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A probabilistic early fault detection 
model for a feedback machining 
system with multiple types 
of spares
Mohamed Abd Allah El‑Hadidy 1* & Assem Omar Elshenawy 2

This paper studies corrective and preventive maintenance to provide a quality control policy. The 
corrective maintenance, depending on the time, of a feedback machining system model with a finite 
source and standbys is presented. Moreover, the system has a known number of servers to repair 
the damaged units, and it contains an inspector to ensure the maintenance quality of the repaired 
units. The exact value of the probability of n units in the system will be obtained by using an efficient 
algorithm that depends on the Laplace transformation. To promote the concept of preventive 
maintenance, we use this probability to get the probability of early fault detection as a function 
of time and in the steady state. The applicability of this model is discussed for different system 
capacities.

List of symbols
Pn(t)	� Probability of n stopped machines (units) in the system at time t
P0(t)	� Probability of non stopping units in the system at time t
n	� The number of stopped units, 0 ≤ n ≤ N

N	� The system capacity (all machines in the system)
C	� The servers-technical staff (who replace damaged parts)
S	� Spares (standby machines)
q	� The departure probability of repaired and effective machine to the operating system
ε	� The spares rate
PD(t, n, z)	� Detection probability of another further damage in the future
ED(t, n, z)	� Mean detection time

Production quality control is one of the most important methods to increase production. This control partici-
pates in identifying the causes of poor production without wasting time resulting from the failure of one of the 
production lines. This failure leads to a waste in the factory’s productivity and then the orders on time. This 
leads to the customer losing patience and having to withdraw from the service system. This will cause a loss to 
the factory, and therefore a mechanism must be put in place to replace the stopped machine with a working one 
to ensure the continuity of production.

The process of replacing damaged spares has remarkable importance in the production process due to its great 
benefits in decreasing the failure rate of the production lines. It is an important type of finite source queueing sys-
tem where the stopped servers can be replaced with another working one to ensure the continuity of the system’s 
operation. Shekhar et al.1–3 and Jain et al.4,5 presented many classical models with some particular conditions to 
study the performance measures of the machine-repairing queueing systems. After the repairing process is done 
for the damaged unit (one of the stopped-working servers) by using the spares, it is replaced by another damaged 
one. The queueing system M/M/C/N model is similar to the factory, which has a known number of production 
lines. If we used the mechanism of replacing the spares to avoid wasting time and cost, then we would face the 
same model as that studied by Shortle et al.6. They applied the cold spares approach to the M/M/C/N model and 
compared this model with the classical M/M/C/N model. Gupta et al.7,8 and Jain et al.9 studied the relationships 
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between the classical model of queueing systems with some concepts (for example, balking, feedback, and 
retention of reneged) and its counterpart, which is interested in using the spares (to repair the stopped servers).

There are multiple types of spares that can be studied on the feedback machining system, that is, (i) cold 
spares. It refers to any machine that requires manual configuration and adjustment in the event of a complete 
failure. It may also be an internal component that is being repaired or an external component that will be repaired 
in the event of a major machine failure. (ii) warm spares It is a method of redundancy that involves running a 
single machine in the background of an identical platform, ready for replacement. But if more than one machine 
is damaged, one of them will be replaced immediately, and the remaining machines will be repaired to replace 
them after a while.); and (iii) hot spares (Normally, in this type, it is on full standby but becomes immediately 
available in the event of a failure or malfunction of one of the underlying machines. When there is a problem, 
the system is modified to fuse the hot spares with their chassis. Furthermore, it reduces average operating backup 
time when a machine failure is detected and can be automatically overridden, as it is designed to automatically 
rebuild with little or no interruption. Jain and Upadhyaya10 dealt with a multiple-component machining system 
model that considers a known number of operating units and types of spare machines. They found the steady-
state probabilities of the stopped units in the system by using the matrix recursive method and also some perfor-
mance measures. Recently, Kotb and El-Ashkar11 studied an interesting feedback machining system with a finite 
source, standbys, and different types of spare machines. They considered the mechanism of repairing the stopped 
machine as the mechanism used to provide customer service in the M/M/C/N queueing system. In addition, they 
consider an inspector who can inspect the repair machine (repair server) to provide quality control of the system. 
They obtained the steady-state probabilities for cold, worm, and hot spares by using the iterative method and 
also some performance measures. They discussed an optimization economic model to show the effectiveness of 
this mechanism on the total expected cost, the total expected revenue, and the total expected profit. Also, Kotb 
and El-Ashkar12 discussed the effectiveness of using the inspection process on the service quality provided by a 
feedback M/M/N queueing system with balking and retention of reneged customers. The effectiveness of quality 
control under the inspection process in Kotb and El-Ashkar12 gave more optimal results, which are better than the 
results in Kumar et al.13. This is due to using the inspection process. More recently, El-Hadidy and Fakharany14 
provided a new iterative algorithm to obtain the transient probability of a model, which was discussed by Kotb 
and El-Ashkar12. In14, the Laplace transform is used to get the exponential matrix to obtain the exact solution 
of a probabilistic dynamical system of differential equations. They studied the behavior of the probabilities of 
customers as functions of time, the performance measures, and the economic optimization of the model. In 
addition, they showed the suitability of this algorithm to deal with some queueing models as special cases. On 
the other hand, this transient probability has been studied extensively in many variations for different kinds of 
queueing systems, for example, Vijayashree and Janani15 and Suranga et al.16.

