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Application of Yang homotopy 
perturbation transform approach 
for solving multi‑dimensional 
diffusion problems 
with time‑fractional derivatives
Jinxing Liu 1, Muhammad Nadeem 2* & Loredana Florentina Iambor 3*

In this paper, we aim to present a powerful approach for the approximate results of multi‑dimensional 
diffusion problems with time‑fractional derivatives. The fractional order is considered in the view 
of the Caputo fractional derivative. In this analysis, we develop the idea of the Yang homotopy 
perturbation transform method (YHPTM), which is the combination of the Yang transform (YT) and 
the homotopy perturbation method (HPM). This robust scheme generates the solution in a series 
form that converges to the exact results after a few iterations. We show the graphical visuals in two‑
dimensional and three‑dimensional to provide the accuracy of our developed scheme. Furthermore, 
we compute the graphical error to demonstrate the close‑form analytical solution in the comparison 
of the exact solution. The obtained findings are promising and suitable for the solution of multi‑
dimensional diffusion problems with time‑fractional derivatives. The main advantage is that our 
developed scheme does not require assumptions or restrictions on variables that ruin the actual 
problem. This scheme plays a significant role in finding the solution and overcoming the restriction of 
variables that may cause difficulty in modeling the problem.

The study of fractional calculus is becoming more interesting in various branches of mathematical problems 
including integral and derivatives of fractional order. The phenomena of fractional order problems have a great 
attraction in other branches of science and engineering such as as astronomy, optical fiber, biomechanics, chemi-
cal reactions, heat transform, and fluid  flows1,2. In recent years, numerous researchers have introduced the ana-
lytical and numerical approaches to obtain their approximate solutions. Malan and  Lewis3 utilized edge-based 
finite volume method to model heat and mass transfer in heterogeneous porous materials. Arafa and  Hagag4 
presented q-Homotopy analysis transform method for the analytic solution of fractional coupled Ramani prob-
lem. El-Sayed et al.5 developed the idea of Adomian’s decomposition method for the approximate solution of the 
reaction-diffusion model of fractional order. It is still challengeable task to obtain the exact solution of these frac-
tional problems. Most of the fractional system do not have the exact solutions due to the difficulty of fractional 
order. To investigate their approximate solutions, various authors presented their schemes that obtain the results 
very close to the exact solution such as Fractional Temimi–Ansari  method6, Differential transform  scheme7, 
Haar wavelet operational  matrix8, Natural  transform9, Sumudu residual power series  method10, Finite difference 
 approach11, High-order finite element  scheme12, Local fractional Sumudu  transform13, Sub-equation  method14.

This work is concerned with the time fractional multi-dimensional diffusion  equation15,16:

where Dα
τ =

∂α

∂τα
 stands for the Caputo fractional derivative, ϑ(r, τ) and Dϑ(r, τ) represent the density of the 

diffusing material and the diffusion coefficient for ϑ at the point r = (x, y, z) and time τ respectively. If the dif-
fusion coefficient is free from density (i.e. Dϑ(r, τ) = σ 2 is a constant), then problem (1) tends to the fractional 

(1)Dα
τ ϑ = ∇ .(D(ϑ(r, τ), r)∇ϑ(r, τ)), 0 < α ≤ 1
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order multi-dimensional heat equation, such that Dα
τ ϑ = σ 2∇2ϑ . In case of α = 1 , the problem (1) reduces to 

the classical multi-dimensional diffusion equation.
Recently,  Yang17 proposed the idea of Yang transform for the first time and showed that this scheme is 

straightforward for deriving the results of a steady heat transfer equation. The idea of homotopy perturbation 
method (HPM) was constructed by He in 2004 and showed that this scheme is suitable for different types of 
 problems18. Later, many researchers extend this study and combined HPM to obtain the approximate solu-
tion of some more fractional differential problems.  Liu19 et al. combined Yang transform with HPM to derive 
the analytical results of time-fractional Klein–Gordon problems.  Yasmin20 combined Yang transform with the 
Adomian decomposition approach to present the analysis of the Whitham–Broer–Kaup problem with time-
fractional order. The Yang transform with HPM performed excellent results in finding a solution of fractional 
order KdV and Burger  problem21. The study of  HPM22 has becoming more and more interesting and numerous 
researchers have showed the combination of HPM with an other operator produces faster rate of  convergence23,24. 
Akbarzade and  Langari25 showed that HPM is more reliable tool than variational iteration scheme in finding 
the approximate results of three dimensional heat problems. Kumar et al.16 applied the modification of HPM 
whereas Prakash and  Kumar26 suggested the application of fractional variational iteration scheme to present 
the analytical view of multi-dimensional diffusion problems. Researchers showed that combination of these 
transformation with the HPM provide the excellent results than the traditional HPM. Since various analytical 
and numerical schemes are presented by experts in the literature. In the most of schemes, authors have faced 
some difficulties and limitations due to the heavy calculations in the iteration series. The use of integration in 
variational iteration scheme and convolution theorem Laplace transform make the solution complicated and 
may occur some assumption and restrictions on variables that is the main drawback of these  schemes27,28. To 
overcome, this drawback, we propose the idea of YHPTM for the approximate solution of multi-dimensional 
diffusion problems with time-fractional derivatives.

