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Fully automated deep learning 
models with smartphone 
applicability for prediction of pain 
using the Feline Grimace Scale
P. V. Steagall 1,2*, B. P. Monteiro 1, S. Marangoni 1, M. Moussa 3 & M. Sautié 3

This study used deep neural networks and machine learning models to predict facial landmark 
positions and pain scores using the Feline Grimace  Scale© (FGS). A total of 3447 face images of cats 
were annotated with 37 landmarks. Convolutional neural networks (CNN) were trained and selected 
according to size, prediction time, predictive performance (normalized root mean squared error, 
NRMSE) and suitability for smartphone technology. Geometric descriptors (n = 35) were computed. 
XGBoost models were trained and selected according to predictive performance (accuracy; mean 
square error, MSE). For prediction of facial landmarks, the best CNN model had NRMSE of 16.76% 
(ShuffleNetV2). For prediction of FGS scores, the best XGBoost model had accuracy of 95.5% and MSE 
of 0.0096. Models showed excellent predictive performance and accuracy to discriminate painful and 
non-painful cats. This technology can now be used for the development of an automated, smartphone 
application for acute pain assessment in cats.

Recognition of pain is the first step for appropriate treatment and essential to understand if analgesic therapies 
provide adequate pain  relief1. In individuals that cannot self-report, pain assessment is challenging and com-
monly relies on evoked behavioral responses or the use of pain scoring  systems2. However, these methods may 
lack validity, be cumbersome, observer-, training-, time- and gender-dependent and may not always capture the 
affective and motivational complexity of pain. Indeed, pain management is crucial to obtain reliable research 
outcomes in biomedical and neuroscience research using laboratory  animals3. Additionally, the benefits of pet 
ownership and the human-animal bond are undeniable to our  society4, especially after the COVID-19  pandemic5 
and for  children6 as well as for the use of naturally occurring disease models for translational research using 
domestic  species7. Therefore, pain assessment is also crucial for veterinary health  professionals8,9. A potential 
solution to overcome these aforementioned challenges is the use of technologies for automated pain assessment 
using artificial  intelligence10,11. This approach would eliminate observer bias, the workload (i.e. training) and 
time required for pain assessment in research. This would be of particular interest for end users and knowledge 
dissemination if such systems could be integrated into smartphone applications.

Changes in facial expressions related to pain have been identified in many animal  species12,13. They can be 
used to discriminate painful and non-painful individuals using grimace scales and scoring of action units (AU) 
that comprise a facial expression. The detailed applications and limitations of grimace scales are discussed 
 elsewhere14,15. However, still image or real-time pain scoring using grimace scales can be labor intensive and 
again, dependent on several  factors16, including video- and/or image capture and manual  scoring17. It is clear 
that fully automated models for facial recognition and grimace scale scoring are needed in pain  research11,18,19. 
Despite some advances in this field, research has not been published with fully automated models that include 
algorithm outputs of numerical grimace scale scores using dataset of animals of any coat color and type (i.e. short 
or long haired), breed, gender and age, and with naturally-occurring pain of different conditions (i.e. medical, 
surgical, trauma, etc.). The automated discrimination of painful and non-painful animals would provide guid-
ance to researchers and veterinarians to the need, or not, of the administration of analgesics without individual 
bias related to training or gender.
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The Feline Grimace  Scale© (FGS) is a valid, reliable, simple and practical tool for acute pain assessment in 
cats. It includes five action units (AU; ear position, orbital tightening, muzzle tension, whiskers change, and head 
position)20. Each AU is scored from 0 to 2, where 0 = AU is absent, 1 = moderate presence of AU or uncertainty 
over its presence or absence, and 2 = obvious presence of AU. The FGS score is the sum of scores from each AU 
divided by the maximum possible score; scores ≥ 0.39/1 indicate that the cat is likely in pain requiring interven-
tion. The FGS can be used for any type of acute pain and by veterinary professionals and  caregivers8,21,22.

This study aimed to use convolutional neural network (CNN) models to predict facial landmark positions and 
FGS  scores23. For prediction of landmark positions, models were evaluated regarding predictive performance, 
model size and prediction time for potential integration into smartphone applications. For prediction of FGS 
scores, models were evaluated for their discriminatory ability (painful or not painful), accuracy and error. The 
authors wanted to evaluate model backbones that would be applicable to automated pain assessment in cats but 
also for other grimace scales in mammalian species.

Results
Phase I—Prediction of facial landmark positions
A total of 11 CNN-based models with different architectures and trained on different augmented datasets were 
selected. A summary of the size, prediction time and predictive performance of these models is presented on 
Table 1 and Supplementary Figs. S1–S5. Regardless of the proposed transformations, the ShuffleNetV2, Efficient-
NetB0 and MobileNetV3 architectures showed the best predictive performances (NRMSE of 16.76%, 16.89% and 
18.16%, respectively). Face alignment increased the predictive performance and preprocessing times (prediction 
time), especially when used in conjunction with the Laplacian filter (Fig. 1, Supplementary Fig. S2). The models 
without any preprocessing edge detection filters showed the lowest predictive performance and largest differ-
ences amongst AU for prediction errors. Whiskers change and head position showed the largest prediction errors 
whereas orbital tightening and muzzle tension, the smallest prediction errors (Fig. 1).