Different methods focused on studying the transient behavior of many queueing systems and giving the exact 
value of the probability in the cases of n > 0 customers in the system and the empty system at any time t  . One 
of these methods is the numerical method. Ammar and Alharbi17 derived the Volterra integral equation of the 
second kind representation by using the probability generating function to get the transition probabilities of a 
two-processor heterogeneous system with different service rates and time-varying arrival. They compared the 
obtained results with the results based on the Runge–Kutta fourth-order method. In addition, they compared 
the associated numerical errors with the others obtained in Dharmaraja18 and Coyle and Zhang19.

The main contribution here is to study the corrective maintenance for the machining system by discovering 
the unit that is likely to be damaged from the point of view of reliability theory. This is done by studying the 
transient behavior of a feedback machining system with standbys and multiple types of spares (M/M/C/N) under 
the quality control process. In this model, Kotb and El-Ashkar11 provided the steady-state probability of units 
in the system and the probability of an empty system by using the iterative method. For studying the transient 
behavior of this model in the cases of cold, worm, and hot spares, we present efficient algorithms, where each one 
is based on finding the exponential matrix of the system of probability differential-difference equations via the 
Laplace transform. This will give the exact value of the probability of n units in the system at any given time t  . On 
the other hand, we believe that a preventive maintenance system is required to obtain high-quality production 
lines at a reasonable cost and within a specific system, as well as to confirm the required specifications in terms 
of quantity and product quality. Intelligent maintenance supported by advanced sensor technology has become 
critical to ensuring safe operation, as in Yang et al.53, where decisions have been taken that help control the risks 
arising from the operating system. Some new preventive maintenance policies are discussed by Yang et al.54 for a 
single two-phase system with the aim of increasing the resulting revenues affected by performance. The success 
of the preventive maintenance program depends on achieving the fewest breakdowns, the shortest replacement 
time of the damaged units, and the lowest repair costs, so there must be a kind of balance between corrective 
and preventive maintenance. Given the importance of time in the replacement process of damaged units, Wang 
et al.55 presented a new model through which the appropriate time to perform this operation is determined. 
Preventive maintenance contributes to preventing breakdowns and detecting them before they occur. To avoid 
cases of failure and deterioration of the units, Wang et al.56 presented a proposal to improve the replacement of 
a damaged unit with another healthy unit that is not compatible with it on the basis of condition, age, and spare 
parts inventory policy. Also, Wang et al.57 studied a model illustrating a condition-based preventive maintenance 
policy for balanced systems with identical components. There are different models to detect this damage (target), 
which appeared in the optimal search theory. El-Hadidy et al.20–47 provided different search techniques to detect 
the lost target on the line, the plane, and the space. They aimed to detect the target in the minimum amount 
of time and with the maximum detection probability. The methodology in this work is to examine the queu-
ing model’s transient behaviour, which was covered in Kotb and El-Ashkar11. Second, this queue was intended 
to be appropriate for talking about preventative maintenance for repairing machine systems. Detecting unit 
defects before they arise is essential for this maintenance to take place. Therefore, we should use one of the most 
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significant models to detect the lost targets, such as El-Hadidy42. When taken as a whole, this offers a research 
technique for developing a new model to solve the preventative maintenance issue.

