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Self‑supervised representation 
learning using feature pyramid 
siamese networks for colorectal 
polyp detection
Tianyuan Gan 1, Ziyi Jin 1, Liangliang Yu 2, Xiao Liang 3, Hong Zhang 1 & Xuesong Ye 1*

Colorectal cancer is a leading cause of cancer‑related deaths globally. In recent years, the use of 
convolutional neural networks in computer‑aided diagnosis (CAD) has facilitated simpler detection of 
early lesions like polyps during real‑time colonoscopy. However, the majority of existing techniques 
require a large training dataset annotated by experienced experts. To alleviate the laborious task of 
image annotation and utilize the vast amounts of readily available unlabeled colonoscopy data to 
further improve the polyp detection ability, this study proposed a novel self‑supervised representation 
learning method called feature pyramid siamese networks (FPSiam). First, a feature pyramid encoder 
module was proposed to effectively extract and fuse both local and global feature representations 
among colonoscopic images, which is important for dense prediction tasks like polyp detection. 
Next, a self‑supervised visual feature representation containing the general feature of colonoscopic 
images is learned by the siamese networks. Finally, the feature representation will be transferred to 
the downstream colorectal polyp detection task. A total of 103 videos (861,400 frames), 100 videos 
(24,789 frames), and 60 videos (15,397 frames) in the LDPolypVideo dataset are used to pre‑train, 
train, and test the performance of the proposed FPSiam and its counterparts, respectively. The 
experimental results have illustrated that our FPSiam approach obtains the optimal capability, 
which is better than that of other state‑of‑the‑art self‑supervised learning methods and is also higher 
than the method based on transfer learning by 2.3 mAP and 3.6 mAP for two typical detectors. 
In conclusion, FPSiam provides a cost‑efficient solution for developing colorectal polyp detection 
systems, especially in conditions where only a small fraction of the dataset is labeled while the 
majority remains unlabeled. Besides, it also brings fresh perspectives into other endoscopic image 
analysis tasks.

Colorectal cancer (CRC) stands as a primary cause of cancer-related mortality worldwide, afflicting individuals 
in both western and eastern countries. To mitigate the incidence and mortality rates of CRC, early-stage lesions 
such as colorectal polyps must be identified and meticulously removed through colonoscopy, a critical clinical 
tool for  diagnosis1,2. Recent advancements in computer-aided techniques employing convolutional neural net-
works (CNNs) have enabled endoscopists to detect and diagnose colorectal diseases more simply in real-time 
 colonoscopy3–6. Nonetheless, the efficacy of these CNN-based approaches is intrinsically linked to the quantity 
of annotated image data utilized for training. Unfortunately, annotating colonoscopic images proves to be a 
costly and time-intensive endeavor, necessitating the expertise of proficient clinicians. Therefore, the quantity 
of annotated medical data available for training is often constrained, in stark contrast to natural images that 
can be readily annotated via crowdsourcing methods. Two strategies have been proposed to address this issue. 
The first involves supervised pre-training on a large-scale labeled natural dataset, such as ImageNet, followed 
by supervised fine-tuning on the target medical dataset with limited  labels7–12. The second strategy involves 
self-supervised pre-training on a large-scale unlabeled dataset within the specific medical domain, followed by 
supervised fine-tuning on the target dataset of the same domain with scarce  annotations13–16. Although numerous 
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studies have employed the former strategy for disease diagnosis in colonoscopy, the latter strategy, which utilizes 
self-supervised techniques to learn representations more pertinent to the colonoscopic domain, warrants greater 
attention. After all, unlabeled image data is abundant and readily available even in the medical field.

Several self-supervised learning (SSL) techniques have demonstrated their efficacy in downstream classi-
fication tasks, achieving comparable or even superior results when compared to supervised ImageNet pre-
training17–23. However, a gap still exists between image-level pre-training that utilizes global features only and 
target dense prediction tasks, such as polyp detection. It has been shown  in24 that superior image classification 
performance does not necessarily guarantee more precise object detection. Therefore, there is a pressing demand 
for customized SSL approaches that are tailored specifically for the polyp detection task.

In this study, inspired by advanced supervised object detectors that typically predict objects on multi-level 
fused  features25, we propose a novel feature pyramid siamese network structure (FPSiam) to perform self-super-
vised pre-training on a large-scale dataset without the need for human annotations. Subsequently, we fine-tune 
the detectors end-to-end using only a small amount of labeled data. FPSiam considers the SSL procedure to be 
a global and local layer-wise instance discrimination rather than just a global one. To this end, we leverage a 
feature pyramid structure that accepts representations from various layers of the backbone network as input and 
generates dense fused global and local projections. Unlike other state-of-the-art (SOTA) SSL frameworks, which 
only output a single global projection vector, our approach naturally preserves both local and global informa-
tion, a crucial requirement for the polyp detection task. We also introduce a similarity loss function that extends 
the conventional negative cosine similarity to an additive version. We conduct a comprehensive comparison of 
our FPSiam pre-trained feature encoder with its ImageNet-supervised pre-trained counterpart, an approach 
dominant for years, to evaluate their respective transfer abilities in the downstream colorectal polyp detection 
task. Furthermore, we present the performance of other SOTA SSL algorithms as well as a randomly initialized 
network as a point of reference.

Our main contributions are summarized as follows:

• To the best of our knowledge, there has been no prior utilization of SSL frameworks in the detection of colo-
rectal polyps. In this study, we undertake a comprehensive investigation of various advanced SSL methods 
for the task of polyp detection during colonoscopy. Our findings demonstrate the feasibility of establishing 
competitive colorectal polyp detectors using limited labeled data and abundant unlabeled data. This holds 
significant potential for both research and clinical applications.

• We introduce a novel SSL method customized for polyp detection tasks, named FPSiam. We propose the 
feature pyramid encoder module to leverage both global and local feature projections to pre-train highly 
discriminative representations. Our proposed method outperforms recent SOTA SSL methods as well as 
the conventional supervised pre-training using ImageNet. By bridging the gap between self-supervised pre-
training and dense prediction tasks, FPSiam proves to be a promising solution for the polyp detection task.