The structural transformations showed that the replacement of the GAP2D layer by a flatten layer increased 
predictive performance. Symmetric parallel convolutional layer blocks increased the performance in most of the 
architectures and had a better predictive performance than asymmetric or hybrid kernels.

Phase II—Prediction of FGS scores
Predictive performances of the models used for binary classification, regression and ordinal classification using 
different combinations of geometric descriptors or AU are reported in Tables 2, 3 and 4, respectively. For binary 
classification models, those using the ‘AND’ aggregation function rule and including all 35 geometric descriptors 
achieved the highest accuracy (95.5%) and AUROC of 0.97 (Supplementary Figs. S6–S7). The hyperparameter 

Table 1.  Model size, prediction time and predictive performance of 11 convolutional neural network models 
(CNN) analyzed for the automated prediction of 37 facial landmarks using 120 random facial images of cats. A: 
GlobalAveragePooling2D (GAP2D) layer. S: Block of parallel convolutional layers with symmetric kernels. M: 
Block of parallel convolutional layers with asymmetric kernels. H: Block of parallel convolutional layers with 
hybrid (symmetric and asymmetric) kernels. F: Flatten layer. FC: Fully Connected Layers. Min: minimalistic 
version of the corresponding model. The first numbered notations next to the models’ name indicate scale 
factor (ShuffleNetV2), width multiplier (MobileNetV3Large), or that the model does not have the 41 top 
layers (EfficientNetB0_-41_F). For ShuffleNetV2 models, the second number indicates the bottleneck ratio. 
Prediction time and predictive performance were evaluated for aligned and non-aligned faces. Size was 
measured as number of parameters and reported as Np ×  106. Prediction time was measured as inference 
plus preprocessing time and reported as seconds per image (s/i). Predictive performance was measured as 
Normalized Root Mean Squared Error (NRMSE) and reported as percentage (%). The NRMSEw refers to the 
NRMSE calculated after excluding the10 landmarks with the highest prediction errors (landmarks 6; 7; 27; 28; 
29; 30; 31; 32; 36; 37). The CNN models were trained on two types of datasets including those with or without 
preprocessing by Laplacian filters (Lap or No-Lap, respectively).

CNN models

Non-aligned faces Aligned faces

Np  (106) DatasetNRMSE (%) NRMSEw (%) Time (s/i) NRMSE (%) NRMSEw (%) Time (s/i)

ShuffleNetV2_0.75_1_F 18.08 17.14 0.0406 16.76 14.85 0.0460 6.17 Lap

EfficientNetB0_F_M 18.68 17.71 0.0687 16.89 15.12 0.0813 10.10 Lap

EfficientNetB0_F 19.33 18.20 0.0625 17.17 15.79 0.0708 8.69 Lap

MobileNetV3Large_1.0_A 20.21 18.77 0.0399 18.16 16.89 0.0472 4.32 Lap

MobileNetV3Large_Min_F 20.44 19.07 0.0335 19.12 17.95 0.0408 2.76 Lap

EfficientNetB0_A 20.75 18.72 0.0483 19.16 18.15 0.0574 4.14 No-Lap

ShuffleNetV2_0.5_1_A_M 22.17 20.59 0.0322 18.67 17.01 0.0409 2.50 No-Lap

ShuffleNetV2_0.5_1_A_S 22.24 21.72 0.0383 18.71 17.42 0.0353 3.93 No-Lap

ShuffleNetV2_0.5_1_F_FC_H 22.56 21.25 0.0407 19.24 18.03 0.0419 10.63 No-Lap

EfficientNetB0_F_FC_H 22.61 21.39 0.0701 19.71 18.12 0.0788 10.18 No-Lap

EfficientNetB0_-41_F 22.79 21.07 0.0558 19.12 18.11 0.0598 6.16 Lap
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"scale_pos_weight" was assigned 4.77 when the output variable was obtained using the AND aggregation function 
and 2.64 when the OR aggregation function was used. For regression models, those using the ‘Mean’ aggregation 
function rule and including only geometric descriptors selected by Boruta–Shap algorithm (n = 10) achieved the 
lowest error (MSE = 0.0096). For ordinal classification models, those using the ‘Mode’ aggregation function rule 
performed best for most AU, except for whiskers change and head position for which the ‘Minimum’ aggregation 
performed better. The largest prediction errors were observed for the AU muzzle tension and whiskers change. 
The PCA scores confirmed the discriminatory ability of binary classification models between ‘painful’ and ‘non-
painful’ cats (Supplementary Figs. S8–S9).