This paper is organized as follows: “List of symbols” provides a glossary of terms used in this work. The 
description and the formulation of our model are presented in "Model formulation". Depending on the Poisson 
process, this section presents two different probabilistic systems that set up the probability functions in a suit-
able form. In "Corrective maintenance for transient behaviour", we present the transient behavior of this model 
by applying the Laplace transformation to the probabilistic systems obtained in "Model formulation" to get the 
corresponding exponential matrix of the coefficients matrix for each system. Then, the exact solution to these 
systems will be obtained by using an associated algorithm and Maple code. A special case of cold spares has 
been presented in "Cold spares case". "Fault detection as a preventive maintenance method" used this solution 
to get the probability of detection and the mean time to detection as a function of time. In the final section, we 
discuss the conclusion and future work.

Model formulation
Let a feedback machining system model with finite source and standbys be considered an M/M/C/N queueing 
system with spares (see Kotb and El-Ashkar11), where the service is provided to each unit according to the first-
come, first-served (FCFS) discipline. The service and the inter-arrival time of units are independent and identi-
cally distributed (iid) exponential random variables with rates µ > 0 and � > 0 , respectively, where 0 < µ < � . 
The stopping machines enter the repair crews as a single waiting line, as shown in Fig. 1. The entries are done 
one by one according to a Poisson process.

We consider the state-dependent failure rate is given by:

where ε is a parameter that characterized the spares type and 0 < ε < � . As in Shekhar et al.1, if ε = 0 then we 
deal with a cold spares case. And, if 0 < ε < � then we face a warm spares case. Otherwise, the hot spares case 
when ε = � is considered. It is clear that the behavior of the parameter ε depends on the distribution of the 
inter-arrival time. Hence, the mechanism of repairing (servicing) depends on an identically exponential random 
variable with state-dependent repair rates:

(1)�n =











N�+ Sε 0 ≤ n < S

(N − n+ S)� S ≤ n < S + N

0 Otherwise

(2)µn =







nqµ, 1 ≤ n < C

Cqµ, C ≤ n ≤ N

Figure 1.   The repairing mechanism of failure machines.
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When a malfunction occurs in one of the machines, it should be replaced by another one, and then the cor-
rective maintenance process for the damaged machines begins. The repaired unit will become a standby for a 
new damaged unit. In this type of maintenance, a set of operations is provided to repair the machines through 
a group of servers. Maintenance times vary due to the differences in the repair process from one machine to 
another. After the failed machine has been repaired, it is passed on to the inspector to check its effectiveness. If 
the machine still fails, then the inspector will return it to the end of the original waiting line as a feedback unit 
with a probability of 1− q for reprocessing it again (see Fig. 1). Otherwise, the not-defective machine will become 
a standby one to replace with another stopped or failed one on the operating system. In the case of feedback, we 
need to define the inspection events ωi , i = 1, 2, ...,N as:

Here, all repaired machines are examined by the inspector to determine the quality of the repair process. 
For the defined policy of the inspection process, if there are n jobs in the system and the repaired machine is 
inspected, then we have ωn = 1 , which determines the machines that must be reconsidered or not to be repaired 
again; otherwise, ωn = 0 . If the repaired machine is rejected by the inspector, then feedback must be given. 
This means that the existence of the feedback when the repaired machine failed to pass from the inspector is 
not random because it depends on the inspector’s decision. When the event ωn = 0 , this means the repaired 
machine has a priority to become a standby one without inspection (this may be a problem in the system where 
each repaired machine must be inspected before entering the standby list). By considering the above hypotheses 
with warm and hot spare cases (i.e., ε  = 0 ) and applying the Markov conditions, we obtain the following basic 
systems of probability differential-difference equations, which have been provided in Kotb and El-Ashkar11. If 
C ≤ S , then we have a probabilistic system,

And, if C > S then we obtain the following probabilistic system,

There is a similarity between our model and the M/M/C/N queueing system with spares, which has been 
studied by Shortle et al.6. Our model is a generalization of the M/M/C/N queueing system after combining S spares 
with it. When a machine fails in the operating system, it will be entered in the queueing model to be replaced 
with a spare. Then it will be entered into the inspection system. Slowness in replacing the damaged machines 
with proper spare parts will reduce the efficiency of the service provided. The repaired and inspected machine 
will become a new standby one, which will be used again in the operating system. The transient behaviour of 
our model will be studied in the following section to get  Pn(t) and P0(t) after solving the systems (4)–(9) and 
(10)–(15). Consequently, the performance measures of this model will be given to show its effectiveness.