In this work, we combine the YT with HPM to develop a novel scheme that is expressed by YHPTM. We 
consider a few problems to test the accuracy and performance of this proposed scheme. We note that our devel-
oped scheme produces results very close to the exact results after a few iterations and some graphical visuals 
are also provided to show its performance with graphical errors. We begin this article as; we present the idea of 
Yang transform in “Concept of Yang transform” including its definitions. We develop the idea of YHPTM for the 
solution of fractional problems and provide its convergence analysis in “Formulation of YHPTM” and “Conver-
gence and error analysis” respectively. In “Applications”, we illustrate some examples to test the compactness and 
authenticity of our proposed scheme. We conclude our study in the last section “Conclusion”.

Concept of Yang transform
In this segment, we define the concept of YT with its basic properties.

Definition 2.1 The Caputo fractional derivative is defined  as29,30

Definition 2.2 The YT is stated  as17,19

whereas Y−1[R(ξ)] = ϑ(τ) is known as the inverse of YT.

Definition 2.3 The YT of a fractional derivative is given  as17,19

Proposition The differential properties of YT for a function ϑ(τ) are defined as19

Formulation of YHPTM
In this section, we construct the idea of YHPTM which is used to derive the approximate results of multi-
dimensional diffusion problems with time-fractional derivatives. This scheme does not require the restriction 
of variables and any hypothesis. Let’s assume the following differential problem of time-fractional order as

with initial condition

Dα
τ ϑ(ℑ, τ) =

1

Ŵ(k − α)

∫ τ

0

(τ − q)k−α−1ϑk(ℑ, q) dq, k − 1 < α ≤ k.

Y [ϑ(τ)] = R(ξ) =

∫ ∞

0

e
−
τ

ξ ϑ(τ)dτ ,

Y [ϑα(τ)] =
R(ξ)

ξα
−

n−1
∑

k=0

ϑk(0)

ξα−k−1
, n− 1 < α ≤ n.

Y [ϑ ′(τ )] =
R(ξ)

ξ
− ϑ(0),

Y [ϑ ′′(τ )] =
R(ξ)

ξ 2
−

ϑ(0)

ξ
− ϑ ′(0).

(2)Dα
τ ϑ(ℑ, τ) = L1ϑ(ℑ, τ)+ L2ϑ(ℑ, τ)+ h(ℑ, τ),
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Operating YT on Eq. (2) such as

This implies

Hence R(ξ) is evaluated such as

Operating inverse YT on Eq. (4), it yields

where

Now, HPM is defined as

and

where Hn polynomials are expressed as;

Use Eqs. (6) and (7) in Eq. (5), it yields

Comparing the coefficient of p, we obtain

similarly, it can be continued to the following series

Equation (9) represents the approximate solution of the fractional problem (2).

Convergence and error analysis
The following theorems are built on the idea of the proposed scheme and provided to show the convergence and 
error analysis of the problem (2)

(3)ϑ(ℑ, 0) = k(ℑ).

Y [Dα
τ ϑ(ℑ, τ)] = Y [L1ϑ(ℑ, τ)+ L2ϑ(ℑ, τ)+ h(ℑ, τ)].

1

ξα

[

R(ξ)− ξϑ(0)

]

= Y [L1ϑ(ℑ, τ)+ L2ϑ(ℑ, τ)+ h(ℑ, τ)].

(4)R[ξ ] = ξϑ(0)+ ξαY
[

L1ϑ(ℑ, τ)+ L2ϑ(ℑ, τ)+ h(ℑ, τ)
]

.

(5)ϑ(ℑ, τ) = G(ℑ, τ)+ Y−1

[

ξα℘

{

L1ϑ(ℑ, τ)+ L2ϑ(ℑ, τ)
}

]

,

G(ℑ, τ) = Y−1
[

ξϑ(0)+ ξαY [h(ℑ, τ)]
]

.

(6)ϑ(ℑ, τ) =

∞
∑

i=0

piϑi(ℑ, τ),

(7)L2ϑ(ℑ, τ) =

∞
∑

i=0

piHi(ϑ),

Hn(ϑ0,ϑ1, . . . ,ϑn) =
1

n!

∂n

∂pn

(

L2

(

∞
∑

i=0

piϑi

)

)

p=0

, n = 0, 1, 2, . . . .