Discussion
From laboratory animals in biomedical research, pet medicine, farm animal production to people who cannot 
self-report pain (e.g. infants and individuals with dementia), there is an urgent need in our society for automated 
acute pain assessment systems with smartphone applicability that are independent of observer, species, training, 
sex, etc. In this study, we proposed a three-component independent system for prediction of facial landmark posi-
tion, computation of geometric descriptors and the prediction of FGS scores. Three CNN models (ShuffleNetV2, 
EfficientNetB0 and MobileNetV3 architectures) including preprocessing based on face alignment and Laplacian 
edge detection filter presented the best predictive performance with reasonable prediction time and model size 
that could be suitable for a smartphone application to predict facial landmark positions (Fig. 1, Supplementary 
Fig S2). For the prediction of FGS scores using computation of geometric descriptors, binary classification models 
achieved high accuracy (≥ 95%) and discriminatory ability between painful and non-painful cats (Table 2, Supple-
mentary Figs. S6–S7). We found that regression models for total FGS scores and ordinal classification models for 
each AU scores provided different MSE depending on the specific AU involved (Tables 3, 4). This system, using 

Figure 1.  Results from facial landmark prediction. Top: examples of facial images of cats showing predictive 
performance of two convolutional neural network models (ShuffleNetV2_ 0.75_1) for the prediction of 37 
landmarks with (left) and without (right) face alignment. ShuffleNetV2 models were based on the use of 
pointwise group, depthwise convolutions, bottleneck-like structures, and a channel shuffle operation. The first 
number after the architecture name is the scale factor (0.75) and the second number is the bottleneck ratio (1). 
Green dots: predicted landmarks. Red dots: ground truth landmarks. In the images of unaligned faces (top 
right), the distances between the predicted and ground truth landmarks for one of the ears and one of eyes are 
illustrated with blue light lines. Both models include preprocessing by Laplacian edge detection filter of kernel 
size 3 × 3. Preprocessing by face alignment improved predictive performance as observed by the green and red 
dots becoming closer. Bottom: bar graphs showing the predictive performance for facial landmark positions 
linked to each of the five action units of the Feline Grimace Scale (ear position, orbital tightening, muzzle 
tension, whiskers change and head position) with (left) and without (right) face alignment. The models were 
evaluated on a test dataset of 120 randomly selected images. Data are reported as normalized root mean square 
error (NRMSE (%)), which were lower when with face alignment indicating a better fit between the predicted 
and ground truth landmarks (bottom left).
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Table 2.  Predictive performance of binary classification models based on Feline Grimace Scale (FGS) 
and different combinations of geometric descriptors (features). All GD: all 35 geometric descriptors. RFE: 
geometric descriptors selected by the recursive feature elimination algorithm. Boruta–Shap: geometric 
descriptors selected by the Boruta algorithm based on Shapley values. wWhiskers: geometric descriptors 
resulting from the exclusion of those associated with the action unit Whiskers change. wHP: geometric 
descriptors resulting from the exclusion of those associated with the action unit Head position. wWHP: 
geometric descriptors resulting from the exclusion of those associated with the action unit Whiskers change 
and Head position. N: number of geometric descriptors. Binary classification of ‘painful’ or ‘non-painful’ 
cats was based on total FGS scores and cut-off scores for administration of analgesia (FGS scores ≥ 0.4/1) as 
previously  reported20. Data are reported as accuracy (%) and area under the receiver operator characteristic 
curve (AUROC). The ‘AND’ and ‘OR’ rules were used to aggregate the values assigned to the same image by 
multiple raters. For example, using the rule ‘AND’, an image was assigned 1 if and only all raters assigned 1 to 
that image and 0 if at least one rater assigned 1. Using the rule ‘OR’, an image was assigned 1 if at least one rater 
assigned 1 to that image and 0 if all raters assigned 0 to that image.

Features

AND rule OR rule

Accuracy (%) AUROC N Accuracy (%) AUROC N

All GD 95.51 0.97 35 92.86 0.95 35

RFE 94.38 0.96 30 93.26 0.94 16

Boruta-Shap 92.46 0.95 10 89.89 0.94 18

wWhiskers 94.05 0.97 30 88.76 0.94 30

wHP 93.26 0.97 28 92.13 0.95 28

wWHP 91.01 0.96 23 89.89 0.93 23

Table 3.  Predictive performance of regression models based on Feline Grimace Scale (FGS) scores and 
different combinations of geometric descriptors (features). All GD: all 35 geometric descriptors. RFE: 
geometric descriptors selected by the recursive feature elimination algorithm. Boruta–Shap: geometric 
descriptors selected by the Boruta algorithm based on Shapley values. wWhiskers: geometric descriptors 
resulting from the exclusion of those associated with the action unit Whiskers change. wHP: geometric 
descriptors resulting from the exclusion of those associated with the action unit Head position. wWHP: 
geometric descriptors resulting from the exclusion of those associated with the action units Whiskers change 
and Head position. N: number of geometric descriptors. Regression models used total FGS scores (ratio 0–1.0). 
Data are reported as mean squared error (MSE). The ‘Mean’, ‘Maximum’ and ‘Minimum’ aggregation functions 
were used to aggregate the values assigned to the same image by multiple raters.

Features

Mean Maximum Minimum

MSE N MSE N MSE N

All GD 0.0104 35 0.0129 35 0.0121 35

RFE 0.0101 32 0.0136 26 0.0127 30

Boruta-Shap 0.0096 19 0.0139 16 0.0124 19

wWhiskers 0.0121 30 0.0147 30 0.0143 30

wHP 0.0127 28 0.0137 28 0.0159 28

wWHP 0.0149 23 0.0159 23 0.0182 23

Table 4.  Predictive performance of models used for ordinal classification based on Feline Grimace Scale 
(FGS) scores and each of the five action units of the FGS. Ordinal classification models used the scores for 
each AU (0, 1 or 2). Data are reported as mean squared error (MSE). The ‘Mode’, ‘Maximum’ and ‘Minimum’ 
aggregation functions were used to aggregate the scores assigned to the same image by multiple raters.