Corrective maintenance for transient behaviour
Actual corrective maintenance is a special type of maintenance activity that is undertaken to restore equipment 
when it has failed to meet an acceptable condition. Moreover, it is basically a correction process that is always 
adopted after a crash has occurred. Corrective maintenance aims to get machines back up and running as soon 

(3)ωi =







1, iftherepairedmachineisinspected,

0, iftherepairedmachineisnot inspected.

(4)P′0(t) = −[ �N + Sε]P0(t)+ µ qω1P1(t) , n = 0

(5)
P′n(t) = − [(N�+ Sε)+ nµ qωn]Pn(t)+ (n+ 1)µ qωn+1Pn+1(t)+ (N�+ Sε)Pn−1(t), 1 ≤ n < C

(6)P′n(t) = − [(N�+ Sε)+ Cµ qωn]Pn(t)+ Cµ qωn+1Pn+1(t)+ (N�+ Sε)Pn−1(t), C ≤ n < S

(7)P′n(t) = − [�(N − n+ S)+ Cµ qωn]Pn(t)+ Cµ qωn+1Pn+1(t)+ (N�+ Sε)Pn−1(t), n = S

(8)
P′n(t) = − [�(N − n+ S)+ Cµ qωn]Pn(t)+ Cµ qωn+1Pn+1(t)+ �(N − (n− 1)+ S)Pn−1(t), S ≤ n ≤ N + S − 1

(9)P′n(t) = − [�(N − n+ S)+ Cµ qωn]Pn(t)+ �(N − (n− 1)+ S)Pn−1(t), n = N + S

(10)P′0(t) = −[ �N + Sε]P0(t)+ µ qω1P1(t) , n = 0

(11)
P′n(t) = − [(N�+ Sε)+ nµ qωn]Pn(t)+ (n+ 1)µ qωn+1Pn+1(t)+ (N�+ Sε)Pn−1(t), 1 ≤ n < S

(12)
P′n(t) = − [�(N − n+ S)+ nµ qωn]Pn(t)+ (n+ 1)µ qωn+1Pn+1(t)+ (N�+ Sε)Pn−1(t), n = S

(13)
P′n(t) = − [�(N − n+ S)+ nµ qωn]Pn(t)+ (n+ 1)µ qωn+1Pn+1(t)+ �(N − (n− 1)+ S)Pn−1(t), S + 1 ≤ n < C

(14)
P′n(t) = − [�(N − n+ S)+ Cµ qωn]Pn(t)+ Cµ qωn+1Pn+1(t)+ �(N − (n− 1)+ S)Pn−1(t), C ≤ n < N + S

(15)P′n(t) = − [�(N − n+ S)+ Cµ qωn]Pn(t)+ �(N − (n− 1)+ S)Pn−1(t), n = N + S.
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as possible to minimize production downtime. These goals are directly related to production capacity and costs, 
product quality, and consumer satisfaction. It also aims to control the investment required for backup machines. 
These manufacturing machines need to be replaced until the repairs are completed. As previously stated, there 
are three cases of spare parts replacement. To get Pn(t) , we need to solve the above systems (4)–(9) and (10)–(15). 
Each one can be rewritten in the following matrix form:

where if C ≤ S , then the matrix coefficients are given by, M = (mij) ∈ R
(N+S+1)×(N+S+1) is a tri-diagonal matrix 

with entries given by

for 2 ≤ i < C + 1,

for C + 1 ≤ i < S + 1,

for i = S + 1,

for S + 1 < i ≤ N + S,

and for i = N + S + 1,

On the other hand, the system (10)-(15) has a tri-diagonal matrix with the following entries,

for 2 ≤ i < S + 1,

for S + 1 ≤ i < C + 1,

for i = C + 1,

for C + 1 < i ≤ N + C,

and for i = N + C + 1,

(16)Ṗ(t) = MP(t),

(17)m11 = −(�N + Sε),m12 = µqω1;

(18)mij =







�N + Sε, j = i − 1,

−
�

�N + Sε + (i − 1)µqωi−1

�

, j = i
iµqωi , j = i + 1;

(19)mij =







�N + Sε, j = i − 1,

−
�

�N + Sε + Cµqωi−1

�

, j = i
Cµqωi , j = i + 1;

(20)mij =







�N + Sε, j = S,
−
�

�(N − i + S)+ Cµqωi−1

�

, j = S + 1

Cµqωi , j = S + 2;

(21)mij =







�(N − (i − 1)+ S), j = i − 1,

−
�

�(N − i + S)+ Cµqωi−1

�

, j = i
iµqωi , j = j + 1,

(22)mi,i−1 = 0,mii = −
(

−�+ CµqωN+S

)

.