Related works
Computer‑aided polyp detection from colonoscopy
Colorectal cancer is a major cause of cancer-related death worldwide. Early detection and eradication of colo-
rectal polyps is assumed to be an effective approach to reducing the incidence and mortality of CRC. Recently, 
computer-aided diagnosis systems have become a popular method to assist endoscopists and address human 
error by indicating the presence and location of polyps during real-time colonoscopy. With the development of 
deep learning technology, many studies show remarkable performance in automatic colorectal polyp detection. 
For example, Pacal et al.5 employed Scaled-YOLOv4 with different backbones such as CSPNet, ResNet, DarkNet, 
and Transformer for polyp detection. Karaman et al.26 integrated the artificial bee colony algorithm (ABC) into 
the YOLO baselines to optimize the hyper-parameters and conducted comprehensive studies on Scaled-YOLOv4. 
Furthermore, they utilized the ABC algorithm to find the optimal activation functions and hyper-parameters 
for the YOLOv5 detector and successfully obtained much higher performance in real-time polyp  detection27. 
Lima et al.28 presented a two-stage polyp detection method for colonoscopy images using salient object-extracted 
maps and transformers. Although the above-mentioned works achieved excellent results, they were all based 
on supervised learning. Yet, this training paradigm needs large amounts of labeled data, which requires massive 
effort from colonoscopy experts. Different from the previous studies, we aim to apply the self-supervised learning 
framework to the colorectal polyp detection task.

Transfer learning for medical image analysis
Transfer learning from ImageNet pre-trained model is the most common approach used in medical image 
analysis for different imaging modalities including  radiology7,  histopathology8, and  endoscopy9–12. Although the 
distribution of natural images and medical images is quite different, multiple  studies29–31 have proved that this 
paradigm can improve model performance in various task settings. However, with further detailed investigation, 
Raghu et al.32 found that transfer learning from ImageNet can speed up convergence especially when the labeled 
data is limited, but it does not always improve the performance in medical image analysis tasks. Liang et al.33 
indicated that transfer learning benefits from the model pre-trained on in-domain data. However, the procedure 
of gathering medical image data with annotations from the same domain is time-consuming and expensive. On 
the contrary, unlabeled medical data is easy to obtain. Therefore, self-supervised learning becomes a feasible 
candidate for medical image analysis tasks with limited labeled data.
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Self‑supervised learning
Self-supervised learning, or unsupervised visual representation learning, aims to obtain good representations 
from large-scale datasets without annotations and brings benefits to the training procedure of different down-
stream tasks. Many different handcrafted pretext tasks for self-supervised training have been proposed to learn 
such representations. Examples including  RelativePosition34,  Jigsaw35,  Rotation36,  Colorization37,  DeepCluster38 
and  BigBiGAN39. However, even have been shown to be useful, these methods are being eliminated by contras-
tive learning (CL).

Contrastive learning is the most cutting-edge type of self-supervised learning framework. The basic idea of 
contrastive learning is that different transformations of a sample image have similar representations and these 
representations should be different from the different sample images. The unlabeled data is used to minimize a 
loss function named contrastive loss to train the backbone network. Currently, some state-of-the-art (SOTA) 
contrastive learning frameworks such as  CPC40,  MoCo17,18,41,  SimCLR19,20,  BYOL21,  SimSiam23 and  SwAV22 have 
greatly closed the gap between unsupervised and supervised representation learning or even surpassed the latter 
in many computer vision tasks. Therefore, self-supervised pre-training has the potential to serve as an alternative 
to ImageNet-supervised pre-training in several specific applications.

Self‑supervised learning for medical image analysis
In spite of the big success achieved by self-supervised learning in the nature image domain, its application in 
medical image analysis is still in its infancy. Due to the big difference between the distribution of medical images 
and natural images, how to effectively apply the existing SSL frameworks to solve medical image analysis tasks 
has become a research hotspot. While some works have attempted to design domain-specific pretext  tasks42–46, 
other works try to exploit improved version of the existing advanced contrastive learning frameworks to medi-
cal  data13,14,16,47–53.

Contrastive predictive coding (CPC) is a contrastive learning framework that can be applied to many dif-
ferent data types and it first proposed InfoNCE loss for contrastive learning. For image data, CPC learns the 
feature representation of spatial information by predicting the subsequent image blocks using the embeddings 
encoded from front image blocks. Inspired by CPC,  TCPC13 was proposed to learn 3D feature representation 
from the sub-volumes containing the lesion areas and train a neural network for classifying the 3D CT images. 
MoCo is another SSL framework that utilizes contrastive learning. It increases the number of negative samples 
by using a momentum-updated queue of previously seen samples. Based on MoCo, Sowrirajan et al.14 proposed 
a MoCo-CXR framework for classification tasks on unlabeled chest X-ray datasets. Different from MoCo, Sim-
CLR chooses to use a larger batch to provide large-scale negative samples. Benefiting from that, Azizi et al.48 
applied the SimCLR framework to skin image analysis. BYOL is an approach different from its previous ones, 
it first utilizes only positive samples in contrastive learning. To be specific, BYOL trains an online network on 
one augmented view of an image to predict the representation of another augmented view of the same image 
encoded by the target network. Based on BYOL, Xie et al.16 proposed the prior-guided local (PGL) framework 
for 3D medical image segmentation. More detailed information about the studies using self-supervised learning 
for medical image analysis can be found in Table 1.

According to Table 1, prior works have proved the effectiveness of self-supervised learning in numerous 
medical imaging modalities, especially the domain of radiology including MRI, CT, and X-ray. However, there 
is limited work investigating the performance of the SSL paradigm for endoscopic data, which is another impor-
tant imaging branch for modern medicine. Distinct from other medical imaging data comprised of still images, 
endoscopic images are frames derived from dynamic video streams, exhibiting pronounced homogeneity between 
successive frames. This characteristic has the potential to ruin the performance of some vanilla self-supervised 
learning frameworks that even have been verified to work well in other medical imaging modalities. Further-
more, despite classification and segmentation tasks being widely studied, the exploration of object detection, 
another important downstream task, in a self-supervised manner gains insufficient scholarly attention. To the 
best of our knowledge, we are the first to investigate the SSL methodology for the colorectal polyp detection 
task during colonoscopy video.

