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A visual positioning model 
for UAV’s patrolling video sequence 
images based on DOM rectification
Haojie Liu , Wei Fan * & Di Wu 

With technological development of multi sensors, UAV (unmanned aerial vehicle) can identify and 
locate key targets in essential monitoring areas or geological disaster-prone areas by taking video 
sequence images, and precise positioning of the video sequence images is constantly a matter of 
great concern. In recent years, precise positioning of aerial images has been widely studied. But it is 
still a challenge to simultaneously realize precise, robust and dynamic positioning of UAV’s patrolling 
video sequence images in real time. In order to solve this problem, a visual positioning model for 
patrolling video sequence images based on DOM rectification is proposed, including a robust block-
matching algorithm and a precise polynomial-rectifying algorithm. First, the robust block-matching 
algorithm is used to obtain the best matching area for UAV’s video sequence image on DOM (Digital 
Orthophoto Map), a pre-acquired digital orthophoto map covering the whole UAV’s patrolling 
region. Second, the precise polynomial-rectifying algorithm is used to calculate accurate rectification 
parameters of mapping UAV’s video sequence image to the best matching area obtained above, and 
then real time positioning of UAV’s patrolling video sequence images can be realized. Finally, the 
above two algorithms are analyzed and verified by three practical experiments, and results indicate 
that even if spatial resolution, surface specific features, illumination condition and topographic relief 
are significantly different between DOM and UAV’s patrolling video sequence images, proposed 
algorithms can still steadily realize positioning of each UAV’s patrolling video sequence image with 
about 2.5 m level accuracy in 1 s. To some extent, this study has improved precise positioning effects 
of UAV’s patrolling video sequence images in real time, and the proposed mathematical model can be 
directly incorporated into UAV’s patrolling system without any hardware overhead.

Patrol inspection is an important work in many industries, and UAV (unmanned aerial vehicle) has gradually 
become a new tool for field patrol inspection due to its low cost and high efficiency. Shooting video to discover 
what has happened at sometime and somewhere in real-time is a common way of field patrol inspection by UAV, 
which is usually equipped with an image sensor and a POS (position and orientation system) unit. Accessing 
precise location of interest points in UAV’s real time patrolling video sequence images is of great value for dis-
covery and elimination of hidden safety hazards. At present, there are four different kinds of methods that can 
be used for positioning of UAV’s patrolling video sequence images: photogrammetry method, binocular vision 
method, image feature matching method, and optical flow method.

Photogrammetry method includes forward intersection algorithm and block adjustment algorithm that can 
be both used for positioning of UAV’s patrolling video sequence images. Forward intersection  algorithm1–3 can 
calculate out geodetic coordinates of homologous image points with assistance of POS data in real time. But the 
poor results cannot meet accuracy requirements of UAV’s patrolling video sequence images positioning. Block 
adjustment  algorithm4–6 can precisely calculate out geodetic coordinates of homologous image points by using 
large overlapped sequence images under certain geometric conditions, but it is a post-processing algorithm which 
cannot meet the real-time requirements of UAV’s patrolling video sequence images positioning.

Binocular vision method uses binocular cameras with precise 3D coordinates and 3D orientations to shoot 
two images of the same scene simultaneously, and then geodetic coordinates of homologous image points can be 
calculated out according to vertical parallax of the two images. Binocular vision method has high accuracy and 
efficiency, and mainly focus on precise calibration of the fixed binocular cameras at  present7–13, which cannot 
meet the dynamic requirement of UAV’s patrolling video sequence images positioning.

Feature matching method realizes image matching by verifying consistency of descriptors that are obtained 
from surrounding pixels of corresponding key-points in two images. The famous SIFT (scale invariant feature 
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transform) algorithm realizes feature matching of scale-invariant, rotation-invariant and illumination-invariant 
by constructing Gaussian pyramid images and regional gradient  distributions14,15, which is widely employed 
in image  registration16,17 and image  mosaic18,19. Ke proposed PCA-SIFT  algorithm20 by using PCA (Principal 
Component Analysis) method to reduce dimension of regional gradient distributions, which improved efficiency 
of feature matching to a certain extent. Following the idea of scale-invariant in SIFT, Morel proposed a so-called 
ASIFT algorithm of affine-invariant by simulating image geometric distortions caused by variations of camera 
optical  axis21. Bay constructed multi-scale spaces by using box filters and integral images, constructed key-points 
and corresponding descriptors by using non-maximum suppression  method22 and Haar wavelet transform, 
and then proposed SURF (Speed Up Robust Features)  algorithm23,24. SURF is one order magnitude faster than 
 SIFT25. A more faster algorithm ORB (Oriented FAST and Rotated BRIEF)25, further proposed by Bblee, used 
oriented FAST (Features from Accelerated Segment Test)  algorithm26 to detect key-points and used rotated 
BRIEF (Binary Robust Independent Elementary Features)  algorithm27 to construct descriptors. Other feature 
matching methods also exert certain influence on image matching, including BRISK (Binary Robust Invariant 
Scalable Keypoints)  algorithm29, KAZE  algorithm30, hardware acceleration  algorithm31, and etc.  Literature32,33 
compare and analyze accuracy, efficiency, advantages and disadvantages of existing feature matching methods 
in details, and we will not go into much here. Feature matching method can be used for precise real-time image 
matching, while matching results only have relative positioning information, which cannot meet the absolute 
positioning requirements of UAV’s patrolling video sequence images.