(8)
∞
∑

i=0

piϑi(ℑ, τ) = G(ℑ, τ)+ Y−1

[

ξαY
{

L1

∞
∑

i=0

piϑi(ℑ, τ)+

∞
∑

i=0

piHi(ϑ)

}

]

.

p0 : ϑ0(ℑ, τ) = G(ℑ, τ),

p1 : ϑ1(ℑ, τ) = Y−1

[

ξαY

{

ϑ0(ℑ, τ)+H0(ϑ)

}]

,

p2 : ϑ2(ℑ, τ) = Y−1

[

ξαY

{

ϑ1(ℑ, τ)+H1(ϑ)

}]

,

p3 : ϑ3(ℑ, τ) = Y−1

[

ξαY

{

ϑ2(ℑ, τ)+H2(ϑ)

}]

,

.

.

.,

(9)ϑ(ℑ, τ) = ϑ0 + ϑ1 + ϑ2 + · · · =

∞
∑

i=0

ϑi(ℑ, τ).
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Theorem 4.1 Let ϑ(ℑ, τ) be the exact results of Eq. (2) and consider ϑ(ℑ, τ),ϑn(ℑ, τ) ∈ H and σ ∈ (0, 1) , 
where H represents the Hilbert space. Then, the derived results 

∑∞
i=0 ϑi(ℑ, τ) can converge ϑ(ℑ, τ) in case of 

ϑi(ℑ, τ) ≤ ϑi−1(ℑ, τ)∀i > A , thus, for any ω > 0∃A > 0 , there is �ϑi+n(ℑ, τ)� ≤ β , ∀m, n ∈ N.

Proof Let a sequence such as 
∑∞

i=0 ϑi(ℑ, τ) . Then

To achieve the valuable solution, we must show that ϑi(ℑ, τ) defines a “Cauchy sequence”. Moreover, consider

For i, n ∈ N , it yields

As 0 < σ < 1 , and ϑ0(ℑ, τ) is bounded, then consider β = 1− σ/(1− σi−n)σ
n+1�ϑ0(ℑ, τ)� , and thus, 

{ϑi(ℑ, τ)}
∞
i=0 tends to “Cauchy sequence” in H. Hence, the sequence {ϑi(ℑ, τ)}∞i=0 is convergent with the 

limi→∞ ϑi(ℑ, τ) = ϑ(ℑ, τ) for ∃ϑ(ℑ, τ) ∈ H . This ends the proof.   �

Theorem 4.2 Let 
∑k

h=0 ϑh(ℑ, τ) is finite and ϑ(ℑ, τ) shows the derived series results. Consider σ > 0 such as 
∥

∥ϑh+1(ℑ, τ)
∥

∥ ≤ �ϑh(ℑ, I)� , then the following relation produces the maximum absolute error.

Proof Since 
∑k

h=0 ϑh(ℑ, τ) is finite, this implies that 
∑k

h=0 ϑh(ℑ, τ) < ∞ . Consider

This ends the proof.   �

Applications
We illustrate four applications of multi-dimensional diffusion problems with time-fractional derivatives. We 
consider two-dimensional and three-dimensional heat flow problems in the sense of Caputo fractional derivative. 
These examples exhibit the performance and capability of the presented scheme. Graphical results and absolute 

(10)

ϑ0(ℑ, τ) = ϑ0(ℑ, τ),

ϑ1(ℑ, τ) = ϑ0(ℑ, τ)+ ϑ1(ℑ, τ),

ϑ2(ℑ, I) = ϑ0(ℑ, τ)+ ϑ1(ℑ, τ)+ ϑ2(ℑ, I),

ϑ3(ℑ, I) = ϑ0(ℑ, τ)+ ϑ1(ℑ, τ)+ ϑ2(ℑ, τ)+ ϑ3(ℑ, τ),

.

.

.

ϑi(ℑ, τ) = ϑ0(ℑ, τ)+ ϑ1(ℑ, τ)+ ϑ2(ℑ, τ)+ · · · + ϑi(ℑ, τ),

(11)
�ϑi+1(ℑ, I)− ϑi(ℑ, I)� = �ϑi+1(ℑ, I)� ≤ σ�ϑi(ℑ, I)� ≤ σ 2�ϑi−1(ℑ, I)� ≤ σ 3�ϑi−2(ℑ, I)� . . .

≤ σi+1�ϑ0(ℑ, I)�.