Methods
In this study, we use the self-supervised learning paradigm to enhance the detection of colorectal polyps. Our 
algorithmic framework involves a series of steps, as follows. First, we employ the self-supervised learning 
approach to pre-train the backbone network using unlabelled colonoscopic images. This pre-training phase facili-
tates the acquisition of robust visual representations in the colonoscopy domain by the network. Subsequently, 
we perform a supervised end-to-end fine-tuning step using annotated colonoscopic images to accomplish polyp 
detection in downstream tasks. The whole study workflow is summarized in Fig. 1.

Datasets
We employ the  LDPolypVideo54 and CVC-VideoClinicDB55,56 datasets in this study. The LDPolypVideo dataset 
is utilized for both pre-training and downstream fine-tuning stages, while the CVC-VideoClinicDB dataset is 
exclusively utilized for end-to-end fine-tuning. Our aim in using the latter is to evaluate the transferability of 
the pre-trained weights to the same task in different in-domain datasets.

LDPolypVideo
The LDPolypVideo  dataset54 was publicly released at MICCAI2021, and to the best of our knowledge, it repre-
sents the most extensive publicly available colonoscopy video database. It comprises 40,266 frames of 200 polyps 
extracted from 160 colonoscopy videos, each with bounding boxes for every polyp. Additionally, it contains 103 
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Table 1.  Overview of studies using self-supervised learning for medical image analysis.

Year Authors Imaging modality Clinical domain Task SSL method Dataset Metric Performance

2019 Zhuang et al.42 MRI Radiology Brain tumor segmenta-
tion Rubik’s cube BraTS-2018 mIoU 0.773

2020 Nguyen et al.43 CT Radiology Organ-at-risk segmen-
tation

Predict whether the 
slice is corrupted as 
well as its index

StructSeg Dice 0.917

2020 Zhu et al.13 CT Radiology pulmonary nodules 
classification CPC (modified) LUNA16 Accuracy 0.994

2020 Xie et al.16 CT Radiology Kidney organ and 
tumour segmentation BYOL (modified) KiTS Dice 0.843

2021 Ewen et al.44 CT Radiology COVID-19 classifica-
tion Rotation Prediction SPGC COVID-19 

dataset Accuracy 0.867

2021 Kaku et al.47 Fundus image Ophthalmology Diabetic retinopathy 
classification MoCo (modified) EyePACS AUC 0.966

2021 Sowrirajan et al.14 Chest X-ray Radiology Pleural effusion clas-
sification MoCo (modified) CheXpert AUC 0.953

2021 Azizi et al.48 Skin image Dermatology Skin conditions clas-
sification SimCLR (modified) Derm Accuracy 0.700

2021 Zhao et al.45 MRI Radiology Alzheimer’s disease 
classification

Autoencoder (modi-
fied) ADNI1 Accuracy 0.870

2022 Manna et al.46 MRI Radiology ACL tear classification Jigsaw Puzzle MRNet AUC 0.848

2022 Ciga et al.49 Whole slide images & 
Image Patches Pathology 5 cancer classification 

tasks SimCLR 57 public datasets F1-score 0.779

2022 Benvcevic et al.50 Chest X-ray Radiology 13 different anomalies 
detection SimCLR VinDr-CXR mAP 0.142

2022 Hossain et al.51 Chest X-ray Radiology COVID-19 classifica-
tion SwAV COVID-19 radiography 

database Accuracy 0.992

2023 Li et al.52 OCT Ophthalmology Retinal edema segmen-
tation BYOL RESC Dice 0.689

2023 Chhipa et al.53 Whole Slide Images Pathology Breast cancer clas-
sification SimCLR (modified) BreakHis Accuracy 0.888

Figure 1.  The overall workflow of the proposed self-supervised representation learning framework FPSiam.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21655  | https://doi.org/10.1038/s41598-023-49057-6

www.nature.com/scientificreports/

videos, comprising 861,400 frames, which have only been simply annotated with video-level annotations that 
indicate the presence of polyps. The dataset exhibits a broad range of polyp types, sizes, and morphologies, all cap-
tured within complex bowel environments, including motion blurs and specular reflections. We utilize the unla-
beled video frames to pre-train our self-supervised model and divide the labeled frames into LDPolypVideotrain 
set and LDPolypVideotest set according to the original split in the paper. Finally, the LDPolypVideopretrain set, 
LDPolypVideotrain set, and LDPolypVideotest set contains a total of 103 videos (861,400 frames), 100 videos 
(24,789 frames), and 60 videos (15,397 frames), respectively. More detailed information about the dataset can 
be found in the conference  paper54.

CVC‑VideoClinicDB
CVC-VideoClinicDB55,56 comprises over 40 short and long video sequences extracted from routine colonoscopy 
examinations conducted at the Hospital Clinic of Barcelona, Spain. This comprehensive database covers diverse 
scenarios that a computer-aided polyp detection system may encounter and is tailored for the GIANA challenge 
of MICCAI. Notably, the polyp frames have been meticulously labeled and reviewed by clinical experts. While 
only the training data consisting of 18 sequences is available with annotations, we have manually partitioned it 
into two sets: CVC-VideoClinicDBtrain (14 video sequences; 9470 images) and CVC-VideoClinicDBtest (remain-
ing 4 video sequences, numbered #2, 5, 10, and 18; 2484 images)  following57,58. Further details about the dataset 
are available on the GIANA  website59.

Self‑supervised visual representation learning
We adopt  SimSiam23 as our baseline to learn visual representation from colonoscopic images without annota-
tions. SimSiam is a recently proposed simple but advanced self-supervised method based on siamese networks. It 
learns meaningful representations by maximizing the similarity between different augmented views of the same 
images (positive pairs). SimSiam utilizes only a classic stop-gradient operation to prevent the model’s collapsing 
solutions. Remarkably, it can achieve competitive performance compared to other cutting-edge self-supervised 
learning methods (e.g.  MoCo17,18,  SimCLR19,20,  BYOL21) even without negative sample pairs, large batches, and 
momentum encoders.