Optical flow method can obtain motion displacement of pixels between two adjacent sequence images through 
energy differential-difference equations which are constructed by certain assumptions and solved by certain 
optimization criteria. If all the image pixels are involved in this method, we call it dense optical flow, and if 
only part of the image pixels are involved in this method, we call it sparse optical flow. Two of the most classical 
optical flow algorithms are LK optical  flow34 and HS optical  flow35. LK optical flow is constructed on three basic 
assumptions, namely, brightness constancy (projection of the same point looks the same in every frame), small 
motion (points do not move very fast) and spatial coherence (points move like their neighbors)34. LK optical 
flow can calculate out motion displacement of pixels between two adjacent sequence images accurately, but 
performs poor stability sometimes. Based on above mentioned three basic assumptions, HS optical flow adds a 
regularization term in the self-constructed differential-difference equations. By minimizing the self-constructed 
differential-difference equations with regularization term, HS optical flow obtains the optimal motion displace-
ment between two adjacent sequence images’ homologous points, which achieves a more stable performance. 
However, “brightness constancy” and “small motion” are two strong assumptions in LK optical flow and HS opti-
cal flow, which are difficult to be satisfied in practical applications. For this reason, lots of improved algorithms 
have been proposed. In  Literature36, gradient conservation is used to replace the assumption of brightness con-
stancy, which improves robustness of optical flow algorithm against illumination variation.  Literature37 proposes 
multi-scale searching strategies, which has improved optical flow algorithm’s tracking efficiency of objects with 
large motion and shortened calculating time. A coarse-to-fine process has been mentioned in  literature38, which 
further improves optical flow algorithm’s tracking ability of objects with large motion.  Literature39 proposes an 
optical flow algorithm based on interpolation of correspondences, which has achieved good results in tracking 
objects with large displacement and significant occlusions. In  literature40,41, polynomials fitted by intensity of 
regional pixels are used for tracking objects with large motion, illumination variation and noise interference, 
and good results have also been achieved. With the development of artificial intelligence, optical flow algorithm 
based on neural  network42 has also emerged, but their robustness on unknown data sets remains to be verified. 
At present, optical flow algorithm has been widely used in medical image  registration44,45, remote sensing image 
 registration46, visual  navigation47 and many other industries. Optical flow method can be used for precise match-
ing of sequence images, while the relative positioning results cannot meet the absolute positioning requirements 
of UAV’s patrolling video sequence images.

To sum up, there is no method that can solve absolute positioning of UAV’s patrolling video sequence images 
accurately and robustly in real time. For this reason, a series of visual positioning algorithms for UAV’s patrolling 
video sequence images based on DOM rectification are proposed following the coarse-to-fine principle in this 
paper. All the proposed algorithms are analyzed and verified by three practical experiments, and results show 
that these algorithms are fast, effective and feasible.

Methodology
Technical flow
As shown in Fig. 1, number 1 is a UAV (unmanned aerial vehicle) in patrolling; Number 2 is a UAV’s video 
sequence image, which is taken by the patrolling UAV (number 1) and is needed to be positioned in real time; 
Number 3 is named as region-DOM, which is a digital orthophoto map of UAV’s patrolling region and is pro-
duced in advance; Number 4 is named as datum-DOM, which is a subarea of region-DOM (number 3); Number 
5 is named as block-matched-DOM, which is further a subarea of datum-DOM (number 4) and is the best 
matching region for UAV’s video sequence image (number 2) on datum-DOM (number 4). It should be noted 
that, UAV’s patrolling video sequence image is abbreviated as video frame for convenience of subsequent work.

As shown in Fig. 1, the basic idea of this paper is to find out the best matching region (number 5) for video 
frame (number 2) on region-DOM (number 3) quickly and robustly, figure out the accurate rectification param-
eters for mapping video frame (number 2) to the best matching region (number 5), and finally realize real time 
positioning of video frame (number 2) by using accurate rectification parameters to obtain geodetic coordinates 
of each pixels in video frame (number 2). Following the basic idea and the coarse-to-fine principle, the technical 
flow of this study is described as follows.
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First, extract datum-DOM (number 4) from region-DOM (number 3) according to the POS data of video 
frame (number 2), and replace region-DOM (number 3) by datum-DOM (number 4) as a new matching area 
for video frame (number 2), so as to reduce matching area of video frame (number 2) on region-DOM (number 
3) and increase matching speed.

Second, extract block-matched-DOM (number 5) from datum-DOM (number 4) by using the proposed 
robust block-matching algorithm. It should be noted that, video frame (number 2) and block-matched-DOM 
(number 5) have the same size in pixels, but the matching accuracy between these two images is still poor due 
to numerous negative factors. Therefore, a further optimization step is needed.

Third, figure out accurate rectification parameters for mapping video frame (number 2) to block-matched-
DOM (number 5) by using the proposed precise polynomial-rectifying algorithm.

Finally, obtain geodetic coordinates of each pixel in video frame (number 2) by using the accurate rectification 
parameters calculated above, so as to realize the real time positioning of video frame (number 2).

Algorithm framework
The algorithm flow of this study is shown in Fig. 2. Advantages lie in the proposed robust image-block-matching 
algorithm and precise polynomial-rectifying algorithm, which can solve geodetic coordinates of all pixels in a 
UAV’s real-time video frame with about 2.5 m level accuracy in 1 s.

The visual positioning model
Extraction of datum-DOM
Following the basic idea of this paper, datum-DOM should be extracted from region-DOM at the beginning, 
so as to reduce matching area of video frame on region-DOM and increase matching speed. As shown in Fig. 1, 
Central point’s coordinates of datum-DOM is determined by geodetic coordinates of UAV’s POS data; Azimuth 
of datum-DOM is determined by yaw angle of UAV’s POS data; Length and width of datum-DOM in pixels is 
determined by equations as:

where, Lpixels and Wpixels are length and width of datum-DOM in pixels respectively; Ldist = Hfly×LCMOS/f  ; 
Wdist = Hfly×WCMOS/f  ; LCMOS and WCMOS are physical length and width of UAV’s CMOS (Complementary 
Metal Oxide Semiconductor) sensor respectively; f  is focal length of UAV’s camera; gsdD is spatial resolution of 
datum-DOM; n is scaling coefficient, ranging from 1.5 to 2.

Finally, datum-DOM can be extracted from region-DOM according to the already known parameters (
LPOS ,BPOS ,Yawpos , Lpixels ,Wpixels

)
 . Where, (LPOS ,BPOS) are central point’s coordinates of datum-DOM; Yawpos 

is yaw angle of UAV’s POS data; Lpixels and Wpixels are obtained from Eq. (1).

Construction of robust block-matching algorithm
Follow the basic idea of this paper, the best matching area for video frame on datum-DOM should be extracted. 
However, existing image feature matching methods are all difficult to match video frame and datum-DOM 
automatically, since illumination conditions, surface specific features, projection modes and spatial resolution 
of these two kinds images are greatly different. Therefore, a robust block-matching algorithm is constructed for 
the purpose of finding out the best matching area for video frame on datum-DOM.