Action units MSE (Mode) MSE (Maximum) MSE (Minimum)

Ear position 0.0806 0.0895 0.2158

Orbital tightening 0.1092 0.1491 0.1343

Muzzle tension 0.3134 0.4677 0.3431

Whiskers change 0.2258 0.4552 0.1774

Head position 0.1674 0.2089 0.1465
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CNN and ensemble learning models applied explicitly to a validated grimace scale, showed promising results 
for automated pain assessment in cats with smartphone applicability as it can predict FGS scores with excellent 
accuracy and discriminatory ability, and minimal error (Table 2, Supplementary Figs. S6–S9). The technology 
can also now be further developed as a backbone model for grimace scales in other mammalian species.

The use of automated methods for recognition of pain using facial expressions and grimace scales is an excit-
ing field of research. Indeed, there has been an interest in solving the problem (pain assessment) using binary 
classifications and there are several examples in the literature. Early work in rats included a partially automated 
approach, the Rodent Face Finder that generates picture files from videos for pain  assessment24. A CNN model 
was able to categorize images of white mice using binary outcomes (no pain or pain) with high accuracy (94%)19. 
Another model in mice recognized the absence or presence of postsurgical pain with 99%  accuracy25. Geometric 
landmarks were used successfully to quantify changes in facial shapes associated with pain in a small number of 
domestic shorthaired cats before and after  ovariohysterectomy26 and/or administration of analgesics using the 
anatomy of the cat facial musculature and expressions of the cat’s Facial Action Coding System (FACS)27. The 
same model backbone was recently applied to classify painful versus non-painful cats using a landmark-based 
(using multi-region vectors and Multilayer Perceptron neural network based on manually annotated landmarks) 
or deep learning-black box (ResNet50 architecture using raw images without landmarks) approaches with and 
without data augmentation and face alignment. Both methods presented similar accuracy of above 72%28. Con-
trarily, our system was built explicitly on a robust semi-automatic annotated dataset and a well-designed two-
phase approach using a validated acute pain scoring system in cats, the  FGS20. Our data included total FGS and 
AU scores provided by image assessment when studies were performed. The dataset included different sources of 
naturally occurring pain in cats of different age, coat-color and type, breed, and sex with high accuracy (close to 
96%). In our study, we did not evaluate any black-box models, which are less labor-intensive but do not provide 
background information for classification decisions. It is beyond the aim of our study to review the literature on 
facial recognition and pain assessment in animals but it is clear that there is a need for studies using automated 
methods of pain assessment using grimace scales that provide more information than binary classifications 
with for example, objective grimace scale scores using validated scales. Our present study provides prediction of 
landmark positions and actual FGS scores including for each AU (i.e. degrees of pain). Previous work in sheep 
using support vector machines resulted in accuracy of only 67% when using changes in facial expressions and 
nine AU for pain  assessment29.

Recently, the development and validation of a two-component software platform that simplifies and standard-
izes mouse grimace analyses have been published using a large number of  images16. It detects the mouse face/
body (RetinaNet architecture) and predicts Mouse Grimace Scale (MGS) scores (ResNet50 architecture) using 
predictive performance as the outcome. In our study, model size and prediction time were also important for 
outcomes as these parameters are fundamental during smartphone integrations. For this reason, our proposed 
system leveraged fast and light CNN and ensemble learning models. The prediction of MGS scores was performed 
using a black-box method and it is not possible for the user to know how the CNN predicts MGS scores, especially 
in the case of unexpected scores. Our system explicitly involves the prediction of facial landmarks, calculation 
of geometric descriptors and FGS scores in CNN models based on semi-automatic annotations, geometric 
transformations and original FGS scores. Considering that the FGS provides a cut-off for the administration 
of analgesia, our system is able to alert the end-user when the cat is sufficiently in pain to require intervention 
with high discriminatory ability (AUROC of 97%). The combination of these factors allowed us to find highly 
accurate and discriminatory models using a relatively small dataset. Therefore, our system could identify and 
explain unexpected scores as geometric descriptors can be calculated and identified separately to predict FGS 
scores. Additionally, our system assumes that the user will always present a cat face in frontal position without 
a component of image pre-validation that recognizes the cat’s face itself. On the other hand, our work was more 
laborious than the MGS software as it required careful annotation of each image for the prediction of facial 
landmark positions. Manual annotations are time-consuming, but they may account for differences in facial 
morphology, breed and species differences.