Specifically, each image x is fed into a probabilistic data augmentation function faug (·) to create two views 
x1 and x2 of the same image. The two views are then encoded respectively by an encoder network f (·) to gener-
ate representations z1 = f (x1) and z2 = f (x2) . The encoder f (·) consists of a backbone and a projection MLP 
head, sharing weights between the two views. The backbone here can be any convolutional neural network (e.g., 
 ResNet60,  MobileNet61). The representations of one branch are then transformed by a prediction MLP head, 
denoted as h(·) , to match the representations of another view. The two output vectors of the input image x are 
obtained as follows:

Next, negative cosine similarity is used to maximize the similarity between the output:

where �·�2 denotes the l2-norm. To prevent model collapse, a stop-gradient operation is implemented by modi-
fying Eq. (3) as:

This means that z2 is treated as a constant in this term. By reversely feeding the two views x1 and x2 , the final 
training loss is defined as follows:

FPSiam pipeline
Given the dense predictive nature of the polyp detection task, we propose the feature pyramid siamese networks 
(FPSiam) to extend and generalize the existing SimSiam to a dense paradigm. This new pipeline aims to deepen 
the model’s understanding of the local representation of the input images. The motivation behind proposing 
FPSiam arises from the observation that almost all SOTA SSL frameworks only utilize the output features of the 
last layer of the backbone convolutional neural network for subsequent comparison. However, these deep features 
reflect the global semantic information of the image (i.e., image-level properties), and due to the small size of the 
feature map, they lack sufficient geometric information and are therefore not conducive to polyp detection. On 
the other hand, the output features of shallow layers contain relatively more local geometric information and do 
not require additional computation costs. Therefore, it is believed that by fusing both deep and shallow CNN 
features, we can obtain a more robust representation that is suitable for the polyp detection task.

In practice, compared to the existing paradigm revisited in  “Self-supervised visual representation learning”, 
the core difference lies in the phase between the backbone and the projection head of the encoder. The con-
struction of our feature pyramid involves a bottom-up pathway, a top-down pathway, and lateral connections, 

(1)p1 = h(f (x1))

(2)z2 = f (x2)
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as introduced in Fig. 2. Given an input view x, the backbone network outputs proportionally sized feature 
maps at multiple scales with a scaling step of 2, in a fully convolutional fashion. The backbone here can be any 
convolutional neural network, e.g., ResNet and MobileNet. We denote these feature maps at different levels as 
ci(i = 1, 2, . . . , n) , cn represents the feature map output by the latest layer of the backbone. This feed-forward 
computation procedure of the backbone ConvNet is called the bottom-up pathway. Following that, the top-
down pathway generates high-resolution features by upsampling feature maps that are semantically stronger 
but spatially coarser, extracted from higher pyramid levels. These features are subsequently refined with the aid 
of the bottom-up pathway’s features through lateral connections, which merge feature maps of equal spatial size 
from both pathways. Specifically, we employ a low-resolution feature map and increase its spatial resolution 
by a factor of 2 via nearest-neighbor upsampling for simplicity. The resulting upsampled map is then merged 
with the corresponding bottom-up map, which has undergone a 1× 1 convolutional layer to adjust its channel 
dimensions, using element-wise addition. This iterative process is repeated until the highest-resolution map is 
generated. To initiate the iteration, we simply attach a 1× 1 convolutional layer to cn to produce the start feature 
map. Finally, we apply a 3× 3 convolution to the first and last merged maps in order to generate the final fused 
global and local feature maps, which serve to reduce the aliasing effect of upsampling. These two final fused 
feature maps are designated as mlocal and mglobal , corresponding respectively to c1 and cn , which possess the same 
feature dimensions. The final dense feature maps are then forwarded as input to the shared projection head, 
which outputs the representation vectors zlocal and zglobal for the first and last pyramid levels. The projection head 
utilized here adheres to the same architecture as the existing projection head in SimSiam, containing a global 
average pooling layer and an MLP. We designate the aforementioned process as the feature pyramid encoder 
fpyramid(·) . In the same manner, we employ a shared prediction head to handle the representation vectors and 
generate the prediction vectors plocal and pglobal for ultimate comparison. Finally, the encoder and prediction 
head are trained end-to-end by optimizing a joint pairwise negative cosine similarity loss at local and global 
feature levels. The total loss for our FPSiam can be formulated as:

where � acts as the weight to balance the terms of local and global feature pyramid levels, satisfying � ∈ [0, 1] . 
The subscripts of { z1, z2 } and { p1, p2 } represent the reverse feeding operation of the two different augmented 
views to the two pipelines of the siamese networks.

Network architecture
We use the standard  ResNet5060 architecture (see Fig. 3) as the backbone network of the encoder for our FPSiam 
framework. To construct the feature pyramid, we leverage the output of the final layer of each ResNet stage as 
input feature maps. Although numerous layers of a stage produce feature maps of the same size, we opt for this 
natural choice as the deepest layer of each stage typically possesses the strongest features. Specifically, we utilize 
the feature activations of the last residual block of stage {conv2, conv3, conv4, and conv5}, denoted as { c1, c2, c3, c4 }, 
which own channel dimensions of {256, 512, 1024, 2048}, correspondingly. We exclude conv1 from the pyramid 
construction due to its excessive memory usage. Because all levels of the pyramid outputs use the shared projec-
tion head and prediction head in the FPSiam’s subsequent steps, we fix the feature dimension of the output feature 
maps to d = 256 . Therefore, all additional 1× 1 and 3× 3 convolutional layers within the feature pyramid hold 
256-channel outputs. To flatten the output feature maps into feature vectors, we apply a global average pooling 
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Figure 2.  The detailed building components of the feature pyramid.
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layer. Next, a 3-layer MLP projection head (with a hidden layer of 2048 dimensions) is utilized to adjust the fea-
ture dimension to 2048. BN is applied to each fully connected (fc) layer, while the output fc layer has BN but no 
ReLU. The resulting 2048-dimensional output feature vectors are then passed through a 2-layer MLP prediction 
head with a bottleneck structure. The input and output of this prediction head are also 2048-D, while its hidden 
layer is 512-D. Only the hidden fc layers have BN applied, while the output fc layer lacks both BN and ReLU. 
Note that these feature pyramid, projection head, and prediction head are solely used during SSL pre-training 
and have no influence on the subsequent polyp detection stage.