(23)m11 = −(�N + Sε),m12 = µqω1;

(24)mij =







�N + Sε, j = i − 1,

−
�

�N + Sε + (i − 1)µqωi−1

�

, j = i
iµqωi , j = i + 1;

(25)mij =







�N + Sε, j = i − 1,

−
�

�N + Sε + Cµqωi−1

�
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(26)mij =


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�N + Sε, j = S,
−
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�(N − i + S)+ Cµqωi−1

�

, j = S + 1
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(27)mij =







�(N − (i − 1)+ S), j = i − 1,

−
�

�(N − i + S)+ Cµqωi−1

�
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(28)mi,i−1 = 0,mii = −(−�+ CµqωN+S)
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The above linear system of homogenous differential equation (16), which have random coefficients, has an 
analytical solution with a closed form that depends on the exponential matrix (see, Hasselblatt and Katok50), 
given by

where P(0) = [100 · · · 0]T ∈ R
(N+S+1)×1 is the initial condition vector. To get exp(Mt), we apply the Laplace 

transformation definition (see, Chaparro and Akan51) on Eqs. (16) and (29). Consequently, we have

where s is a complex variable and I is the identity matrix. After that, we apply the inverse Laplace transformation 
(see, Dyke52) on Eq. (30) to get exp(Mt) . This will give the exact value of Pn(t), and the calculation of it will be 
summarized in the following Algorithm 1.

Algorithm 1  Step 1:	� Input the values of �,µ where 0 < � < µ and N ,C,ε and S.
Step 2:	�  Use the command rand(0.0..1.0) to generate the values of the probability q and the com-

mand rand(0..1) to generate random integer values of ωn ; 0 or 1.
Step 3:	�  Generate a tri-diagonal matrix M which contains the entries mij given from (17)–(22) 

when C ≤ S (or (23)–(28) when C > S).
Step 4:	�  Use Laplace transform and its inverse to compute the value of (30) and then put the 

result in a new matrix A.
Step 5:	�  Generate a column vector of the initial condition IC.
Step 6:	�  Compute the value A× IC which give the exact solution of  (16).

Cold spares case
Spare parts are one of the most important factors in maintenance, but when they are available in excess, this 
raises production costs. If spare parts are not available, maintenance procedures are halted, and the system will 
stop. When S = 0, any one of the above systems will become,

Similarly, one can use the above analytical method to get the exact value of Pn(t) . Example 1 discusses this 
solution for different system capacities.

Fault detection as a preventive maintenance method
The main objective of preventive maintenance is to take the necessary precautions and follow the necessary pro-
cedures by discovering equipment faults to prevent accidents. Thus, to detect the fault in the repaired unit, we use 
the exponential detection function 1− e−z , where z is the searching effort; see Hong et al.48,49. The exponential 
detection function provides an important feature in the process of detecting machines that will be damaged 
in the future because it exhibits a decreasing rate of return. This slowly increases the probability of detecting 
a damaged unit and increases further as the amount of searching effort increases. The probability of the unit 
being nominated for failure depends on the number of repaired and accepted units that have been inspected. 
The detection probability of the unit nominated for stopping is then given by:

Now, we can compute the value of PD(t, n, z) for each spares case and also the mean detection time by,

by adding the following two steps to the above Algorithm 1.

Step 7.	� Use (35) to compute PD(t, n, z).
Step 8.	�  Use (36) to compute ED(t, n, z).

Example 1  Consider the operating system contain N = 4 machines and different number of spared units S with 
rate ε = 2 . The failed units arrive to the service stage with exponential rate � = 2.3 . Also, the service time has an 
exponential distribution with rate µ = 4.72 . Thus, to get the computational value of Pn(t) , we use Maple 13 on 

(29)P(t) = exp(Mt)P(0),

(30)L
(

exp(Mt)
)

= (sI −M)−1
,

(31)P′0(t) = − �NP0(t)+ µ qω1P1(t) , n = 0

(32)
P′n(t) = − (�(N − n)+ nµ qωn)Pn(t)+ ( (n+ 1)µ qωn+1)Pn+1(t)+ �(N − n+ 1)Pn−1(t), 0 < n < C

(33)
P′n(t) = − [�(N − n)+ Cµ qωn]Pn(t)+ Cµ qωn+1Pn+1(t)+ �(N − n+ 1)Pn−1(t), C ≤ n ≤ N

(34)P′N (t) = − (Cµ qωN )PN (t)+ � PN−1(t) , n = N

(35)PD(t, n, z) =
qPn(t)

n

(

1− e−z
)

, n ≥ 1.