In cats, pain has been historically neglected, under-recognized, under-diagnosed, and under-treated30. The 
knowledge of feline pain management has evolved with the advent of pain scoring systems. However, published 
behavior-based scales can be long and time-consuming and, in some cases, they are only valid for a single type 
of pain or have only undergone partial validation. Our proposed automated system using the FGS may overcome 
these limitations, especially with the potential of a user-friendly smartphone application that could widespread 
its use. Of interest, whiskers change and muzzle tension have consistently presented lower inter-rater reliability 
compared with the other  AUs8,17,20–22. This information was corroborated for the prediction of AU scores with 
the largest prediction errors observed for muzzle tension and whiskers change. On the other hand, whiskers 
change and head position presented the largest prediction errors while orbital tightening and muzzle tension 
presented the lowest prediction errors (Fig. 1, Table 4). This finding might demonstrate possible inconsisten-
cies with manual annotation of landmarks related to whiskers change and head position, which did not affect 
accuracy of pain scoring. The XGBoost binary classification models that did not include geometrical descriptors 
linked to whiskers change and head position still reached an accuracy of 94% and 93%, respectively (Table 2). 
Regression models without these two AUs presented MSE of 0.0121 and 0.0127 when using the mean of total 
FGS scores assigned to each image (Table 3).

The advantages of our system can be summarized into three main elements. First, the landmark-based 
approach using the FGS and its consequent geometric descriptors obtained models with good predictive per-
formance using a small dataset and training times. This approach allows each AU to be scored separately, or 
even not scored at all, with minimal impact on accuracy. The results can be fine tuned after prediction of FGS 
scores from images as scores for each AU and the corresponding geometric descriptors are provided and could 
explain unexpected scores to the end-user (i.e. non-black-box approach). Second, each component/functionality 



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21584  | https://doi.org/10.1038/s41598-023-49031-2

www.nature.com/scientificreports/

is independent; therefore, prediction of facial landmark position, computation of geometric descriptors or predic-
tion of FGS scores could be performed independently of one or another. Third, each component can be indepen-
dently improved. For example, component 1 (prediction of facial landmark positions) was improved by including 
preprocessing based on face alignment and edge detection filter, and/or models’ structural transformations.

This study has limitations. As mentioned before, we did not use black-box models or a preliminary phase that 
includes facial recognition of a cat. It should be noted that predictive performance was best using frontal face 
positions. It is expected that predictive performance will be compromised with partial frontal or side position 
images. In other words, a smartphone application would require some guidance to end-users with face alignment 
of the cat. We computed geometric descriptors and included transformations that may account for geometric 
variations and face morphology due to age (adult cats versus kittens), sex, coat color, breed, etc. to minimize 
these effects on predictive performance while reducing variations in image brightness, contrast and/or color 
balance. For the prediction of facial landmark positions, the ShuffleNetV2, EfficientNetB0 and MobileNetV3 
architectures using face alignment showed the best predictive performances. However, this type of preprocessing 
has the disadvantage that it requires semi-automatic pre-annotation of 10 of the 37 landmarks, or prior training 
of models for the prediction of these 10 landmarks. The number of landmarks could be reduced to only 2, if 
figures containing only the face or the relevant features for the determination of the FGS AU were to be used. The 
development of a smartphone application with automated acute pain detection capabilities should incorporate 
all three components presented in this study. Ideally, the predictive performance should not be reduced by inte-
gration of these components for this purpose. If the latter is the case, models for prediction of FGS scores based 
on facial subregions or the use of a heatmap-based CNN architecture for detecting facial landmarks could be a 
potential solution for this issue. Additionally, the high accuracy of our models for the prediction of FGS scores 
were only possible with the use of real-time or image pain scores by raters who were veterinarians with experience 
in feline acute pain assessment. Finally, we hope that this model backbone could be applied to other mammalian 
species. However, changes in facial morphology, geometric variations, dataset size and heterogeneity, species, and 
the use of other validated grimace scales may affect study outcomes even when applying a similar methodology.

In conclusion, for the prediction of facial landmark positions, models using ShuffleNetV2, EfficientNetB0 
and MobileNetV3 architectures showed the best predictive performances. Image preprocessing with face align-
ment and Laplacian edge detection filter improved predictive performance when compared to preprocessing 
without face alignment or based on other filters, respectively. For the prediction of total FGS scores and each AU, 
XGBoost models using binary classification and 35 geometric descriptors showed the best predictive performance 
with high accuracy (95.5%). Principal Component Analysis showed a well-defined distinction between painful 
and non-painful cats. In summary, deep-learning-based models for facial landmark prediction and ensemble 
learning models for FGS score prediction presented suitable sizes and prediction times, and excellent predictive 
performance and accuracy to discriminate painful and non-painful cats. This technology can be used for subse-
quent development of a smartphone application for automated acute pain assessment in cats based on the FGS.

Methods
This study was divided in Phases I and II. Phase I involved the prediction of facial landmarks position and Phase 
II, the prediction of FGS scores (Fig. 2).