Results
Metrics
The mean average precision (mAP) serves as a metric for evaluating the polyp detection performance of our 
FPSiam framework and other comparison methods. The calculation of mAP is consistent with the settings of the 
COCO  dataset62. Additionally, we report the COCO-style AP50 and AP75 results, which utilize IoU thresholds 
of 50% and 75%, respectively. The results are averaged over 5 independent trials.

Experimental details
We use 4 NVIDIA TESLA A100 40GB GPUs for conducting experiments. Our FPSiam framework is imple-
mented based on pytorch63 and mmselfsup64. During SSL pre-training, we set the batch size to 256, which is 
suitable for typical 4-GPU implementations. The encoder’s backbone is initialized with pre-trained ImageNet 
weights, which are readily obtainable. To prepare the images for input, they are randomly cropped and resized 
to 224× 224 using a scaling factor between 0.2 and 1.0. For data augmentation, we applied standard techniques, 
such as color jitter, grayscale, Gaussian blur, and random horizontal flips, as used in SimSiam. Specific settings 
are kept the same with SimSiam. All fundamental data augmentations are available in pytorch’s torchvision pack‑
age. The feature pyramid weight hyper-parameter related to the FPSiam framework itself is set to 0.5 ( � = 0.5 ). 
SGD optimizer with an initial learning rate of 0.05, a momentum of 0.9, and a weight decay of 0.0001 is used for 
pre-training. The cosine annealing schedule is used to adjust the learning rate according to the current epoch. 
However, the prediction MLP’s learning rate remained fixed without decaying. We employed batch normalization 
synchronized across devices, as per SimSiam. The SSL pre-training stage lasts for a total of 200 epochs.

For the downstream polyp detection task, we select two different representative detectors with the same 
ResNet50 backbone as our baselines. Namely, they are Faster R-CNN and RetinaNet, which are typical two-
stage and single-stage detectors, respectively. By utilizing the baseline models that serve as a standard reference 
point for evaluating other improved models, we can assess the effectiveness of our innovations and improve-
ments. We use their implementations in mmdetection65 framework. We freeze the layers in the stage conv1 of the 
backbone and fine-tune all other layers including BN in an end-to-end manner on the default 1× (12 epochs) 
schedule settings. The input images are resized to 480× 480 during both the training and inference phases. For 
data augmentation, we only apply random flipping with a probability of 0.5. The initial learning rate of the SGD 

Figure 3.  The architecture of the ResNet50 backbone. ci(i = 1, 2, 3, 4) represents the feature maps interacting 
with the feature pyramid of the proposed FPSiam framework. Each ci has the same meaning as in Fig. 2.
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optimizer is set to 0.002. The other configurations and hyper-parameters are consistent with the default settings 
in the mmdetection framework. Unless explicitly mentioned, all experiments are conducted under the same setup 
for self-supervised pre-training and downstream evaluation.

Ablation study
We conducted ablation experiments to investigate the impact of the proposed feature pyramid encoder module, 
as well as the weight distribution across local and global feature pyramid levels and the strategy of loading an 
ImageNet pre-trained backbone. The ‘base’ approach, which employs the original encoder, serves as the com-
parison baseline. We denote the method that replaces the original encoder with the feature pyramid encoder as 
‘base+FP’, and the method that initializes the backbone in ‘base’ approach with ImageNet pre-trained weights as 
‘base+img-pre’. Through the integration of the feature pyramid encoder and the ImageNet pre-trained backbone 
initialization with the ‘base’ method, we present our novel approach ‘FPSiam’. To evaluate the feature representa-
tion capability of the four aforementioned methods for the downstream polyp detection task, we measure the 
mAP metric on the LDPolypVideotest dataset. Due to the limitations in computing power, we present solely the 
outcomes of the Faster R-CNN detector for empirical reference.

The ablation study results are shown in Table 2, where we observe a gradual increasing trend in mAP metric 
from the ‘base’ to our FPSiam method. Specifically, the detection performance of ‘base+FP’ exhibits an improve-
ment of approximately 2.4 mAP over the ‘base’ method, indicating the efficacy of our proposed feature pyramid 
encoder. Moreover, we note that ‘base+img-pre’ shows a significant improvement of approximately 8.7 mAP 
compared to the ‘base’ method, underscoring the vital role played by ImageNet pre-trained weights in extracting 
superior feature representations for the downstream detection task. In addition, the detection performance of 
our FPSiam method surpasses that of ‘base+img-pre’ by 1.3 mAP, consolidating the superiority of our approach. 
We also explore the impact of different hyper-parameter � on the performance of our FPSiam method, with the 
results summarized in Table 2. We observe a trend where the detection performance initially improves with 
increasing � , before declining beyond a certain threshold. Our FPSiam method obtains the optimal mAP when 
� = 0.5 , which demonstrates that the balance of global term and local term in loss function (Eq. 8) is significant 
for our FPSiam method to work. Therefore, we use this as our default setting in other experiments. Although 
we did not conduct a more fine-grained ablation study on � due to the computational limitations, we found that 
for the extreme cases of � = 0.0 and � = 1.0 , our method exhibits better detection performance when � = 1.0 
(+ 0.8 mAP). It is in line with our intuition that local features hold greater relevance for dense prediction tasks 
like polyp detection, to some extent.

Comparison with traditional transfer learning method
To investigate the benefit of our FPSiam approach in clinical practice, we performed a comparative analysis with 
the transfer learning (TL)-based polyp detection method, which is presently prevalent in both research and 
real-world settings. The hyper-parameters and other detailed architecture of the TL model remained consistent 
with those described in  “Experimental details”. Additionally, we included results obtained from a randomly 
initialized backbone counterpart as a reference. The evaluation was conducted on the LDPolypVideo dataset 
using COCO-style mAP metrics, as presented in Table 3. Table 3 illustrates that our FPSiam method has achieved 
noticeably higher detection performance than the comparison TL method for both two-stage Faster R-CNN and 
single-stage RetinaNet detectors, + 2.3 mAP and + 3.6 mAP, respectively.