(1)





Lpixels = n Ldist

gsdD

Wpixels = nWdist
gsdD

Figure 1.  Key images involved in this study.
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Scaling datum‑DOM
It is necessary to unify spatial resolutions of datum-DOM and video frame, so as to facilitate the subsequent 
matching work. To ensure the spatial resolution of datum-DOM is the same as video frame, datum-DOM is 
scaled as:

where imgDS
 represent the size of scaled datum-DOM; imgD represent the size of original datum-DOM; 

ScaleD = gsdD/gsdF ; gsdD is spatial resolution of the original datum-DOM; gsdF is spatial resolution of video 
frame;

Block‑matching roughly based on RGB color
At this step, the best matching area for video frame on datum-DOM can be found out based on the similarity of 
these two images in RGB color space. As shown in Fig. 3, (xL1, yL1) are pixel coordinates of the top left corner of 
the best matching area for video frame on datum-DOM in RGB color space, and (xL1, yL1) can be obtained as:

where, 






FR = FRsrc (x, y)−
�

x,y FRsrc (x, y)/NF

DR = DRsrc (�x1 + x,�y1 + y)−
�

x,y DRsrc (�x1 + x,�y1 + y)/NF

FG = FGsrc (x, y)−
�

x,y FGsrc (x, y)/NF

DG = DGsrc (�x1 + x,�y1 + y)−
�

x,y DGsrc (�x1 + x,�y1 + y)/NF

FB = FBsrc (x, y)−
�

x,y FBsrc (x, y)/NF

DB = DBsrc (�x1 + x,�y1 + y)−
�

x,y DBsrc (�x1 + x,�y1 + y)/NF

;FRsrc (x, y) ,  FGsrc (x, y) and 

FBsrc (x, y) are intensity of R , G and B channel of video frame respectively; DRsrc (�x1 + x,�y1 + y) , 
DGsrc (�x1 + x,�y1 + y) and DBsrc (�x1 + x,�y1 + y) are intensity of R , G and B channel of datum-DOM 
respectively; (x, y) are pixel coordinates in video frame, x = (1, 2, · · · ,NLF) , y = (1, 2, · · · ,NWF) ; (�x1,�y1) 
are pixel coordinates of video frame’s top left corner in datum-DOM, �x1 = (1, 2, · · · ,NLD − NLF) , 

(2)imgDS
= imgD · ScaleD

(3)
(
xL1, yL1

)
= max

arg(�x1,�y1)

∑
x,yFRDR +

∑
x,yFGDG +

∑
x,yFBDB
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2
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2
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Figure 2.  Algorithm framework.
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�y1 = (1, 2, · · · ,NWD − NWF) ; NLF and NWF are length and width of video frame in pixels respectively; NLD 
and NWD are length and width of datum-DOM in pixels respectively; NF is the total pixel numbers of video frame, 
NF = NLFNWF.

Block‑matching roughly based on gradient magnitude
At this step, the best matching area for video frame on datum-DOM can be found out based on the similarity of 
these two images in gradient magnitude space. As shown in Fig. 3, (xL2, yL2) are pixel coordinates of the top left 
corner of the best matching area for video frame on datum-DOM in gradient magnitude space, and (xL2, yL2) 
can be obtained as:

where,

 





IF(x, y) =

�
F2x (x, y)+ F2y (x, y)

ID(�x2 + x,�y2 + y) =
�

D2
x(�x2 + x,�y2 + y)+ D2

y(�x2 + x,�y2 + y)
 ; Fx(x, y) and Fy(x, y) are first 

partial derivative of video frame in x and y direction respectively; Dx(�x2 + x,�y2 + y) and 
Dy(�x2 + x,�y2 + y) are first partial derivative of datum-DOM in x and y direction respectively; (x, y) are pixel 
coordinates in video frame, x = (1, 2, · · · ,NLF) , y = (1, 2, · · · ,NWF) ; (�x2,�y2) are pixel coordinates of video 
frame’s top left corner in datum-DOM, �x2 = (1, 2, · · · ,NLD − NLF) , �y2 = (1, 2, · · · ,NWD − NWF) ; NLF and 
NWF are length and width of video frame in pixels respectively; NLD and NWD are length and width of datum-
DOM in pixels respectively;

Block‑matching robustly
In practice, it has been found that the above proposed RGB based block-matching method exhibits better per-
formance in video frame with large color difference and complicate texture, while the above proposed gradient 
magnitude based block-matching method exhibits better performance in video frame with small color difference 
and simple texture.Therefore, it is necessary to further construct a robustly block-matching method by consider-
ing both color difference and texture complexity of video frame.

In the robustly block-matching method, symbol TH is proposed to comprehensive represent color difference 
amplitude and texture complexity of video frame, and a threshold number 20 is selected to judge TH . If TH ≤ 20 , 
the video frame is considered to have large color difference and complicate texture, and the matching result in 
section "Block-matching Roughly Based on RGB color" should have a lager weight. On the contrary, if TH > 20 , 
the video frame is considered to have small color difference and simple texture, and the matching result in sec-
tion "Block-matching Roughly Based on Gradient Magnitude" should have a larger weight. TH is calculated in 
Eq. (5), and the threshold number 20 is selected by numerous practical experiments.

As shown in Fig. 3, (xL, yL) are coordinates of the top left corner of the best matching area obtained by the 
proposed robustly block-matching method, and (xL, yL) can be calculated as:

(4)(xL2, yL2) = max
arg(�x2,�y2)

∑
x,y

[
IF
(
x, y

)
ID(xL2 + x, yL2+y)

]2

√∑
x,yI

2
F

(
x, y

)∑
x,yI

2
D(xL2 + x, yL2+y)

Figure 3.  The robust block-matching of datum-DOM and video frame.
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where, ωL is a weight, ωL =

{
1, r ≤ 1/2

1/2r, 1/2 < r ≤ 1

0, 1 < r
 , r represents a distance between 

(
xL1 , yL1

)
 and 

(
xL2 , yL2

)
 , 

r =
√
(xL1−xL2)

2+(yL1−yL2)
2

√
(NLF/10)

2+(NWF/10)
2

 , equations of r , ωL and TH are all constructed by numerous practical experiments; 
(
xL1 , yL1

)
 and 

(
xL2 , yL2

)
 are obtained by Eqs. (3) and (4) respectively; NLF and NWF are length and width of video 

frame in pixels respectively; NF is the total pixel numbers of video frame; TH represents color difference and 
texture complexity of video frame; the threshold number 20 is selected by numerous practical experiments; 
Meaning of the rest parameters can refer to Eqs. (3) and (4).