Figure 2.  Schematic diagram of the steps and procedures for automated prediction of facial landmarks and 
Feline Grimace Scale (FGS) scores using facial images of domestic cats with and without naturally-occurring 
pain. Phase I involved component 1 (prediction of facial landmark positions). Phase II involved component 2 
(computation of geometrical descriptors) and component 3 (prediction of FGS scores). In component 1, the 
gray and orange bars represent preprocessing with edge detection filters and face alignment, respectively; the 
blue rectangle, yellow and light grey bars represent convolutional neural networks for prediction of 37 facial 
landmarks. In component 3, the green rectangle represents the XGBoost models.
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Datasets
In Phase I, a dataset including 3447 facial images of cats from three main sources (research studies, FGS mobile 
phone application and Kaggle dataset) was used. Images from research studies (n = 1655) were collected from cats 
with or without different degrees of naturally-occurring pain during six clinical trials. These studies are named 
herein as  A20,  B17,31,  C21,  D32,  E33 and  F34; they were performed after review and approval by the institutional 
animal care and use committee of the Faculty of Veterinary Medicine, Université de Montréal (17-Rech-1863, 
18-Rech-1825, 17-Rech-1890, 20-Rech-2068, 20-Rech-2075 and 21-Rech-2132, respectively). Dataset included 
cats of different coat color, age, sex and breed. Still images had been collected from video recordings of cats while 
they were undisturbed in their hospital cages at different time points (i.e. before and after surgery; before and 
after administration of analgesia). Images were also collected from the pool of images voluntarily submitted by 
users of the FGS mobile phone application (n = 1092) and from the open-access Kaggle dataset (n = 700) (www. 
kaggle. com/ crawf ord/ cat- datas et). Data were available in “.png” format.

In Phase II, a dataset including images from the research studies dataset and their respective FGS scores 
(n = 1188 out of 1655 images) was used. Scores were given by one or more raters during data collection of stud-
ies A–F17,20,31–33. Data were organized into an Excel file containing the image and rater identification as well as 
their scores for each AU of that image. Raters were veterinarians experienced with acute pain assessment in 
cats and the use of the FGS (6 females and 2 males). Action units were scored as ‘0’, ‘1’or ‘2’, where ‘0’ = AU is 
absent; ‘1’ = moderate presence of AU or uncertainty over its presence or absence; and ‘2’ = obvious presence 
of  AU17,20,31–33. Total FGS scores were calculated as the sum of all AUs divided by the maximum possible score 
based on the number of AUs that were scored for each image; thus, total FGS scores were available as ratios.

Landmark positions and semi-automatic annotations
A total of 37 facial landmarks were defined based on the five AU of the FGS by two investigators (BM and PVS) 
(Fig. 3). Landmarks (annotation points) were added to facial images of cats to visually delineate each AU while 
observing the changes in these landmarks’ positions from images of non-painful and painful cats. Once land-
marks were defined, they were numbered and their anatomical location described (Supplementary Figs. S10–S11; 
Table S1). Thereafter, a software was specifically designed by one of the investigators (MM) for semi-automatic 

Figure 3.  Examples of images of cats with 37 facial landmarks based on the five action units (AU) of the 
Feline Grimace Scale (FGS). Each AU is represented by a different color. Ear position: red. Orbital tightening: 
light blue. Muzzle tension: green. Whiskers change: dark blue. Head position: pink. Note the different facial 
expressions between non-painful (images on the left) and painful (images on the right) cats. Painful cats 
generally present with lowered ears rotating outwardly, squinted eyes, tense muzzle and whiskers, and lowered 
head position in relation to the shoulders.

http://www.kaggle.com/crawford/cat-dataset
http://www.kaggle.com/crawford/cat-dataset
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annotation of the 37 facial landmarks on each image. Data from each landmark (coordinate x and y) were saved 
automatically in .txt format and converted to .xlsx format using one file converter.

The reliability of these annotations using this software was confirmed. Briefly, three raters annotated 20 ran-
dom images twice four days apart. Inter- and intra-rater reliability were calculated using weighted Kappa and 
intraclass correlation coefficient, respectively, showing good reliability of the tool (unpublished data). Subse-
quently, all 3447 images were annotated by one of the investigators who participated in the reliability trial (SM) 
using such software. On average, 50 images were annotated daily for 69 days.

Phase I—Prediction of facial landmark positions using convolutional neural network models
Convolutional neural network models (CNN) were developed by two investigators (MS and MM) to predict 
the coordinates of the 37 facial landmark  positions23,35. A total of 3447 facial images were used in this phase.

Dataset augmentation and transformations
The dataset was augmented for increased size and heterogeneity and consequent suitability for deep learning. 
Geometric and color-space transformations were randomly introduced to the original images (Fig. 4)36. Geo-
metric transformations included: rotation, flips, shearing, and face cropping and resizing. Color-space transfor-
mations included: contrast, sharpness, brightness and color balance. Gaussian blur filter was also applied. The 
values of the parameters linked to these transformations were randomly applied in the following ranges using 
predefined probability distributions: rotation [(3–19), (341–357)]; shearing (− 0.16, 0.18); flips (left–right flip, 
rotation − 90, rotation − 270); contrast (0.6–2); sharpness (0.4–8); brightness (0.7–1.6); color balance (0.2–3.5) 
and Gaussian blur (1.05–2.9)36,37. As part of geometric transformations, face cropping and resizing predicted 
the boundaries of faces using the Haar Cascade method implemented in  OpenCV37,38. Each image was cropped 
using a scale factor of 1.01 and minNeighbors parameter of 5. Only cropped images having an area A greater 
than 0.4*Ao, where Ao is the area of the original image, were accepted. Accepted images were then resized back 
to their original size. Two main image preprocessing transformations were used including face alignment and 
edge detection filters (Fig. 4).