(12)

�ϑi(ℑ, τ)− ϑn(ℑ, I)� =�ϑi+n(ℑ, τ)� = �ϑi(ℑ, τ)− ϑi−1(ℑ, τ)+ (ϑi−1(ℑ, τ)− ϑi−2(ℑ, τ))

+ (ϑi−2(ℑ, τ)− ϑi−3(ℑ, τ))+ · · · + (ϑn+1(ℑ, τ)− ϑn(ℑ, τ))�,

≤�ϑi(ℑ, τ)− ϑi−1(ℑ, τ)� + �(ϑi−1(ℑ, I)− ϑi−2(ℑ, I))�

+ �(ϑi−2(ℑ, τ)− ϑi−3(ℑ, τ))� + · · · + �(ϑn+1(ℑ, τ)− ϑn(ℑ, τ)� ,

≤σ i�ϑ0(ℑ, I)� + σ i−1�ϑ0(ℑ, τ)� + · · · + σ i+1�ϑ0(ℑ, I)�,

=�ϑ0(ℑ, τ)�
(

σ i + σ i−1 + σ i+1
)

,

=�ϑ0(ℑ, τ)�
1− σ i−n

1− σ i+1
σ n+1.

(13)

∥

∥

∥

∥

∥

ϑ(ℑ, τ)−

k
∑

h=0

ϑh(ℑ, τ)

∥

∥

∥

∥

∥

<
σ k+1

1− σ
�ϑ0(ℑ, τ)�.

(14)

∥

∥

∥

∥

∥

ϑ(ℑ, τ)−

k
∑

h=0

ϑh(ℑ, I)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∞
∑

h=k+1

ϑh(ℑ, τ)

∥

∥

∥

∥

∥

∥

,

≤

∞
∑

h=k+1

�ϑh(ℑ, τ)�,

≤

∞
∑

h=k+1

σ h�ϑ0(ℑ, τ)�,

≤ σ k+1
(

1+ σ + σ 2 + · · ·
)

�ϑ0(ℑ, τ)�,

≤
σ k+1

1− σ
�ϑ0(ℑ, τ)�.
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errors show that YHPTM is a very promising tool for solving fractional differential problems. MATHEMATICA 
11 software is used for numerical computations during the calculation phase and construction of figures.

Example 1
Let us consider the two-dimensional homogeneous time-fractional heat flow problem

with the initial condition

Applying the YT on Eq. (15), we get

The application of YT in fractional form yields

Thus, R(ξ) is obtained as

Using inverse YT on Eq. (17), we get

Implementing the idea of of HPM to derive the He’s iterations

Relating the similar components of p, we get

Similarly, it can be continued to the following series

which can be closed form

In Fig. 1, we provide the graphical visuals of approximate series solution of Eq. (19) and the exact solution 
of Eq. (20) at −10 ≤ ℑ ≤ 10 and 0 ≤ τ ≤ 0.1 . These visuals indicate that when we increase the value of frac-
tional order α , our graphical results approach to the exact graph significantly. We plotted the graphical error in 
two-dimensional visuals in Fig. 2 at α = 0.25, 0.50, 0.75, 1 . This shows comparison yields that YHPTM is fast 
and convenient approach. Table 1 presents the absolute errors between the approximate solution and the exact 

(15)
∂αϑ

∂τα
=

∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
− ϑ ,

(16)ϑ(ℑ,℘, 0) = sinℑ cos℘.

Y
[∂αϑ

∂τα

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
− ϑ

]

.

1

ξα

[

R(ξ)− ξϑ(0)

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
− ϑ

]

.

(17)R[ξ ] = ξϑ(0)+ ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
− ϑ

]

.

(18)ϑ(ℑ,℘, τ) = ϑ(ℑ,℘, 0)+ Y−1
[

ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
− ϑ

]

.

∞
∑

i=0

piϑ(ℑ,℘, τ) = ϑ(ℑ,℘, 0)+ Y−1
[

ξαY
[

∞
∑

i=0

pi
∂2ϑi

∂ℑ2
+

∞
∑

i=0

pi
∂2ϑi

∂℘2
−

∞
∑

i=0

piϑi

]

.

p0 : ϑ0(ℑ,℘, τ) = ϑ(ℑ,℘, 0) = sinℑ cos℘,

p1 : ϑ1(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ0

∂ℑ2
+

∂2ϑ0

∂℘2
− ϑ0

}]

= −3 sinℑ cos℘
τα

Ŵ(α + 1)
,

p2 : ϑ2(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ1

∂ℑ2
+

∂2ϑ1

∂℘2
− ϑ1

}]

= 32 sinℑ cos℘
τ 2α

Ŵ(2α + 1)
,

p3 : ϑ3(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ2

∂ℑ2
+

∂2ϑ2

∂℘2
− ϑ2

}]

= −33 sinℑ cos℘
τ 3α

Ŵ(3α + 1)
,

p4 : ϑ4(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ3

∂ℑ2
+

∂2ϑ3

∂℘2
− ϑ3

}]

= 34 sinℑ cos℘
τ 4α

Ŵ(4α + 1)
,

.

.

..