(36)ED(t, n, z) =

N
∑

n=1

nPD(t, n, z), n ≥ 1
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Intel(R) Core(TM) i7 CPU with Microprocessor 2.30 GHz and with 16.0 GB. In the case of C ≤ S , where C = 2 
and S = 3 the exact vector solutions P(t),t ∈ [0, 1][0, 1] appears in Fig. 2, where the solution of the system (4)–(9) 
is obtained from the following coefficient matrices,

Also, in the case of  C > S, where C = 3 and S = 2 the solution of the system (10)-(15) is obtained from the 
coefficient matrices to get the following P(t), see Fig. 3.





















−15.2 0 0 0 0 0 0 0

15.2 −18.05220698 5.704413957 0 0 0 0 0

0 15.2 −15.2 0 0 0 0 0

0 0 15.2 −18.60441369 5.704413957 0 0 0

0 0 0 6.9 −16.30441396 5.70441395 0 0

0 0 0 0 4.6 −14.00441369 5.70441395 0

0 0 0 0 0 2.3 −6 0

0 0 0 0 0 0 0 −9.404413957





















Figure 2.   Pn(t) when C ≤ S , where C = 2 and S = 3.

Figure 3.   Pn(t) when C > S , where C = 3 and S = 2.
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In addition, Fig. 4 shows the exact value of P(t) in the cold spare case, where the coefficient matrices given by,

If we consider the searching effort which used to do the early detection, is z = 20 , then we apply the Steps 7 
and 8 to get PD(t, n, z) and ED(t, n, z) for each replacement cases as in Figs. 5, 6 and 7 respectively.

It is clear that, when C ≤ S , the probability of detection will attain its maximum value (see Fig. 5a, b) because 
there are a greater number of standby machines than the server’s. Also, this will do some maximization on ED(t) , 
as in Figs. 5b, 7b.

Steady state case
In the case of C ≤ S , the steady-state probability difference equations of the system (4)-(9) will becomes:

and, for C > S , the system (10)-(15) will becomes:
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−13.2 0 0 0 0 0 0

13.2 −16.05220698 5.704413957 0 0 0 0

0 13.2 −13.2 0 0 0 0

0 0 13.2 −17.15662094 8.556620935 0 0

0 0 0 4.6 −14.85662094 8.556620935 0

0 0 0 0 2.3 −12.55662094 8.556620935

0 0 0 0 0 −1.7




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












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

−9.2 0 0 0 0

9.2 −12.05220698 5.704413957 0 0

0 4.6 −2.3 0 0

0 0 2.3 −5.704413957 5.704413957

0 0 0 0 −3.404413957











(37)−[ �N + Sε]P0 + µ qω1P1 = 0 , n = 0

(38)− [(N�+ Sε)+ nµ qωn]Pn + (n+ 1)µ qωn+1Pn+1 + (N�+ Sε)Pn−1 = 0, 1 ≤ n < C

(39)− [(N�+ Sε)+ cµ qωn]Pn + Cµ qωn+1Pn+1 + (N�+ Sε)Pn−1 = 0, C ≤ n < S

(40)− [�(N − n+ S)+ Cµ qωn]Pn + Cµ qωn+1Pn+1 + (N�+ Sε)Pn−1 = 0, n = S

(41)
− [�(N − n+ S)+ Cµ qωn]Pn + Cµ qωn+1Pn+1 + �(N − (n− 1)+ S)Pn−1 = 0, S < n < N + S.