In order to provide further insights into the superior polyp detection performance of our FPSiam method, 
we conducted a visualization analysis of the embedding features outputted by the final layer of the residual net-
work backbone of each approach, utilizing Grad-CAM. As shown in Fig. 4, the FPSiam method is able to more 
precisely locate the boundaries of polyps and confidently pay less attention to the irrelevant parts of the images. 
Although the TL method can also notice the location of polyps in most cases, its attention scope is very rough 
and general. It can even fail in some situations, such as poor bowel preparation (fluid and foam present), poor 
imaging (reflection), or confusing shapes (existence of folded intestinal walls). The results reflect from the side 
the compelling localization ability of our FPSiam method to accurately activate polyp regions in the generated 
attention maps, thus obtaining better polyp detection performance than the TL method.

Table 2.  Empirical ablation study results on LDPolypVideo dataset. Significant values are in [bold].

Method Weight � mAP AP50 AP75

Base N/A 14.3 35.4 6.1

Base+FP 0.5 16.7 (+ 2.4) 42.5 5.9

Base+img-pre N/A 23.0 (+ 8.7) 47.3 19.6

FPSiam (ours)

0.0 22.1 (+ 7.8) 46.7 17.5

0.25 23.2 (+ 8.9) 48.0 19.3

0.5 24.3 (+ 10.0) 49.6 20.5

0.75 23.5 (+ 9.2) 47.7 19.8

1.0 22.9 (+ 8.6) 46.0 20.0
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Comparison with other state‑of‑the‑art SSL methods
We compared our FPSiam approach with six other state-of-the-art self-supervised learning methods that use 
CNNs as their backbone. These methods, namely  MoCo17,18,  SimCLR19,20,  BYOL21,  SimSiam23,  SwAV22, and 
 DenseCL66, were evaluated using ResNet50, pre-trained on the ImageNet dataset, to extract feature representa-
tions. For a fair comparison, we applied the default settings of batch size 256 in mmselfsup framework for all 
methods. Table 3 presents the comprehensive results of polyp detection on the LDPolypVideotest dataset.

As shown in Table 3, our FPSiam approach outperformed all other advanced SSL methods. When using 
SimSiam as the benchmark, which also serves as the baseline for our FPSiam method as discussed in “Self-
supervised visual representation learning”, we observe a marked decline in the performance of SimCLR, MoCo, 
and DenseCL. Conversely, SwAV, BYOL, and our FPSiam demonstrate a notable performance improvement. The 
potential reason is that SimCLR, MoCo, and DenseCL, need both positive and negative pairs in the contrastive 
manner. However, the LDPolypVideopretrain dataset used for pre-training is a video-based colonoscopy dataset 
that has not undergone any frame sampling or other similar operations. As a result, it contains many continuous 
frames that are temporally adjacent to each other and exhibit high levels of similarity (see Fig. 5). According 
to common logic, these frames should be considered positive pairs during contrastive learning. But actually, 
during the SSL pre-training, these frames are treated as negative pairs, thereby confusing the feature encoders.

In addition, among the three methods of MoCo, SimCLR, and DenseCL, SimCLR has the poorest perfor-
mance, with a decrease of 2.4 mAP and 2.9 mAP in Faster RCNN and RetinaNet detectors compared to the 
SimSiam baseline, respectively. This may be because, for a fair comparison, we set the batch size for pre-training 
of all SSL methods to 256. However, SimCLR heavily relies on a large batch size (such as 2048, and 4096) to 
provide sufficient negative pairs for achieving good performance. As the batch size decreases, its performance 
deteriorates  sharply21. Furthermore, among these six SSL methods, DenseCL shows a relatively small performance 
drop (− 1.4 mAP and − 2.5 mAP compared to the SimSiam baseline, respectively), while our FPSiam method 
achieves the best performance (+ 3.7 mAP and + 4.3 mAP compared to the worst, respectively). This indicates 
that learning local feature representations of images during the pre-training stage is crucial for downstream 
dense prediction tasks like polyp detection.

Evaluation on the other public dataset
To further assess the transfer ability of the self-supervised feature representation acquired through our FPSiam 
framework, we transferred the pre-trained weights from the LDPolypVideopretrain dataset to the polyp detection 
task of the CVC-VideoClinicDB dataset. We evaluated the detection performance of each comparison method 
mentioned above, including both state-of-the-art SSL methods and transfer learning method. The comprehen-
sive results are shown in Table 4. Based on the experimental results, we have observed that our FPSiam method 
achieves the optimal detection performance. Compared with other advanced SSL methods, FPSiam obtains 
a slightly higher mAP value than the suboptimal BYOL method (+ 2.8 mAP and + 1.1 mAP, respectively), 
and significantly outperforms both other self-supervised methods (+ 14.4 mAP and + 13.2 mAP compared 
to the worst SimCLR, respectively) and the widely used transfer learning method (+ 5.3 mAP and + 3.2 mAP, 
respectively). This finding demonstrates that FPSiam has indeed learned the general feature embeddings of 

Table 3.  Comparisons of the detection performance on LDPolypVideo dataset (ResNet50). Significant values 
are in [bold].

Baseline Method mAP AP50 AP75

Faster R-CNN

Random init 3.0 9.4 0.9

TL 22.0 50.0 15.9

SimSiam 23.0 (+ 1.0) 50.4 17.9

SimCLR 20.6 (− 1.4) 44.3 16.3

DenseCL 21.6 (− 0.4) 49.9 14.2

MoCo 21.5 (− 0.5) 46.9 16.4

SwAV 23.5 (+ 1.5) 53.9 16.0

BYOL 23.1 (+ 1.1) 52.1 16.2

FPSiam (ours) 24.3 (+ 2.3) 49.6 20.5

RetinaNet

Random init 6.7 17.7 3.6

TL 21.2 49.1 15.1

SimSiam 23.4 (+ 2.2) 50.0 18.0

SimCLR 20.5 (− 0.7) 44.7 16.5

DenseCL 20.9 (− 0.3) 46.4 15.4

MoCo 20.8 (− 0.4) 49.5 13.4

SwAV 23.9 (+ 2.7) 49.9 19.5

BYOL 23.6 (+ 2.4) 52.4 17.5

FPSiam (ours) 24.8 (+ 3.6) 50.4 20.6
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colonoscopic images. It has advantages over the TL method in generalizing to other datasets within the same 
colonoscopic domain.