(19)

ϑ(ℑ,℘, τ) = ϑ0(ℑ,℘, τ)+ ϑ1(ℑ,℘, τ)+ ϑ2(ℑ,℘, τ)+ ϑ3(ℑ,℘, τ)+ ϑ4(ℑ,℘, τ)+ · · · ,

= sinℑ cos℘

(

1− 3
τα

Ŵ(α + 1)
+ 32

τ 2α

Ŵ(2α + 1)
− 33

τ 3α

Ŵ(3α + 1)
+ 34

τ 4α

Ŵ(4α + 1)
+ · · ·

)

+ · · · .

(20)ϑ(ℑ,℘, τ) = e−3τ sinℑ cos℘.
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solution of three-dimensional heat flow problem. This table shows that when α = 1 , our obtained values are 
very close to the exact solution than the values of α = 0.50 and the value of absolute error decreases precisely.

Example 2
Consider the following time-fractional heat flow problem in a inhomogeneous two-dimensional form

with the initial condition

Applying the YT on Eq. (21), we get

The application of YT in fractional form yields

(21)
∂αϑ

∂τα
=

∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+ sin℘,

(22)ϑ(ℑ,℘, 0) = sinℑ sin℘ + sin℘.

Y
[∂αϑ

∂τα

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+ sin℘

]

.

Figure 1.  The three-dimensional surfaces solution of ϑ(ℑ,℘, τ).
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Thus R(ξ) is obtained as

Using inverse YT on Eq. (23), we get

Implementing the idea of HPM to derive the He’s iterations

Relating the similar components of p, we get

1

ξα

[

R(ξ)− ξϑ(0)

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+ sin℘

]

.

(23)R[ξ ] = ξϑ(0)+ ξα+1 sin℘ + ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2

]

.

(24)ϑ(ℑ,℘, τ) = ϑ(ℑ,℘, 0)+ sin℘
τα

Ŵ(α + 1)
+ Y−1

[

ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2

]

.

∞
∑

i=0

piϑ(ℑ,℘, τ) = ϑ(ℑ,℘, 0)+ sin℘
τα

Ŵ(α + 1)
+ Y−1

[

ξαY
[

∞
∑

i=0

pi
∂2ϑi

∂ℑ2
+

∞
∑

i=0

pi
∂2ϑi

∂℘2

]

.

=0.25

=0.50

=0.75

=1

Exact

2 4 6 8 10

0.6

0.4

0.2

0.2

0.4

0.6

Figure 2.  The two-dimensional graphical visual of ϑ(ℑ,℘, τ) at multiple values of α.

Table 1.  Absolute error between the obtained results and the exact solution at ℘ = 0.5 and τ = 0.001.

ℑ α = 0.50 YHPTM results at α = 1 Exact results Absolute error at α = 0.50 Absolute error at α = 1

0.25             0.194837              0.216466        0.216467              2.163×10−2              1×10−6

0.50 0.37756 0.419474 0.419475 4.1915×10−2 1×10−6

0.75 0.536807 0.59640 0.596402 5.9595×10−2 1×10−6

1.0 0.662679 0.736246 0.736248 7.3569×10−2 1×10−6

1.25 0.747349 0.830315 0.830318 8.2969×10−2 1×10−6

1.50 0.785552 0.872759 0.872762 8.7207×10−2 1×10−6

1.75 0.774913 0.860939 0.860942 8.6026×10−2 1×10−6

2.0 0.716094 0.795591 0.795593 7.9497×10−2 1×10−6
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Similarly, it can be continued to the following series

which can be closed form

In Fig. 3, we provide the graphical visuals of approximate series solution of Eq. (25) and the exact solution 
of Eq. (26) at −1 ≤ ℑ ≤ 1 and 0 ≤ τ ≤ 0.5 . These visuals indicate that when we increase the value of fractional 
order α , our graphical results approach to the exact graph significantly. We plotted the graphical error in two-
dimensional visuals in Fig. 4 at α = 0.25, 0.50, 0.75, 1 . This shows comparison yields that YHPTM is fast and 
convenient approach. Table 2 presents the absolute errors between the approximate solution and the exact 
solution of three-dimensional heat flow problem. This table shows that when α = 1 , our obtained values are 
very close to the exact solution than the values of α = 0.50 and the value of absolute error decreases precisely.

Example 3
Consider the following time-fractional heat flow problem in a three-dimensional homogeneous form

with the initial condition

Applying the YT on Eq. (27), we get

Using the properties functions of YT , we obtain

Thus R(ξ) is obtained as

Using inverse YT on Eq. (29), we get

Implementing the idea of HPM to derive the He’s iterations

Relating the similar components of p, we get

p0 : ϑ0(ℑ,℘, τ) = ϑ(ℑ,℘, 0) = sinℑ sin℘ + sin℘ + sin℘
τα

Ŵ(α + 1)
,

p1 : ϑ1(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ0

∂ℑ2
+

∂2ϑ0

∂℘2

}]