Extracting block‑matched‑DOM
According to parameters (xL, yL,NLF ,NWF) calculated in Eq. (5), Block-matched-DOM can be extracted from 
datum-DOM. As shown in Fig. 3, block-matched-DOM is the area in blue box marked by number 5, and is the 
best matching area for video frame on datum-DOM ultimately found.

It should be noted that, video frame and its corresponding block-matched-DOM have the same size in pixels, 
and geodetic coordinates of each pixel on video frame can be obtained directly from the geodetic coordinates of 
pixels at the same position on block-matched-DOM. That is to say, positioning of UAV’s patrolling video frame 
can be realized by directly assigning geodetic coordinates of each pixel in block-matched-DOM to pixels at the 
same position in UAV’s patrolling video frame.

Construction of precise polynomial-rectifying algorithm
Unfortunately, there is a high probability that pixels in video frame are not homologous with pixels in block-
matched-DOM at the same position, due to numerous negative factors, such as illumination variation, inconsist-
ent spatial resolution, diverse surface specific features, topographic relief, camera distortion, different projection 
modes and etc. That is to say, the positioning accuracy of video frame is still poor, if we assign geodetic coor-
dinates of each pixel in block-matched-DOM directly to pixels at the same position in video frame. In order to 
realize accurate positioning of UAV’s patrolling video sequence images, a precise polynomial-rectifying algorithm 
is further constructed.

The basic idea of the proposed precise polynomial-rectifying algorithm is to find out homologous regions in 
block-matched-DOM for regions in video frame, so as to figure out accurate rectification parameters for map-
ping video frame to block-matched-DOM. And finally, accurate positioning of video frame can be realized by 
using accurate rectification parameters to calculate geodetic coordinates of each pixel in video frame. It should 
be noted that, we are committed to find out homologous regions between video frame and block-matched-DOM, 
instead of finding out the homologous points. Because homologous regions are more stable and reliable than 
homologous points under numerous negative influences. Where, homologous regions refer to the most similar 
local areas between two images.

Through in-depth study of common characteristics between block-matched-DOM and video frame, the 
precise polynomial-rectifying algorithm is constructed based on three assumptions: (1) video frame and block-
matched-DOM can be regarded as two adjacent sequence images. (2) Overall surface features are similar between 
video frame and block-matched-DOM. (3) Pixels in a local area of the video frame share a same deformation law.

Constructing polynomials of video frame and that of block‑matched‑DOM
In order to reduce negative influence of illumination variation, gradient magnitude images of video frame and 
that of block-matched-DOM are used for image matching. In order to further reduce negative influence of 
diverse surface specific features, gradient magnitude images of video frame and that of block-matched-DOM are 
represented by second-order polynomials respectively, and the second-order polynomials of these two images 
are used for image matching ultimately.

As shown in Fig. 4, gradient magnitude images of video frame and that of block-matched-DOM are evenly 
divided into n× n local areas respectively, and each of the local areas is represented by a second-order polyno-
mial as:

where, fFij (XI,TI) and fDij (X�,T�) are intensity of local area of row i and column j in Fig. 4a,b respectively, 
i = (1, · · · , n) , j = (1, · · · , n) ; XI = (xI, yI)

T , X� = (x�, y�)
T , T represent transpose of a matrix (vector),(xI, yI) 

and (x�, y�) are pixel coordinates in local areas of Fig. 4a,b respectively; TI and T� are production time of video 

frame and that of block-matched-DOM respectively; AI =
(
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are second-order coefficient matrix of their polynomials respectively; BI = (mI
2,m

I
3)

T,B� = (m�
2 ,m

�
3 )

T , BI and 
B� are first-order coefficient vectors of their polynomials respectively; CI = mI

1 , C� = m�
1  , CI and C� are scalars 

of their polynomials respectively; mI
1 , m

I
2 , m

I
3 , m

I
4 , m

I
5 , mI

6 , m
�
1  , m�

2  , m�
3  , m�

4  , m�
5  , m�

6  are parameters of polynomials.

Constructing differential‑difference polynomials
Block-matched-DOM is the best matching area for video frame on datum-DOM. However, there are still irregular 
motion displacements between homologous regions of these two images due to numerous negative factors. There-
fore, finding out homologous regions of these two images is important for precise positioning of video frame.

Based on the assumption that video frame and block-matched-DOM can be regarded as two adjacent 
sequence images, the second-order polynomials of video frame and that of block-matched-DOM can also be 
regarded as two adjacent sequence images. And then, differential-difference polynomials can be constructed 
based on Eq. (6), and further can be rewritten by using Taylor expansion for �X to the first order derivative as:

where, fF(XI,TI) and fD(X�,T�) are intensity of the corresponding local areas in Fig. 4a,b respectively; XI and 
X� are pixel coordinates in local areas of Fig. 4a,b respectively; TI and T� are production time of video frame 

and that of block-matched-DOM respectively;AI =
(

mI
4 mI

6/2

mI
6/2 mI

5

)
 , A� =

(
m�

4 m�
6 /2

m�
6 /2 m�

5

)
 ; BI = (mI

2,m
I
3)

T

,B� = (m�
2 ,m

�
3 )

T ; CI = mI
1 , C� = m�

1  ; mI
1 , m

I
2 , m

I
3 , m

I
4 , m

I
5 , mI

6 , m
�
1  , m�

2  , m�
3  , m�

4  , m�
5  , m�

6  are parameters of 
polynomials; X� = XI +�X.

As shown in Fig. 5, �X is a small motion displacement from a local area of video frame to the corresponding 
local area of block-matched-DOM. That is to say, homologous regions between video frame and block-matched-
DOM can be obtained by finding out �X that can minimizes d in Eq. (7).

In Eq. (7), let d be exactly equal to zero, we can obtain as:

(7)

d = fD(X�,T�)− fF(XI,TI)

= fD(XI +�X,T�)− fF(XI,TI)

= fD(XI,T�)+
∂fD(XI,T�)

∂XI

�X − fF(XI,TI)

= XT
I A�XI + BT�XI + C� + 2XT

I A��X + BT��X − (XT
I AIXI + BTI XI + CI

= XT
I (A� − AI)XI + (B� − BI + 2A��X)TXI +

(
C� + BT��X − CI

)

Figure 4.  Local areas divided in video frame and block-matched-DOM.

