2 ≻ u3 ≻ u4 ≻ u1

Table 21.  Ranking comparison with model based on TOPSIS.

Model Ranking order

TOPSIS based model in  reference59

u2 ≻ u3 ≻ u1 ≻ u4

u2 ≻ u3 ≻ u1 ≻ u4

u2 ≻ u3 ≻ u4 ≻ u1

u2 ≻ u3 ≻ u1 ≻ u4

Our method u2 ≻ u3 ≻ u4 ≻ u1
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distance measures of the possibility distribution were used to calculate the consensus degree, and two decision 
models are proposed respectively based on the VIKOR method and the TOPSIS method. In  reference60, some 
aggregation operators were proposed based on the probability distribution to calculate the degree of consensus 
among experts, and a decision model was proposed. These models are also two-way decision-making methods, so 
we rank the alternatives by the conditional probability values calculated by the TOPSIS method in the proposed 
method. This method can turn our proposed method into a two-way decision-making method. However, This 
would not account for the loss of alternatives by taking different actions. In order to further illustrate the effec-
tiveness and adaptability of our model in fusion-calculating conditional probabilities in different cases, we will 
compare with these models. In the following, we will use the cases in these two papers for comparative analysis.

A case of Health-care waste management is given in  reference59. Four alternative treatment meth-
ods of medical waste U = {u1, u2, u3, u4} are evaluated by five experts E = {e1, e2, e3, e4, e5} . Each 
treatment method has six evaluation criteria P = { p1 , p2 , p3,p4 , p5 , p6 } and the weight vector is 
W = (0.1875, 0.1587, 0.2027, 0.1528, 0.1741, 0.1242) . The expert decision matrices with hesitant fuzzy linguistic 
expression are shown in Tables 1–5 in  reference59, and the linguistic term set also has seven linguistic terms.

After calculation by our model, the conditional probability values of each alternative, in this case, are shown 
in Table 19. Therefore, according to the conditional probability values, the priority relationship of all alterna-
tives can be obtained as u2 ≻ u3 ≻ u4 ≻ u1 . The ranking results of our model compared with the model based 
on the VIKOR method and the model based on the TOPSIS method in  reference59 are shown in Tables 20 and 
21, respectively.

It can be found in Table 19 that the ranking results of our method are the same as the model based on the 
VIKOR method in  reference59 in many cases. It can be found in Table 20 that our method and the TOPSIS-based 
model pair rank the top two in all cases in total agreement, and the overall ranking is the same in one case. In 
 reference59, the best alternative to alternatives for both models is u2 , which is consistent with our results. This 
can illustrate that our method is effective in the problem of optimal alternative selection.

In the following, we will compare the models in In  reference60. Similarly, we use the case in  reference60 
for comparative analysis. This case is about a personnel evaluation and selection problem. Four candidates 
U = {u1, u2, u3, u4} are evaluated by four experts E = {e1, e2, e3, e4} , and the performance of the candidates is 
assessed through six criteria P = { p1 , p2 , p3,p4 , p5 , p6 }. Similarly, the linguistic term set is composed of seven 
linguistic terms.

The model in  reference60 is also a two-way decision model, so we need to use the conditional probability 
value to convert it into a two-way decision.The model in  reference60 is also a two-way decision model, so we 
need to use the conditional probability value to convert it into a two-way decision. The calculation results of the 
conditional probability are shown in Table 22. According to the conditional probability value of the alternatives, 
the priority relationship of the alternatives can be obtained as u2 ≻ u3 ≻ u4 ≻ u1.

In this case, the ranking results of our method and the alternatives in  reference60 are shown in Table 23. It 
can be seen from Table 23 that the ranking results of our method are the same as those of the compared models. 
This shows that our method is equally effective and feasible in this case.

This subsection compares three MAGDM models for hesitant fuzzy linguistic term sets based on likelihood 
distributions. In two-way decision-making, we do not consider the loss incurred by experts acting on different 
alternatives. Instead, we use the relative closeness calculated based on the TOPSIS method to transform the 
model into a two-way decision model. In these cases, our method has the same results of choosing the optimal 

Table 22.  Conditional probability outcome values for alternatives.

u1 u2 u3 u4

Conditional probability 0.43889 0.549976 0.451824 0.443458

Table 23.  Comparison with results from a decision model with a possibility distribution.

Model Ranking order

model  in60 u2 ≻ u3 ≻ u4 ≻ u1

Our method u2 ≻ u3 ≻ u4 ≻ u1

Table 24.  The comparison of conditional probability.

e1 e2 e3 our method

Pr(X|u1) 0.705 0.637 0.702 0.640

Pr(X|u2) 0.622 0.588 0.641 0.344

Pr(X|u3) 0.689 0.617 0.585 0.456

Pr(X|u4) 0.655 0.640 0.667 0.551
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solution as these probability distribution-based models, which illustrates the excellent adaptability of our method 
in the MAGDM setting of hesitant fuzzy linguistic term sets, and the method can additionally take into account 
the loss in the decision-making process. However, our method has poor flexibility compared to these models.