Figure 4.  Examples of facial images of cats after dataset augmentation and transformations. (a) Images 
generated after randomly introducing geometric and color-space transformation (including Gaussian blur 
filter) to the original images for dataset augmentation. (b) Images before (left) and after (right) face alignment. 
The 2D face alignment was performed before the application of convolutional neural network models for facial 
landmark detection. Two separate groups of landmarks were used: landmarks 13, 14, 17 and 18 were used 
for calculation of the rotation angles; landmarks 3, 10, 29, 30, 31, 32, 36 and 37 were used for cropping and 
resizing so faces have approximately the same orientation and size. The presence of all facial landmarks was 
considered more important than the size or the position of the face. (c) Images before and after edge detection 
filters. Images were preprocessed independently by each of four edge detection filters before application of 
convolutional neural network models for facial landmark detection. Edge detection filters were used to reduce 
the influence of variations in brightness, contrast or color balance on the coordinate prediction. From top to 
bottom: raw images and images preprocessed by Laplacian filter, Laplacian and Bilateral filters, Prewitt filters 
and Sobel filters, respectively. Kernels of 3 × 3 size were used for Sobel, Prewitt and Laplacian filters. The latter 
was used directly or after application of the Bilateral filter to reduce noise. The parameter values for Bilateral 
filter were 3 for the pixel neighborhood diameter, and 100 for SigmaColor and SigmaSpace. For the other 
filters, the weighted sum of the derived images was calculated after convolving the image with its vertical and 
horizontal masks.
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Models design
Following exploration of multiple CNN-based models with different architectures and trained on different aug-
mented datasets, four Keras models pretrained on ImageNet (NASNetMobile, EfficientNetB0, MobileNetV2 and 
MobileNetV3) and other CNN-based models including ShuffleNetV2 were used. Several changes were introduced 
in these models after removing the last layer. The blocks of the NASNet architecture (NASNetMobile) were 
designed by the authors using a method based on the Neural Architecture Search (NAS)39. These blocks were 
stacked to form a high dimensional architecture, which was trained and evaluated on another image classification 
dataset, ImageNet. Features learned by NASNet improved object  detection40. EfficientNetB0 was designed using 
a multi-objective neural architecture search that optimizes both accuracy and floating-point operations using 
inverted bottleneck residual blocks and squeeze-and-excitation  blocks41. MobileNetV2 and MobileNetV3 were 
used with different adaptations for landmark prediction as in previous  studies42,43. MobileNetV2 was designed 
using bottleneck and inverted residual blocks containing pointwise and depthwise convolutions to contribute to 
image classification, object detection and semantic  segmentation44. For MobileNetV3, a platform-aware Neural 
Architecture for block-wise search and the NetAdapt algorithm were used to optimize the number of filters per 
 layer45. Non-pretrained ShuffleNetV2 models were designed using pointwise group and depthwise convolutions, 
bottleneck-like structures, and a channel shuffle  operation46.

Initially, most models were built with a simple structure at the top of the adopted CNN architecture consisting 
of two layers, the GlobalAveragePooling2D (GAP2D) and the dense output layers. Then, three types of transfor-
mations were added: (1) one or two dense layers below the output layer; (2) the GAP2D layer was replaced by a 
flatten layer; and (3) a block of parallel convolutional layers was inserted between the GAP2D or flatten layer and 
the previous layer. These parallel convolutional layer blocks had symmetric, asymmetric or hybrid (symmetric 
and asymmetric) kernels. The activation function ReLu was used with the padding ‘same’.

Training and evaluation of the models
The best models were chosen after a first training session in which multiple values of 2 groups of structural hyper-
parameters were tested, some related to the new layers added (e.g. number of neurons, layers) and others directly 
related to the CNN architectures (e.g. width multiplier, bottleneck ratio). Then, to increase the performance of 
these models, those with the best values of the hyperparameters related to the training setup such as validation 
loss, learning rate, batch size, optimizer, callback hyperparameters, among others, were selected.

Three metrics were used to evaluate the models that could be suitable for a smartphone application on a test 
set of 120 randomly selected images:

• Model size referred to the number of parameters or storage space required by the model.
• Prediction time referred to the time taken to predict the positions of all facial landmarks in an image (infer-

ence time plus preprocessing time).
• Predictive performance was calculated using the Normalized Root Mean Square Error (NRMSE). The NRMSE 

(%) is defined as the average normalized Euclidean distance between the predicted landmarks and the cor-
responding ground truth landmarks (i.e. by semi-automatic annotation) expressed as percentage. A lower 
NRMSE value in this context indicates a better fit between the predicted and ground truth landmarks.

Equation for the calculation of NRMSE (%):

N : Total number of landmarks in the test dataset, N = IL
I : Total number of images in the test dataset.
L : Number of landmarks per image (37).
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Phase II—Prediction of FGS scores based on geometric descriptors and ensemble learning models
XGBoost models were implemented as part of the ensemble learning strategy by one investigator (MS) to predict 
FGS scores based on geometrical descriptors calculated from the facial landmarks strategy. A total of 1188 images 
and their respective FGS scores were used.