(42)− [�(N − n+ S)+ Cµ qωn]Pn + �(N − (n− 1)+ S)Pn−1 = 0, n = N + S

(43)−[ �N + Sε]P0 + µ qω1P1 = 0 , n = 0

(44)− [(N�+ Sε)+ nµ qωn]Pn + (n+ 1)µ qωn+1Pn+1 + (N�+ Sε)Pn−1 = 0, 1 ≤ n < S

Figure 4.   Pn(t) in the cold spare case where C = 3. 
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Kotb and El-Ashkar11 used the iterative method to get the probability of n units in the two cases. Thus, if 
C ≤ S then

(45)− [�(N − n+ S)+ nµ qωn]Pn + (n+ 1)µ qωn+1Pn+1 + (N�+ Sε)Pn−1 = 0, n = S

(46)
− [�(N − n+ S)+ nµ qωn]Pn + (n+ 1)µ qωn+1Pn+1 + �(N − (n− 1)+ S)Pn−1 = 0, S < n < C

(47)
− [�(N − n+ S)+ Cµ qωn]Pn + Cµ qωn+1Pn+1 + �(N − (n− 1)+ S)Pn−1 = 0, C ≤ n < N + S.

(48)− [�(N − n+ S)+ Cµ qωn]Pn + �(N − (n− 1)+ S)Pn−1 = 0, n = N + S.

Figure 5.   (a) PD(t) and (b) ED(t) when C ≤ S , where C = 2 and S = 3.

Figure 6.   (a) PD(t) and (b) ED(t) when C > S , where C = 3 and S = 2.
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where,

Also, if C > S then we have

where,
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Figure 7.   (a) PD(t) and (b) ED(t) in the cold spare case where C = S = 2. 
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Hence, the detection probability of the unit nominated for stopping becomes,

Also, the mean detection time becomes,

In the cold spars case, the steady-state probability difference equations of the system (31)-(34) will becomes:

Using the iterative method, we get

where,

One can use (53) and (54) to get PD(n, z) and ED(n, z) , respectively.

Example 2  The main purpose of maintenance is to help the project achieve the goals for which it was established. 
The primary responsibility is to maximize the percentage of time the machines and equipment are available for 
operation. Also, maintain the value of the factory by decreasing the rates of machinery wear and deteriorating 
performance as a result of operation. It is known that good maintenance planning depends on estimating the 
cost of realistic repairs. Therefore, deviation from the estimated maintenance costs upsets the production costs 
and causes the estimated budget to be depleted. Therefore, the continuous detection of defects in the machines 
ensures their accurate work and reduces losses. If we have N = 50 machines and spared units S = 10 with rate 
ε = 0.4 such that � = 0.03 and µ = 0.4,z = 20 then in the case of C = 4, 6, 8 (i.e.,C ≤ S ) we use (53) and (54) to 
get the computational values of PD(n, z) and ED(n, z) as in Fig. 8.

Also, in the case of  C > S, where C = 8 and S = 5, 6, 7 the values of PD(n, z) and ED(n, z) appear in Fig. 9.
Figure 10 shows the values of PD(n, z) and ED(n, z) in the cold spare case.
When the value of spares increases and there is some stability in all other parameters, we notice a stable and 

noticeable increase in the value of PD , as in Fig. 10a. In contrast to the increase in the number of servers and 
the stability of the rest of the parameters, a turbulent increase was observed in PD , as shown in Fig. 9a. This is 
due to the change in the number of units exiting after the inspection process. A disturbance in the detection 
probability led to a reduction in the time to detect the fault. Of course, this had a significant impact on ED , as 
shown in Figs. 9b, 10b.

Conclusion and future work
A probabilistic model is presented for the maintenance process of N machines (system capacity) in a specific 
operating system. This process was divided into two types of maintenance: one corrective and the other preven-
tive. The corrective maintenance process is carried out on a group of machines that are actually broken and are 
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waiting in a queue. There are a limited number of servers responsible for the repair process, with an inspector to 
ensure the quality of the service. At the same time, there are units (spares or standby) ready for replacement in 
the event of any malfunction. We studied the replacement process for three types of spares, which are warm, hot, 
and cold spares. We discussed the transient behaviour of this probabilistic model using the Laplace transform. An 
algorithm for calculating the exact value of the probability n units ( n ≤ N ) over time is presented. On the other 
hand, preventive maintenance was studied through the early detection process of faulty units in order to avoid 
a long interruption of production as a result of the unit replacement process. The probability of early detection 
of the target and the expected value of the detection time were obtained. In addition, the detection probability 
and the mean time of detection are discussed in the steady-state case.

In future work, this model can be used to study preventative maintenance when the amount of the detection 
effort is a random variable with a known distribution. Furthermore, the flexibility of this model allows us to inves-
tigate more complex problems in real life and contains more conditions that are processed in Poisson equations.

Figure 8.   (a) PD and (b) ED when C ≤ S.

Figure 9.   (a) PD and (b) ED when C > S.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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