In order to demonstrate the generalization of the FPSiam method to another dataset more intuitively, espe-
cially in challenging scenarios such as poor bowel preparation or poor imaging quality, we have visualized its 
polyp detection results on the CVC-VideoClinicDB dataset. Besides, we also provided the detection results of 
the TL counterpart for comparison. As shown in Fig. 6, our FPSiam approach illustrates heightened robustness 
and adaptability to various hard cases, which have to be solved before real-world application, compared to the 

Figure 4.  Visualizing the features of seven polyp images using ResNet50 with different weights through Grad-
CAM. The regions with higher transparency in the images indicate that the backbone network has paid more 
attention. The orange bounding boxes represent the ground truth delineating the locations of polyps in each 
image. The green and red bounding boxes denote accurate and erroneous predictions generated by different 
methods for each image respectively. FPSiam can activate more accurate polyp regions in the attention maps to 
make precise bounding box predictions. (a–c,e,g) A more precise bounding box localization capability of the 
FPSiam method than the TL method. TL method fails to locate polyp regions in some cases: (d) existence of 
yellow intestinal fluid, big bubble, and reflection; (e) existence of folded intestinal walls; (f) existence of folded 
intestinal walls and dense foam.
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TL methodology. While the TL method exhibits occurrences of both missed and false detection of polyps, our 
FPSiam approach consistently obtains precise localization of polyp positions.

Evaluation on the other backbone network
As it is well known that real-time polyp detection is crucial, a swifter backbone network is often used to extract 
features so as to speed up the detector’s inference procedure in clinical practice. In order to verify the adapt-
ability of our proposed FPSiam method to lightweight backbone networks, we conducted experiments using 
the renowned  MobileNet61 architecture. The assessment of detection performance on the LDPolypVideo dataset 
encompassed all SSL methods mentioned earlier, along with the TL method. The comprehensive outcomes are 
detailed in Table 5. Table 5 illustrates that our FPSiam approach consistently obtains superior detection per-
formance. It surpasses the vanilla ImageNet transfer learning method significantly (+ 2.7 mAP and + 3.7 mAP, 
respectively) and outperforms the suboptimal SimSiam approach (+ 1.1 mAP and + 1.3 mAP, respectively). 
This demonstrates that FPSiam serves not only as a means for acquiring representative knowledge for residual 

Figure 5.  Views of temporally adjacent frames for four patients in LDPolypVideo. For each patient, six frames 
show a high degree of similarity.

Table 4.  Comparisons of the detection performance on CVC-VideoClinicDB dataset (ResNet50). Significant 
values are in [bold].

Baseline Method mAP AP50 AP75

Faster R-CNN

Random init 13.4 33.5 5.8

TL 34.8 70.8 26.6

SimSiam 33.0 (− 1.8) 75.1 21.2

SimCLR 25.7 (− 9.1) 62.6 12.4

DenseCL 29.5 (− 5.3) 67.9 14.1

MoCo 26.2 (− 8.6) 65.8 12.3

SwAV 36.5 (+ 1.7) 76.4 26.5

BYOL 37.3 (+ 2.5) 77.5 27.2

FPSiam (ours) 40.1 (+ 5.3) 79.6 32.4

RetinaNet

Random init 16.9 44.3 5.7

TL 35.0 77.1 25.8

SimSiam 29.2 (− 5.8) 65.5 19.4

SimCLR 25.0 (− 10.0) 66.4 9.4

DenseCL 30.9 (− 4.1) 69.6 23.5

MoCo 28.5 (− 6.5) 69.8 18.3

SwAV 36.2 (+ 1.2) 77.9 29.4

BYOL 37.1 (+ 2.1) 73.7 30.0

FPSiam (ours) 38.2 (+ 3.2) 76.3 30.7
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networks but also exhibits adept elasticity to other lighter and faster convolutional neural networks. It stands as 
a general visual pre-training framework suitable for object detectors’ feature encoders.

Discussion
Novelty of the proposed FPSiam framework
In this study, we propose FPSiam, an innovative self-supervised learning approach that utilizes data without 
annotations from medical experts to train the feature encoder. The self-supervised encoder captures general 
feature representations of colonoscopic images, leading to enhanced performance in the downstream polyp 

Figure 6.  Generalizability of the FPSiam method to another dataset under various challenging conditions. 
Four representative hard cases in the CVC-VideoClinicDB dataset are used to evaluate FPSiam’s robustness and 
adaptability. The green bounding boxes are the ground truth of polyps in the frames. Blue bounding boxes and 
red bounding boxes are the predictions of the FPSiam method and TL method, respectively.

Table 5.  Comparisons of the detection performance on LDPolypVideo dataset (MobileNetV2). Significant 
values are in [bold].