NRMSE(%) = NRMSE × 100

NRMSE(%) =









1

N

�I

k=1

L
�

i=1

�

�

x
p
i,k − x

g
i,k

�2

+

�

y
p
i,k − y

g
i,k

�2

dn,k









× 100

dn,k =

√

(

x
g
l33,k − x

g
l34,k

)2

+

(

y
g
l33,k − y

g
l34,k

)2



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21584  | https://doi.org/10.1038/s41598-023-49031-2

www.nature.com/scientificreports/

Geometric descriptors
Three types of geometric descriptors were defined: angles, ratios of distances (between landmarks) and ratios of 
areas (quadrilaterals whose vertices were landmarks) (Fig. 5, Supplementary Figs. S12–S16). Most geometrical 
descriptors were averages of geometric properties of the same type (angles, ratios of distances or areas) but cal-
culated from different sets of facial landmarks. Thus, the geometric morphology of the cat’s face and its changes 
according to the pain severity was explored using 35 geometric descriptors that were later used for predicting 
FGS scores. This included a total of 10, 5, 8, 5 and 7 geometrical descriptors for ear position, orbital tightening, 
muzzle tension, whiskers change and head position, respectively.

XGBoost models
Three types of XGBoost models were implemented for the prediction of FGS scores using geometric descriptors:

• Binary classification models using ‘painful’ or ‘non-painful’ categories according to the total FGS score and 
cut-off for administration of analgesia (FGS scores ≥ 0.4/1 were categorized as ‘painful’)20.

• Regression models using total FGS scores (ratio; 0–1.0).
• Ordinal classification models using the scores for each AU (0, 1 or 2).

Each image had different scores that had been assigned by different raters. Therefore, aggregation functions 
were used to reduce the number of scores to a single score per image (‘AND’ and ‘OR’ rules for binary classifica-
tion models; ‘Mean’, ‘Maximum’ and ‘Minimum’ rules for regression models; and ‘Mode’, ‘Maximum’ and ‘Mini-
mum’ rules for ordinal classification models). The class imbalance observed with the application of ‘AND’ and 
‘OR’ aggregation functions was considered for the determination of hyperparameter values "scale_pos_weight". 
The ‘Mode’ function was used to find the most common FGS score assigned to each action unit by different raters. 
Six combinations of geometric descriptors were evaluated: those containing all 35 geometric descriptors (All 

Figure 5.  Examples of geometric descriptors calculated from 37 facial landmarks based on the five action 
unites (AU) of the Feline Grimace Scale. Each AU is represented by a different color. Ear position: red. Orbital 
tightening: light blue. Muzzle tension: green. Whiskers changes: dark blue. Head position: pink. Top left: 
lines between landmarks used to calculate distance ratios for AU whiskers change. Top right: lines between 
landmarks used to calculate distance ratios for AU ear position. Bottom left: lines between facial landmarks used 
to calculate angles for AU orbital tightening. Bottom right: lines between landmarks used to calculate distance 
ratios for AU muzzle tension. Description of each facial landmark and additional examples of geometric 
descriptors are available in Supplementary Table 1 and Figs. S10–S16.
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GD); those selected by the Recursive Feature Elimination (RFE) algorithm or Boruta algorithm based on Shapley 
values (Boruta-Shap); and those resulting from the exclusion of geometric descriptors associated with the AU 
whiskers change (wWhiskers), head position (wHP) or both (wWHP). The exclusion of geometric descriptors 
associated with whiskers change and head position was evaluated based on results of Phase 1 (see below). All 
models included geometric descriptors as independent variables.

Three general procedures were used to prevent overfitting in the final XGBoost models: hyperparameter tun-
ing and cross-validation, hyperparameter alpha L1 regularization on weights and algorithms for feature subset 
selection. A total of five hyperparameters were used: number of trees, learning rate, L1 regularization parameter, 
maximum depth of trees and subsampling ratio for the training dataset and for the columns. Tuning was done 
using Grid-search47.

Training and evaluation of the models
Training and selection of the best values for the hyperparameters were performed for all models using Grid-
search and cross-validation with shuffling and n_splits = 5. Recursive feature elimination is a greedy algorithm 
for the backward selection of predictors that was used along with the cross-validation procedure with shuffle 
and n_splits = 4 to select a subset of features that contributed the most to the performance of the model. In addi-
tion, Shapley values and the Boruta algorithm were used to select relevant features. Shapley values allowed the 
calculation of the average marginal contribution of each feature to the model predictions. The Boruta algorithm 
was based on randomized copies (shadow features) and the z-scores for Shapley values of each variable. Features 
that were significantly higher than this maximum z-score were considered relevant.

Principal component analysis (PCA) was performed for binary classification models to visualize the rela-
tionship of the covariance structure of 35 geometric descriptors to discriminate ‘painful’ and ‘non-painful’ cats.

Three metrics of predictive performance were used to select the best models on a test set of 100 randomly 
selected images:

• Accuracy and area under the receiver operating characteristic curve (AUROC) for the binary classification 
models

• Mean squared error (MSE) for the regression and ordinal classification models.

Softwares
Keras and Tensorflow were used as backend for deep learning  methods48,49. XGBoost library was used for the gra-
dient boosting  machines47. OpenCV and PILLOW were used for digital image  processing37. The other machine 
learning tasks were carried out with Scikit-learn50. BorutaShap package was used for Boruta feature selection 
method based on Shapley  values51.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the undergoing 
development of the mobile phone application, but are available from the corresponding author on reasonable 
request.
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