= −2 sinℑ sin℘
τα

Ŵ(α + 1)
− sin℘

τα

Ŵ(α + 1)
− sin℘

τ 2α

Ŵ(2α + 1)
,

p2 : ϑ2(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ1

∂ℑ2
+

∂2ϑ1

∂℘2

}]

= 22 sinℑ sin℘
τ 2α

Ŵ(2α + 1)
+ sin℘

τ 2α

Ŵ(2α + 1)
+ sin℘

τ 3α

Ŵ(3α + 1)
,

p3 : ϑ3(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ2

∂ℑ2
+

∂2ϑ2

∂℘2

}]

= −23 sinℑ sin℘
τ 3α

Ŵ(3α + 1)
− sin℘

τ 3α

Ŵ(3α + 1)
− sin℘

τ 4α

Ŵ(4α + 1)
,

p4 : ϑ4(ℑ,℘, τ) = Y−1

[

ξαY

{

∂2ϑ3

∂ℑ2
+

∂2ϑ3

∂℘2

}]

= −24 sinℑ sin℘
τ 4α

Ŵ(4α + 1)
− sin℘

τ 4α

Ŵ(4α + 1)
− sin℘

τ 5α

Ŵ(5α + 1)
,

.

.

..

(25)

ϑ(ℑ,℘, τ) = ϑ0(ℑ,℘, τ)+ ϑ1(ℑ,℘, τ)+ ϑ2(ℑ,℘, τ)+ ϑ3(ℑ,℘, τ)+ ϑ4(ℑ,℘, τ)+ · · · ,

= sin℘ + sinℑ sin℘

(

1− 2
τα

Ŵ(α + 1)
+ 22

τ 2α

Ŵ(2α + 1)
− 23

τ 3α

Ŵ(3α + 1)
+ 24

τ 4α

Ŵ(4α + 1)
+ · · ·

)

+ · · · ,

(26)ϑ(ℑ,℘, τ) = sin℘ + e−2τ sinℑ sin℘.

(27)
∂αϑ

∂τα
=

∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
− 2ϑ ,

(28)ϑ(ℑ,℘,̟ , 0) = sinℑ sin℘ sin̟ .

Y
[∂αϑ

∂τα

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
− 2ϑ

]

.

1

ξα

[

R(ξ)− ξϑ(0)

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
− 2ϑ

]

.

(29)R[ξ ] = ξϑ(0)+ ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
− 2ϑ

]

.

(30)ϑ(ℑ,℘,̟ , τ) = ϑ(ℑ,℘, 0)+ Y−1
[

ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
− 2ϑ

]

.

∞
∑

i=0

piϑi(ℑ,℘,̟ , τ) = ϑ(ℑ,℘,̟ , 0)+ Y−1
[

ξαY
[

∞
∑

i=0

pi
∂2ϑi

∂ℑ2
+

∞
∑

i=0

pi
∂2ϑi

∂℘2
+

∞
∑

i=0

pi
∂2ϑi

∂̟ 2
− 2

∞
∑

i=0

piϑi

]

.
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Similarly, it can be continued to the following series

p0 : ϑ0(ℑ,℘,̟ , τ) = ϑ(ℑ,℘,̟ , 0) = sinℑ sin℘ sin̟ ,

p1 : ϑ1(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ0

∂ℑ2
+

∂2ϑ0

∂℘2
+

∂2ϑ3

∂̟ 2
− 2ϑ0

}]

= −5 sinℑ sin℘ sin̟
τα

Ŵ(α + 1)
,

p2 : ϑ2(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ1

∂ℑ2
+

∂2ϑ1

∂℘2
+

∂2ϑ3

∂̟ 2
− 2ϑ1

}]

= 52 sinℑ sin℘ sin̟
τ 2α

Ŵ(2α + 1)
,

p3 : ϑ3(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ2

∂ℑ2
+

∂2ϑ2

∂℘2
+

∂2ϑ3

∂̟ 2
− 2ϑ2

}]

= −53 sinℑ sin℘ sin̟
τ 3α

Ŵ(3α + 1)
,

p4 : ϑ4(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ3

∂ℑ2
+

∂2ϑ3

∂℘2
+

∂2ϑ3

∂̟ 2
− 2ϑ3

}]

= 54 sinℑ sin℘ sin̟
τ 4α

Ŵ(4α + 1)
,

.

.

..

Figure 3.  The three-dimensional surfaces solution of ϑ(ℑ,℘, τ).
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which can be closed form

In Fig. 5, we provide the graphical visuals of approximate series solution of Eq. (31) and the exact solution 
of Eq. (32) −3 ≤ ℑ ≤ 3 and 0 ≤ τ ≤ 0.1 . These visuals indicate that when we increase the value of fractional 
order α , our graphical results approach to the exact graph significantly. We plotted the graphical error in two-
dimensional visuals in Fig. 6 at α = 0.25, 0.50, 0.75, 1 . This shows comparison yields that YHPTM is fast and 
convenient approach. Table 3 presents the absolute errors between the approximate solution and the exact 
solution of three-dimensional heat flow problem. This table shows that when α = 1 , our obtained values are 
very close to the exact solution than the values of α = 0.50 and the value of absolute error decreases precisely.