Comparative analysis with the method for group decision‑making in the DSET framework
Since HFLTSs enables decision makers to use linguistic terms to express hesitancy in  evaluation11, provides a 
three-way decision approach for a MAGDM problem under the HFL environment with the help of behavioral 
multigranularity DTRSs. In order to verify the effectiveness of the calculation method of the conditional prob-
ability of our model in the three-way decision-making model under the HFL environment, we conducted a 
comparative analysis with this model. In  reference11, a different case of green suppliers is used to illustrate the 
method, therefore, our contrast will be in this case.

In this green supplier selection problem, four green suppliers U = {u1, u2, u3, u4} are to be assessed 
relating to five criteria P = {p1, p2, p3, p4, p5} . Three decision-makers e1 , e2 and e3 are invited to evaluate 
green suppliers, the evaluation results are demonstrated in Tables 5, 6 and 7 in  reference11, based on a LTS 
S = {s-4 = extremely poor, s−3 = very poor, s-2 = poor, s-1 = slight poor, s0 = fair, s1 = slight good, s2 = very good, s3 = good, s4 = extremely good}.

Regarding the difference in the way of obtaining the thresholds, in  reference11 the thresholds are obtained by 
the calculation of the relative loss function, while in our method the thresholds are derived from the calculation 
of the loss function evaluated by experts. Therefore, to make a reasonable comparison, we use the thresholds 
in  reference11 to compare and analyze the calculation method of conditional probability and the classification 
effect of the alternatives.

In  reference11, each supplier was evaluated by three experts and obtained three pairs of thresholds and three 
conditional probability values. Therefore, the conditional probabilities calculated by our method are compared 
with the three conditional probabilities, and the results are shown in Table 24. Afterwards, the three thresholds 
of each supplier and the mean of the thresholds use decision rules to classify suppliers respectively. The decision 
results are shown in Table 25.

From the decision result table, we can see that the decision results of our method under different threshold 
conditions are almost consistent with those in  reference11. However, in the thresholds calculated from the evalu-
ation information of expert e3 , supplier u2 is classified into NEG(X) from BND(X), which is caused by the differ-
ence of conditional probability. First, the conditional probability values calculated by our method are relatively 
low, which is due to the fact that we combine the evaluations of multiple experts through evidence theory and 
take into account the information among experts, while the method in  reference11 only considers the informa-
tion of a single decision maker. Second, the TOPSIS method consider all alternatives in the same criteria, thus 
in our method, the calculation of alternative conditional probabilities can take advantage of more information.

According to the comparative analysis of the above examples, the advantages of our proposed 3WD model 
can be summed up as: First, our proposed model provides a new method for computing conditional prob-
abilities based on DSET and TOPSIS. In this view, our proposed model takes into account the gap between the 
alternatives and the ideal optimal and worst alternatives under the HFL environment, enriching the theory of 
3WD. Second, our proposed method shows good results in different numerical cases, and can better integrate 
expert opinions through DSET. In this view, our proposed method can expand the application breadth of 3WD 
in MAGDM problems.

Conclusions
Considering the individual preferences and interactions of different decision makers, this paper introduces a 
fusion method based on Dempster-Shafer evidence theory and the TOPSIS method into the multi-attribute three-
way group decision making model to solve the problem of information loss in the fusion of multi-attribute group 
decision making information in hesitant fuzzy linguistic environments, and to achieve better differentiation of 
alternatives. First, this paper uses evidence theory to establish an evidence-based decision-making information 
table in a hesitant fuzzy linguistic environment, and uses the TOPSIS method to calculate the conditional prob-
ability of the plan. Then, the cost function of each option is considered to calculate the threshold and derive the 
decision rule. Through comparative analysis of multiple examples, the method proposed in this article has good 
results in different numerical examples, and can better integrate expert opinions through evidence theory and 
improve the discrimination of alternatives. From this perspective, the method proposed in this article can expand 
the application scope of the three-way decision theory in uncertainty assessment information of HFL, such as 
intelligent decision-making of plans, classification of entities under complex information, etc. In addition, a 
more fine-grained representation of the evaluation linguistic terms can enable decision-makers to express more 
information about the evaluation object, and an information table that is more in line with the decision-maker’s 

Table 25.  The comparison of decision results.

Methods POS(X) BND(X) NEG(X)

Mean thresholds {u1} {u2, u3, u3} ∅

Thresholds obtained by e1 {u1} {u2, u3, u3} ∅

Thresholds obtained by e2 {u1} {u2, u3, u3} ∅

Thresholds obtained by e3 {u1} {u3, u3} {u2}

Method in  reference11 {u1} {u2, u3, u3} ∅
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preferences will be more beneficial to decision-making. On the other hand, the weight values of attributes in 
the three-way decision-making model proposed in this article are limited by the definition of experts. However, 
each decision-maker may assign attribute weights differently, so in subsequent research, decision-makers will 
consider the impact of different attribute preferences on decision-making, and consider improving the weight 
determination method to further improve the model.

Data availability
All data generated or analysed during this study are included in this published article .
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