Figure 5.  Small motion displacement from a local area of video frame to the corresponding local area of block-
matched-DOM.
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Further, we can obtain equations of �X as:

where, A�X =
[
(AI + A�)/2

B�
T

]
 ; L�X =

[
(BI − B�)/2
CI − C�

]
.

Constructing precise rectifying equations
�X In Eq. (9) can be also regarded as registration errors between video frame and block-matched-DOM. These 
registration errors are supposed to be caused by video frame’s scaling, displacement, rotation, distortion and etc. 
And then, �X can be also represented by second-order polynomials as:

where, 
(
xf , yf

)
 are coordinates of a local area in video frame; a0 , a1 , a2 , a3 , a4 , a5 , b0 , b1 , b2 , b3 , b4 , b5 are parameters 

of polynomials.
According to Eqs. (9) and (10), precise rectifying equations can be constructed ultimately as:

Where, A = A�X

(
1, xf , yf , x

2
f , xf yf , y

2
f , 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 1, xf , yf , x
2
f , xf yf , y

2
f

)
 , A�X =

[
(AI + A�)/2

B�
T

]
 , xf  and yf  are column and 

row numbers of a local area in video frame respectively;t = (a0, a1, a2, a3, a4, a5, b0, b1, b2, b3, b4, b5)
T , t  is a 

vector of unknown parameters to be resolved; L =
[
(BI − B�)/2
CI − C�

]
.

Constructing optimal estimation model
As shown in Eq. (11), the task of finding out �X is converted to find out t  , and each pair of local areas in Fig. 4a,b 
can construct 3 equations. That is to say, 3n2 equations can be constructed in the form of Eq. (11), as there are 
n2 pairs of local areas in Fig. 4a,b.

According to the presumption that the minimum energy difference should exist between video frame and 
block-matched-DOM in homologous regions, the optimization criteria for the 3n2 equations that are constructed 
in the form of Eq. (11) can be proposed as:

where, V = At − L , V  is a vector of residual errors; � is a weight matrix;t  is a vector of unknown parameters; 
Meaning of the remaining parameters refer to Eq. (11).

In order to obtain the optimal estimation of t  , following iteration process are recommended.
① Down-sample images and construct k-layer image pyramids for video frame and block-matched-DOM.
② Set � = I , I is an identity matrix; Set i = k and t = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T.
③ Construct matrix A and L according to the ith layer images of pyramid.
④ Calculate correction vector for t  as: �t = (AT�A)

−1
AT�(L− At0).

⑤ Calculate vector of residual errors as: V = A(t0 +�t)− L.

⑥ Redefine weight matrix as: � =





�1 0 . . . 0

0 �2 · · · 0

.

.

.

0

.

.

.

0

. . .
.
.
.

0 �n




 , �j =






�j ,
��Vj

�� ≤ 1.5σ

�j
σe
|ej| , 1.5σ <

��Vj

��

0, 3σ <
��Vj

��
≤ 3σ , σ =

√
VT�V
n2−12

 , 

j = 1, · · · , n.
⑦ Set t = t +�t.
⑧ Repeat steps ④–⑦ m times, and we set m = 3 in this study.
⑨ Set i = k − 1 . Repeat steps ③–⑧ until i equals zero, and the optimal estimates of t  is calculated out from 

the last iteration.

Positioning of UAV’s patrolling video frame
By using the optimal estimates of t  above resolved, precise geodetic coordinates of each pixel in video frame can 
be obtained as below:

(8)






A� = AI

A��X = (BI − B�)/2
B�

T�X = CI − C�

(9)A�X�X = L�X

(10)�X =

(
a0 + a1xf + a2yf + a3x

2
f + a4xf yf + a5y

2
f

b0 + b1xf + b2yf + b3x
2
f + b4xf yf + b5y

2
f

)

(11)At = L

(12)min
arg t

VT�V

(13)
(
L
B

)
= PX̂
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where, (L,B) are geodetic coordinates of a pixel in video frame;P =
(
PA PB PC
PD PE PF

)
 , P is a transformation matrix 

provided by producer of region-DOM; X̂ = X + Xf t ; X =
(
x, y, 1

)T , 
(
x, y

)
 are pixel coordinates of a pixel in 

video frame; Xf =




1, xf , yf , x

2
f , xf yf , y

2
f , 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 1, xf , yf , x
2
f , xf yf , y

2
f

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0



 , xf  and yf  are column and row numbers of the local 

area where the pixel is located; t  is the optimal rectifying parameters calculated above.
Finally, according to Eq. (13), precise positioning of UAV’s patrolling video sequence images can be realized 

by calculating geodetic coordinates of each pixel in UAV’s patrolling video sequence images.

Case study
Three practical experiments are designed in this study, which includes 3 videos and 2 region-DOMs. Among 
them, 3 videos are shot by 3 sorties fly of UAV in different areas, including town area, river area and high relief 
amplitude area. 2 region-DOMs have different spatial resolutions, one of the 2 region-DOMs has a lower spatial 
resolution, and the other one has a higher spatial resolution.

Figure 6.  The first experiment.
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The first experiment
As shown in Fig. 6, Fig. 6a is region-DOM used in this experiment, which was made on January 31, 2020, with 
length of 4096 pixels, width of 1792 pixels, and spatial resolution of 0.493663 m/pixels. Video used in this experi-
ment was shot by 1 sortie fly of UAV at an altitude of about 250 m on November 24, 2021, including 3154 frames, 
with fps (frames per second) of 23.98, spatial resolution of 0.0684932 m/pixels, length of 4096 pixels and width 
of 2160 pixels in a single frame. In addition, the video was shot in town area. Figure 6b is the 301st frame of the 
video used in this experiment, and is picked out for algorithm demonstration without loss of generality. POS 
data of the 301st frame are obtained by IMU (Inertial Measurement Unit) mounted on UAV, where, the center 
geodetic coordinates are (111.2661504°, 34.2428275°), flight altitude is 250.1 m, pitch angle is − 8.3°, roll angle 
is − 1.3°, and yaw angle is 82.5°.

According to the theory proposed in section "Extraction of datum-DOM", Fig. 6c is datum-DOM that is 
extracted from Fig. 6a on the basis of POS data of Fig. 6b.