Baseline Method mAP AP50 AP75

Faster R-CNN

Random init 2.8 9.2 0.9

TL 19.4 49.5 13.2

SimSiam 21.0 (+ 1.6) 51.3 13.5

SimCLR 17.5 (− 1.9) 40.5 14.4

DenseCL 18.7 (− 0.7) 45.2 13.9

MoCo 18.4 (− 1.0) 43.5 13.7

SwAV 20.6 (+ 1.2) 50.8 14.0

BYOL 20.4 (+ 1.0) 49.9 14.3

FPSiam (ours) 22.1 (+ 2.7) 49.5 17.8

RetinaNet

Random init 4.3 10.2 2.3

TL 18.8 47.8 12.9

SimSiam 21.2 (+ 2.4) 51.4 13.8

SimCLR 17.8 (− 1.0) 40.9 14.3

DenseCL 18.5 (− 0.3) 43.3 13.9

MoCo 18.3 (− 0.5) 44.5 13.3

SwAV 20.9 (+ 2.1) 50.0 15.7

BYOL 20.5 (+ 1.7) 49.7 14.7

FPSiam (ours) 22.5 (+ 3.7) 51.2 17.6
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detection task, especially on sparsely labeled datasets. Most contrastive learning methods optimize the encoder 
network by bringing the representations of positive pairs (different augmentation views of the same images) 
closer while pushing apart the representations of negative pairs (augmentation views from different images)17–20,66. 
However, unlike natural datasets, original non-curated colonoscopy datasets typically consist of video formats 
in clinical practice. As depicted in Fig. 5, these datasets contain temporally continuous frames and frames from 
different views of the same polyp lesion, exhibiting a high degree of similarity. The definition of positive and 
negative pairs in regular contrastive learning methods would consider these images as negative pairs, causing 
them to be pushed apart. This approach is clearly unreasonable, as it would confuse the feature encoder network 
and hinder the learning of better general feature representations for colonoscopic images. Experimental results 
presented in Tables 3 and 4 confirm this perspective, demonstrating the limitations of MoCo, SimCLR, and 
DenseCL. Taking into account the unique characteristics of colonoscopic datasets, we have designed FPSiam 
based on SimSiam, which does not rely on negative pairs.

Additionally, unlike conventional contrastive learning methods, we introduce the feature pyramid encoder 
module, a crucial component of FPSiam, to effectively extract and fuse feature representations among colono-
scopic images from both local and global perspectives. Our ablation results, as presented in Table 2, reveal that 
for dense prediction tasks like polyp detection, the ability of the backbone network to capture local features is of 
greater significance compared to its capability to encode global features, to a certain extent. To summarize, the 
experimental outcomes in “Results” demonstrate the superior detection capability of FPSiam on small labeled 
colonoscopic polyp datasets compared to other state-of-the-art self-supervised learning methods and transfer 
learning-based detection methods. Furthermore, the pretext representation learned by FPSiam exhibits enhanced 
transferability to other similar datasets within the same domain.

Limitations and future research directions
This study still has several limitations that need to be addressed. Firstly, the algorithm’s performance requires 
improvement to bridge the gap for real-world clinical applications. Despite extensive efforts in hyper-parameter 
optimization through grid search, the achieved detection performance in LDPolypVideo datasets is still approxi-
mately from 20.0 to 25.0 mAP. Unlike other public colonoscopy datasets that are often highly curated and bal-
anced, LDPolypVideo represents a more realistic clinical scenario. As depicted in Fig. 7, LDPolypVideo contains 

Figure 7.  Several representative hard cases in the LDPolypVideo dataset. The green bounding boxes are polyps 
in the frame, which are difficult to identify due to the complex situations presented in the colonoscopy live 
video.
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challenging situations that are prone to algorithmic  failures67. These challenging cases encountered in real-world 
settings result in a significant drop in detection performance, posing problems that must be addressed in the 
development of colonoscopy CAD systems. Introducing temporal-based techniques may be a potential avenue 
to address these challenges in video format data. Additionally, with transformer-based large language models 
(LLMs) gaining prominence in the NLP field and showcasing remarkable generalization  capabilities68–71, explor-
ing self-supervised methods based on vision transformers (ViTs) such as  MoCov341,  BEiT72,  MAE73,  SimMIM74 
and  MaskFeat75 or prompt fine-tuning from large vision models (LVMs), such as the recent SAM  model76, holds 
promise for further research directions. Nevertheless, due to the difference in image perception approaches 
between CNNs and ViTs, employing self-supervised learning for pre-training ViT backbones necessitates greater 
heterogeneity in data distribution, with the magnitude of data quantity being notably higher compared to  CNN77. 
Some SOTA methodologies even demand the utilization of multi-modal  data78–84. Presently, there is an absence 
of publicly available datasets meeting the criteria within the domain of colonoscopy. Despite LDpolypVideo 
standing as a huge dataset, its data homogeneity poses a significant challenge, resulting in a diminished pool of 
unique instances after deduplication. Therefore, it is imperative to collect a large-scale multi-modal colonoscopy 
dataset that includes not only colonoscopy videos but also examination reports in the future.

Secondly, it is widely recognized that real-time polyp detection is of paramount importance in clinical prac-
tice. In order to provide timely visual feedback to endoscopists and ensure precise surgical manipulation during 
colonoscopy, computer-aided polyp detection algorithms must achieve real-time performance and low end-to-
end latency. Although this study conducted relevant explorations on the faster MobileNet backbone, computa-
tional power limits the investigations of a wider range of lightweight backbone networks. Besides, verification 
of algorithm inference performance on different hardware devices and further validation of other well-known 
real-time detectors such as the YOLO  series85–90 constitute essential aspects for future research endeavors.

Finally, in this study, our algorithm focused solely on single-class detection. To validate its scalability, future 
work should include additional disease types observed during colonoscopy, as well as subtypes of polyps, such 
as adenomatous and hyperplastic polyps. Thereby promoting the comprehensive application of computer-aided 
diagnosis systems in colonoscopy.

Conclusions
In summary, FPSiam exhibits significant performance advancements in polyp detection during colonoscopy, 
surpassing traditional transfer learning methods and other state-of-the-art self-supervised learning techniques. 
With its SSL pre-training framework and reduced dependence on annotated data, FPSiam offers a labor-saving 
and cost-efficient approach to developing colonoscopy CAD systems. Moreover, the proposed FPSiam meth-
odology holds promise for addressing other video-based endoscopic image analysis challenges, particularly in 
scenarios where only a small portion of the dataset is labeled, and the majority of data remains unlabeled.

Data availability
The first dataset (LDPolypVideo) used for the analysis of this article is available in the official github repository of 
its paper (https:// github. com/ dashi shi/ LDPol ypVid eo- Bench mark). The second dataset used during the analysis 
is available in the GIANA challenge website (https:// giana. grand- chall enge. org/).

Code availability
 The code of the FPSiam method is available at https:// github. com/ GTYua ntt/ fpsiam.
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