Example 4
Consider the following time-fractional heat flow problem in a three-dimensional inhomogeneous form

with the initial condition

The application of YT in fractional form yields

(31)

ϑ(ℑ,℘,̟ , τ) = ϑ0(ℑ,℘,̟ , τ)+ ϑ1(ℑ,℘,̟ , τ)+ ϑ2(ℑ,℘,̟ , τ)+ ϑ3(ℑ,℘,̟ , τ)+ ϑ4(ℑ,℘,̟ , τ)+ · · · ,

= sinℑ sin℘ sin̟

(

1− 5
τα

Ŵ(α + 1)
+ 52

τ 2α

Ŵ(2α + 1)
− 53

τ 3α

Ŵ(3α + 1)
+ 54

τ 4α

Ŵ(4α + 1)
+ · · ·

)

+ · · · ,

(32)ϑ(ℑ,℘,̟ , τ) = e−5τ sinℑ sin℘ sin̟ .

(33)
∂αϑ

∂τα
=

∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
+ sin̟ ,

(34)ϑ(ℑ,℘,̟ , 0) = sin(ℑ + ℘)+ sin̟ .

=0.25

=0.50

=0.75

=1

Exact

1 2 3 4 5
0.2

0.2
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0.6

0.8
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Figure 4.  The two-dimensional graphical visual of ϑ(ℑ,℘, τ) at multiple values of α.

Table 2.  Absolute error between the obtained results and the exact solution at ℘ = 0.5 and τ = 0.005.

ℑ α = 0.50 YHPTM results at α = 1 Exact results Absolute error at α = 0.50 Absolute error at α = 1

0.25             0.681478             0.696109       0.696109             1.4631×10−2       0.00000

0.50 0.870968 0.89932 0.89932 2.8352×10−2 0.00000

0.75 1.03611 1.07642 1.07642 4.031×10−2 0.00000

1.0 1.16665 1.21641 1.21641 4.976×10−2 0.00000

1.25 1.25445 1.31057 1.31057 5.612×10−2 0.00000

1.50 1.29407 1.35306 1.35306 5.899×10−2 0.00000

1.75 1.28304 1.34123 1.34123 5.819×10−2 0.00000

2.0 1.22204 1.27581 1.27581 5.377×10−2 0.00000
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Using the properties functions of YT, we obtain

Thus R(ξ) is obtained as

Using inverse YT on Eq. (35), we get

Implementing the idea of HPM to derive the He’s iterations

Y
[∂αϑ

∂τα

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
+ sin̟

]

.

1

ξα

[

R(ξ)− ξϑ(0)

]

= Y
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2
+ sin̟

]

.

(35)R[ξ ] = ξϑ(0)+ ξα℘[sin̟ ] + ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2

]

.

(36)ϑ(ℑ,℘,̟ , τ) = ϑ(ℑ,℘,̟ , 0)+ sin̟
τα

Ŵ(α + 1)
+ Y−1

[

ξαY
[∂2ϑ

∂ℑ2
+

∂2ϑ

∂℘2
+

∂2ϑ

∂̟ 2

]

.

Figure 5.  The three-dimensional surfaces solution of ϑ(ℑ,℘,̟ , τ).
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Relating the similar components of p, we get

∞
∑

i=0

piϑ(ℑ,℘,̟ , τ) = ϑ(ℑ,℘,̟ , 0)+ sin̟
τα

Ŵ(α + 1)
+ Y−1

[

ξαY
[

∞
∑

i=0

pi
∂2ϑi

∂ℑ2
+

∞
∑

i=0

pi
∂2ϑi

∂℘2
+

∞
∑

i=0

pi
∂2ϑi

∂̟ 2

]

.

p0 : ϑ0(ℑ,℘,̟ , τ) = ϑ(ℑ,℘, 0) = sin(ℑ + ℘)+ sin̟ + sin̟
τα

Ŵ(α + 1)
,

p1 : ϑ1(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ0

∂ℑ2
+

∂2ϑ0

∂℘2
+

∂2ϑ0

∂̟ 2

}]

= −2 sin(ℑ + ℘)
τα

Ŵ(α + 1)
− sin̟

τα

Ŵ(α + 1)
− sin̟

τ 2α

Ŵ(2α + 1)
,

p2 : ϑ2(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ1

∂ℑ2
+

∂2ϑ1

∂℘2
+

∂2ϑ0

∂̟ 2

}]