According to the theory proposed in section "Construction of robust block-matching algorithm", Fig. 6d is 
block-matched-DOM that is extracted from Fig. 6c, and Fig. 6d is the best matching area for Fig. 6b on Fig. 6c. 
And by timekeeping in the program,

Figure 6.  (continued)
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According to the theory proposed in section "construction of precise polynomial-rec-
tifying algorithm", Fig.   6e,f  are gradient magnitude images that are calculated from 
Fig.  6b,d respectively. And, the optimal estimation t  calculated out from Fig.  6e,f is, 
t = (−7.8973, 0.1650,−0.0083, 0.0002, 0.0004,−0.0002, 2.1185,−0.1622, 0.2590, 0.0003, 0.0006, 0.0017).

According to the theory proposed in section "Positioning of UAV’s patrolling video frame", Fig. 6g is the 
accurate positioning result of video frame. Figure 6g is obtained by using parameter t  and P to calculate geodetic 
coordinates of each pixel in Fig. 6b. Where, t  is obtained by optimal estimation model mentioned above, P is 

provided by producer of region-DOM, and P =
(
0.0000053644 0 111.2558010221

0 −0.0000053644 34.2457553744

)
.

Figure 6h is a hybrid image formed by superimposing Fig. 6b on Fig. 6a according to their geodetic 
coordinates. Where, geodetic coordinates of Fig. 6a are pre-acquired, and geodetic coordinates of Fig. 6b are 
directly assigned from the block-matched-DOM. Among Fig. 6h, the gray area is Fig. 6b and the 20 red points are 
interest points on Fig. 6b. Distance deviations between the 20 red homologous points in Fig. 6a,b are measured 
in ArcGIS and listed in Table 1, and the average distance deviation is 4.614 m.

Figure 6i is a hybrid image formed by superimposing Fig. 6g on Fig. 6a according to their geodetic coordi-
nates. Where, geodetic coordinates of Fig. 6a are pre-acquired, and geodetic coordinates of Fig. 6g are obtained 
by using parameter t  and P to calculate geodetic coordinates of each pixel in video frame. Among Fig. 6i, the gray 
area is Fig. 6g and the 20 red points are interest points on Fig. 6b. In order to improve reliability and generality of 
the experiment, all the 20 red homologous points are evenly selected from distinctive terrain points and building 
points without any deliberate adjustment. Distance deviations between the 20 red homologous points in Fig. 6a,g 
are measured in ArcGIS and listed in Table 1, and the average distance deviation is 2.172 m.

By timekeeping in our program, it takes about 0.206 s to complete extracting of the block-matched-DOM, 
it takes about 0.330 s to complete calculating of the optimal estimation t  , and it takes about 0.101 s to complete 
calculating of the precise geodetic coordinates of video frame pixel by pixel. That is to say, the total positioning 
time of this UAV’s patrolling video frame is less than 1 s.

The second experiment
As shown in Fig. 7, Fig. 7a is region-DOM used in this experiment, and is same as Fig. 6a. Video used in this 
experiment was shot by 1 sortie fly of UAV at an altitude of about 250 m on November 25, 2021, including 4687 
frames, with fps (frames per second) of 23.98, spatial resolution of 0.0684932 m/pixels, length of 4096 pixels and 
width of 2160 pixels in a single frame. In addition, the video was shot in river area. Figure 7b is the 3547st frame 
of the video used in this experiment, and is picked out for algorithm demonstration without loss of generality. 
POS data of the 3547st frame are obtained by IMU mounted on UAV, where, the center geodetic coordinates 
are (111.2658703°, 34.2406338°), flight altitude is 250.1 m, pitch angle is − 7.1°, roll angle is 2.9°, and yaw angle 
is − 94.8°.

According to the theory proposed in section "Extraction of datum-DOM", Fig. 7c is datum-DOM that is 
extracted from Fig. 7a on the basis of POS data of Fig. 7b.

According to the theory proposed in section "construction of robust block-matching algorithm", Fig. 7d is 
block-matched-DOM that is extracted from Fig. 7c,d is the best matching area for Fig. 7b on Fig. 7c.

According to  the  theor y proposed in sect ion "Construct ion of  precise  polyno-
mial-rectifying algorithm", Fig.  7e,f are gradient magnitude images that are calculated 
from Fig.  7b,d respectively. And, the optimal estimation t  calculated out from Fig.  7e,f is, 
t = (−17.6265, 0.0919,−0.0814, 0.0004, 0.0001, 0.0001,−36.3304, 0.0845, 0.0535, 0.0005, 0.0000,−0.0006).

According to the theory proposed in Section "Positioning of UAV’s patrolling video frame", Fig. 7g is the 
accurate positioning result of video frame. Figure 7g is obtained by using parameter t  and P to calculate geodetic 
coordinates of each pixel in Fig. 7b. Where, t  is obtained by optimal estimation model mentioned above, P is 

provided by producer of region-DOM, and P =
(
0.0000053644 0 111.2558010221

0 −0.0000053644 34.2457553744

)
.

Figure 7h is a hybrid image formed by superimposing Fig. 7b on Fig. 7a in software according to their geodetic 
coordinates. Where, geodetic coordinates of Fig. 7a are pre-acquired, and geodetic coordinates of Fig. 7b are 
directly assigned from the block-matched-DOM. Among Fig. 7h, the gray area is Fig. 7b and the 20 red points are 

Table 1.  Distance deviations between 20 red homologous points in Fig. 6h,i.

Point number 1 2 3 4 5 6 7 8 9 10

Deviation of homologous points in Fig. 6h/m 2.834 1.807 1.622 1.942 5.698 3.149 5.511 3.537 4.133 3.111

Deviation of homologous points in Fig. 6i/m 1.234 3.307 1.268 2.519 5.517 2.735 2.523 1.184 0.555 1.857

Point number 11 12 13 14 15 16 17 18 19 20

Deviation of homologous points in Fig. 6h/m 5.729 5.082 5.537 3.617 4.802 5.956 8.365 6.487 6.587 6.764

Deviation of homologous points in Fig. 6i/m 1.638 1.491 1.128 1.303 0.746 1.409 6.489 2.154 2.096 2.287

Mean deviation of homologous points in Fig. 6h/m 4.614

Mean deviation of homologous points in Fig. 6i/m 2.172
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interest points on Fig. 7b. Distance deviations between the 20 red homologous points in Fig. 7a,b are measured 
in ArcGIS and listed in Table 2, and the average distance deviation is 5.240 m.

Figure 7i is a hybrid image formed by superimposing Fig. 7g on Fig. 7a according to their geodetic coordi-
nates. Where, geodetic coordinates of Fig. 7a are pre-acquired, and geodetic coordinates of Fig. 7g are obtained 
by using parameter t  and P to calculate geodetic coordinates of each pixel in video frame. Among Fig. 7i, the gray 
area is Fig. 7g and the 20 red points are interest points on Fig. 7b. In order to improve reliability and generality of 
the experiment, all the 20 red homologous points are evenly selected from distinctive terrain points and building 
points without any deliberate adjustment. Distance deviations between the 20 red homologous points in Fig. 7a,g 
are measured in ArcGIS and listed in Table 2, and the average distance deviation is 2.253 m.

By timekeeping in our program, it takes about 0.119 s to complete extracting of the block-matched-DOM, 
it takes about 0.118 s to complete calculating of the optimal estimation t  , and it takes about 0.053 s to complete 
calculating of the precise geodetic coordinates of video frame pixel by pixel. That is to say, the total positioning 
time of this UAV’s patrolling video frame is less than 1 s.

The third experiment
As shown in Fig. 8, Fig. 8a is region-DOM used in this experiment, which was made on May 13, 2021, with length 
of 19,266 pixels, width of 14,483 pixels, and spatial resolution of 0.08 m/pixels. Video used in this experiment 
was shot by 1 sortie fly of UAV at an altitude of about 250 m on November 26, 2021, including 3788 frames, 

Figure 7.  The second experiment.
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Figure 7.  (continued)

Table 2.  Distance deviations between 20 red homologous points in Fig. 7h,i.

Point number 1 2 3 4 5 6 7 8 9 10

Deviation of homologous points in Fig. 7h/m 6.262 5.44 6.344 5.725 7.465 3.538 5.698 5.383 6.675 5.501

Deviation of homologous points in Fig. 7i/m 1.602 7.240 1.556 1.118 1.622 1.831 3.778 1.478 1.646 1.029

Point number 11 12 13 14 15 16 17 18 19 20

Deviation of homologous points in Fig. 7h/m 3.728 4.763 5.720 5.305 4.763 3.406 4.622 6.152 4.051 4.262

Deviation of homologous points in Fig. 7i/m 0.539 0.354 2.157 0.720 0.411 0.307 0.219 5.540 5.811 6.106

Mean deviation of homologous points in Fig. 7h/m 5.240

Mean deviation of homologous points in Fig. 7i/m 2.253
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with fps (frames per second) of 23.98, spatial resolution of 0.0684932 m/pixels, length of 4096 pixels and width 
of 2160 pixels in a single frame. In addition, the video was shot in high relief amplitude area. Figure 8b is the 
901st frame of the video used in this experiment, and is picked out for algorithm demonstration without loss 
of generality. POS data of the 901st frame are obtained by IMU mounted on UAV, where, the center geodetic 
coordinates are (111.2504477°, 34.2280547°), flight altitude is 250.5 m, pitch angle is − 22.7°, roll angle is − 9.7°, 
and yaw angle is 123.2°.

According to the theory proposed in section "Extraction of datum-DOM", Fig. 8c is datum-DOM that is 
extracted from Fig. 8a on the basis of POS data of Fig. 8b.

According to the theory proposed in section "construction of robust block-matching algorithm", Fig. 8d is 
block-matched-DOM that is extracted from Fig. 8c,d is the best matching area for Fig. 8b on Fig. 8c.

According to the theory proposed in section "Construction of precise polynomial-
rectifying algorithm", Fig.  8e,f are gradient magnitude images that are calculated from 
Fig.  8b,d respectively. And, the optimal estimation t  calculated out from Fig.  8e,f is, 
t = (−1.3754, 0.0206,−0.1524, 0.0006,−0.0004,−0.0001, 6.9715,−0.0663, 0.2922,−0.0006, 0.0008, 0.0009).

According to the theory proposed in Section "Positioning of UAV’s patrolling video frame", Fig. 8g is the 
accurate positioning result of video frame. Figure 8g is obtained by using parameter t and P to calculate geodetic 

Figure 8.  The third experiment.
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coordinates of each pixel in Fig. 8b. Where, t is obtained by optimal estimation model mentioned above, P is 

provided by producer of region-DOM, and P =
(
0.0000008683 0 111.2441313977

0 −0.0000007212 34.2315524404

)
.

Figure 8h is a hybrid image formed by superimposing Fig. 8b on Fig. 8a according to their geodetic 
coordinates. Where, geodetic coordinates of Fig. 8a are pre-acquired, and geodetic coordinates of Fig. 8b are 
directly assigned from the block-matched-DOM. Among Fig. 8h, the gray area is Fig. 8b and the 20 red points are 
interest points on Fig. 8b. Distance deviations between the 20 red homologous points in Fig. 8a,b are measured 
in ArcGIS and listed in Table 3, and the average distance deviation is 7.105 m.

Figure 8i is a hybrid image formed by superimposing Fig. 8g on Fig. 8a according to their geodetic coordi-
nates. Where, geodetic coordinates of Fig. 8a are pre-acquired, and geodetic coordinates of Fig. 8g are obtained 
by using parameter t and P to calculate geodetic coordinates of each pixel in video frame. Among Fig. 8i, the gray 
area is Fig. 8g and the 20 red points are interest points on Fig. 8b. In order to improve reliability and generality of 
the experiment, all the 20 red homologous points are evenly selected from distinctive terrain points and building 
points without any deliberate adjustment. Distance deviations between the 20 red homologous points in Fig. 8a,g 
are measured in ArcGIS and listed in Table 3, and the average distance deviation is 3.619 m.

Figure 8.  (continued)
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By timekeeping in our program, it takes about 0.118 s to complete extracting of the block-matched-DOM, 
it takes about 0.122 s to complete calculating of the optimal estimation t  , and it takes about 0.074 s to complete 
calculating of the precise geodetic coordinates of video frame pixel by pixel. That is to say, the total positioning 
time of this UAV’s patrolling video frame is less than 1 s.

Experimental analysis
In the first experiment, spatial resolution of region-DOM is far less than that of video frame, region-DOM’s 
surface universal features are similar with video frame’s, and region-DOM’s surface specific features and 
illumination condition are great different from video frame’s. From the experimental results, we can see that 
average positioning deviation of all interest points in Fig. 6h is about 4.614 m, and average positioning deviation 
of all interest points in Fig. 6i is about 2.172 m. Among them, interest points that are located on roads and low-
rise buildings have lower positioning deviations, while interest points that are located on high-rise buildings 
have higher positioning deviations.