= 22 sin(ℑ + ℘)
τ 2α

Ŵ(2α + 1)
+ sin̟

τ 2α

Ŵ(2α + 1)
+ sin̟

τ 3α

Ŵ(3α + 1)
,

p3 : ϑ3(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ2

∂ℑ2
+

∂2ϑ2

∂℘2

}

+
∂2ϑ0

∂̟ 2

]

= −23 sin(ℑ + ℘)
τ 3α

Ŵ(3α + 1)
− sin̟

τ 3α

Ŵ(3α + 1)
− sin̟

τ 4α

Ŵ(4α + 1)
,

p4 : ϑ4(ℑ,℘,̟ , τ) = Y−1

[

ξαY

{

∂2ϑ3

∂ℑ2
+

∂2ϑ3

∂℘2
+

∂2ϑ0

∂̟ 2

}]

= 24 sin(ℑ + ℘)
τ 4α

Ŵ(4α + 1)
+ sin̟

τ 4α

Ŵ(4α + 1)
+ sin̟

τ 5α

Ŵ(5α + 1)
,

.

.

..
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Figure 6.  The two-dimensional graphical visual of ϑ(ℑ,℘,̟ , τ) at multiple values of α.

Table 3.  Absolute error between the obtained results and the exact solution at ℘ = ̟ = 0.5 and τ = 0.001.

ℑ α = 0.50 YHPTM results at α = 1 Exact results Absolute error at α = 0.50 Absolute error at α = 1

0.25             0.0375249             0.0554498       0.0554615             1.79366×10−2             1.17×10−5

0.50 0.0727167 0.107452 0.107475 3.47581×10−2 2.3×10−5

0.75 0.103387 0.152773 0.152806 4.9419×10−2 3.3×10−5

1.0 0.12763 0.188596 0.188636 6.1006×10−2 4.0×10−5

1.25 0.143937 0.212693 0.212738 6.8801×10−2 4.5×10−5

1.50 0.151295 0.223565 0.223612 7.2317×10−2 4.7×10−5

1.75 0.149246 0.220537 0.220584 7.1338×10−2 4.7×10−5

2.0 0.137917 0.203798 0.203841 6.5924×10−2 4.3×10−5
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Similarly, it can be continued to the following series

which can be closed form

In Fig. 7, we provide the graphical visuals of approximate series solution of Eq. (37) and the exact solution 
of Eq. (38) −1 ≤ ℑ ≤ 1 and 0 ≤ τ ≤ 0.5 . These visuals indicate that when we increase the value of fractional 
order α , our graphical results approach to the exact graph significantly. We plotted the graphical error in two-
dimensional visuals in Fig. 8 at α = 0.25, 0.50, 0.75, 1 . This shows comparison yields that YHPTM is fast and 
convenient approach. Table 4 presents the absolute errors between the approximate solution and the exact 
solution of three-dimensional heat flow problem. This table shows that when α = 1 , our obtained values are 
very close to the exact solution than the values of α = 0.50 and the value of absolute error decreases precisely.

(37)

ϑ(ℑ,℘,̟ , τ) = ϑ0(ℑ,℘,̟ , τ)+ ϑ1(ℑ,℘,̟ , τ)+ ϑ2(ℑ,℘,̟ , τ)+ ϑ3(ℑ,℘,̟ , τ)+ ϑ4(ℑ,℘,̟ , τ)+ · · · ,

= sin̟ + sin(ℑ + ℘)

(

1− 2
τα

Ŵ(α + 1)
+ 22

τ 2α

Ŵ(2α + 1)
− 23

τ 3α

Ŵ(3α + 1)
+ 24

τ 4α

Ŵ(4α + 1)
+ · · ·

)

+ · · · ,

(38)ϑ(ℑ,℘,̟ , τ) = sin̟ + e−2τ sin(ℑ + ℘).

Figure 7.  The three-dimensional surfaces solution of ϑ(ℑ,℘,̟ , τ).
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Conclusion
In this study, we successfully developed the YHPTM approach for obtaining the approximate solution of the 
two-dimensional and three-dimensional heat flow problems. Since the equations involving fractional order are 
quite difficult to solve directly, we introduce the idea of YT to dissolve the fractional order of the problem. The 
scheme of YT is limited and unable to generate the series solution, therefore, we implement HPM to derive the 
successive iterations from the classical equation that leads the results to the exact solution very easily. We consider 
four test problems to show the efficiency and effectiveness of this proposed scheme. It has been found that our 
derived results demonstrate a great confirmation of compromise with the exact solution. We also analyzed the 
efficiency of our proposed scheme in two-dimensional and three-dimensional through graphical structures. The 
obtained results are efficient and significant, demonstrating that YHPTM is accurate and authentic for fractional 
problems. It is expected to consider this scheme for fractional problems in the sense of Atangana–Baleanu deriva-
tives and other partial differential equations involving fractal theory and fractional calculus in our future work.
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