In the second experiment, spatial resolution of region-DOM is still far less than that of video frame, region-
DOM’s surface universal features are similar with video frame’s, region-DOM’s surface specific features and 
illumination condition are greatly different from video frame’s, and surface features on the left side of video 
frame is significantly less than those on the right side. From the experimental results, we can see that average 
positioning deviation of all interest points in Fig. 7h is about 5.2402 m, and average positioning deviation of all 
interest points in Fig. 7i is about 2.2532 m. Among them, interest points that are located on roads and low-rise 
buildings have lower positioning deviations, interest points that are located on high-rise buildings have higher 
positioning deviations, and interest points that are located on the left side of video frame have higher positioning 
deviations than those on the right side.

In the third experiment, spatial resolution of region-DOM is similar with that of video frame, region-DOM’s 
surface universal features are similar with video frame’s, region-DOM’s surface specific features and illumina-
tion condition are a little different from video frame’s, while there are extensive mountain body shadows on 
region-DOM. From the experimental results, we can see that average positioning deviation of all interest points 
in Fig. 8h is about 7.1051 m, and average positioning deviation of all interest points in Fig. 8i is about 3.6193 
m. Among them, interest points that are located on roads and low-rise buildings have lower positioning devia-
tions than the first two experiments, while interest points that are located on mountain edges have the highest 
positioning deviations.

By analyzing the above three experiments, following conclusions can be achieved.

(1) Geometrical shape of video frame deformed obviously after accurate positioning, as shown in Figs. 6g, 7g 
and 8g.

(2) The average positioning deviations of video frame by using the proposed robust bock-matching algorithm is 
5.653 m, and the average positioning deviations of video frame by using the proposed precise polynomial-
rectifying algorithm is 2.681 m. That is to say, positioning accuracy of video frame can be significantly 
increased by using the proposed precise polynomial-rectifying algorithm.

(3) The red homologous points located on roads and low-rise buildings have a higher positioning accuracy, 
while the red homologous points located on mountains and high-rise buildings have a lower positioning 
accuracy.

(4) Using region-DOM of high spatial resolution can significantly improve positioning accuracy of video 
frame, while extensive shadows that are similar to video frame’s surface universal features will significantly 
decrease positioning accuracy of video frame.

(5) The proposed model can be applied in various areas, such as, town area, river area, high relief amplitude 
area and etc. And experiment results show that, the average positioning accuracy in town area and river 
area is gentle higher than that in high relief amplitude area, as high terrain relief will impose a negative 
influence on the distortion of imaging.

(6) By timekeeping in our program, the average time of extracting the block-matched-DOM is about 0.148 s, 
the average time of calculating the optimal estimation t  is about 0.19 s, and the average time of calculating 
all pixels’ precise geodetic coordinates in a video frame is about 0.076 s. That is to say, the total positioning 
time of a UAV’s patrolling video frame is less than 1 s.

Table 3.  Distance deviations between 20 red homologous points in Fig. 8h,i.

Point number 1 2 3 4 5 6 7 8 9 10

Deviation of homologous points in Fig. 8h/m 8.594 12.119 8.255 8.470 8.483 2.828 9.881 5.656 6.587 5.497

Deviation of homologous points in Fig. 8i/m 1.431 4.612 2.136 3.272 4.114 0.358 3.967 0.870 1.485 1.69

Point number 11 12 13 14 15 16 17 18 19 20

Deviation of homologous points in Fig. 8h/m 4.460 5.352 3.039 7.484 4.483 10.303 7.137 10.812 6.426 6.236

Deviation of homologous points in Fig. 8i/m 0.400 0.738 1.204 4.968 0.684 6.99 3.66 11.339 9.921 8.547

Mean deviation of homologous points in Fig. 8h/m 7.105

Mean deviation of homologous points in Fig. 8i/m 3.619
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(7) The proposed methods can be also applied in the field of medical image registration, remote sensing image 
registration, visual navigation of other industries and etc. Subsequently, the current mathematical model 
can be optimized significantly by fusing with multi-source data, such as airborne LiDAR point cloud, and 
then can achieve a higher positioning accuracy and a broader application.

Conclusion
In order to realize real-time positioning of UAV’s patrolling video sequence images, a visual positioning model 
is recommended, including a robust block-matching algorithm and a precise polynomial-rectifying algorithm.

First, the robust block-matching algorithm is constructed to realize roughly positioning of UAV’s video 
patrolling video sequence images. The robust block-matching algorithm is divided into 5 steps, including scaling 
datum-DOM, block-matching roughly based on RGB, Block-matching roughly based on gradient magnitude, 
block-matching robustly, and extracting block-matched-DOM. Through the above 5 steps, the so-called block-
matched-DOM can be obtained, and rough positioning of UAV’s patrolling video sequence images can be realized 
by assigning geodetic coordinates of each pixel in block-matched-DOM to pixels at the same position in UAV’s 
patrolling video sequence images.

Second, the precise polynomial-rectifying algorithm is constructed to realize accurate positioning of UAV’s 
patrolling video sequence images. The precise polynomial-rectifying algorithm is divided into 5 steps, including 
constructing polynomials of video frame and that of block-matched-DOM, constructing differential-difference 
polynomials, constructing precise rectifying equations, constructing optimal estimation model, and calculating 
geodetic coordinates of interest points in video frame. Through the above 5 steps, the so-called accurate recti-
fication parameters can be obtained, and accurate positioning of UAV’s patrolling video sequence images can 
be realized by using accurate rectification parameters to calculate geodetic coordinates of each pixel in UAV’s 
patrolling video sequence images.

Finally, all the proposed algorithms are verified by three practical experiments, and results indicate that the 
proposed robust block-matching algorithm can realize positioning of UAV’s patrolling video sequence images 
with an average accuracy of 5 m, even if spatial resolution, surface specific features, illumination and topographic 
relief of region-DOM are greatly different from that of UAV’s patrolling video sequence images. The proposed 
precise polynomial-rectifying algorithm can further improve positioning accuracy of UAV’s patrolling video 
sequence images with an average accuracy of about 2.5 m. And calculation time of positioning a single UAV’s 
patrolling video sequence image is less than 1 s.

Data availability
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to another study related to this data is not yet publicly available.
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