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Metabolomic profile of acute 
myeloid leukaemia parallels 
of prognosis and response 
to therapy
Lukasz Bolkun 1,8, Tomasz Pienkowski 2,8, Julia Sieminska 2, Joanna Godzien 2, 
Karolina Pietrowska 2, Janusz Kłoczko 1, Agnieszka Wierzbowska 3, Marcin Moniuszko 4,5, 
Mariusz Ratajczak 6, Adam Kretowski 2,7 & Michal Ciborowski 2*

The heterogeneity of acute myeloid leukemia (AML), a complex hematological malignancy, is 
caused by mutations in myeloid cells affecting their differentiation and proliferation. Thus, various 
cytogenetic alterations in AML cells may be characterized by a unique metabolome and require 
different treatment approaches. In this study, we performed untargeted metabolomics to assess 
metabolomics differences between AML patients and healthy controls, AML patients with different 
treatment outcomes, AML patients in different risk groups based on the 2017 European LeukemiaNet 
(ELN) recommendations for the diagnosis and management of AML, AML patients with and without 
FLT3-ITD mutation, and a comparison between patients with FLT3-ITD, CBF-AML (Core binding 
factor acute myelogenous leukemia), and MLL AML (mixed-lineage leukemia gene) in comparison to 
control subjects. Analyses were performed in serum samples using liquid chromatography coupled 
with mass spectrometry (LC–MS). The obtained metabolomics profiles exhibited many alterations in 
glycerophospholipid and sphingolipid metabolism and allowed us to propose biomarkers based on 
each of the above assessments as an aid for diagnosis and eventual classification, allowing physicians 
to choose the best-suited treatment approach. These results highlight the application of LC–MS-based 
metabolomics of serum samples as an aid in diagnostics and a potential minimally invasive prognostic 
tool for identifying various cytogenetic and treatment outcomes of AML.

Metabolomics studies are based on disturbances in the abundances of total metabolites, such as lipids and 
fatty acids, in an analyzed sample (such as body fluids or tissues from tumors for in situ analysis of metabolic 
changes). These alterations in whole metabolic compositions occur due to tumor proliferation, which requires 
the intake of basic building blocks for cell growth, or the release of oncometabolites. The process is described 
thoroughly by the Warburg effect. Tumors take up free lipids from the bloodstream to incorporate them into 
their own cell membrane as they grow. Thus, metabolomics, as a fairly new field of science, has the potential to 
discover metabolic pathways disturbed by a particular disease and subsequently propose novel discriminative 
or diagnostic markers and therapy  targets1,2. Despite a multitude of efforts, the continued search for markers 
of acute myeloid leukemia (AML) is crucial for the identification of metabolic pathways involved in either the 
promotion or inhibition of AML cell growth, progression of AML and susceptibility of AML cells to cytotoxic 
drugs. Changes in metabolites, lipids and small molecules involved in metabolic processes identified via gas/
liquid chromatography–mass spectrometry (GC/LC–MS) and assessed by multivariate statistical analysis may 
present us with discriminative phenotypic profiles of distinct AML alterations and stages. Some studies have 
attempted to examine global changes in metabolites to identify biomarkers associated with phenotypic changes 
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in various  cancers1,3. However, there are very few AML studies that involve  metabolomics4–7. The closest research 
were conducted on bone  marrow4 and bone marrow serum  samples7. Both studies utilize metabolomics profiling, 
yet they employ methodologies distinct from ours. The first study relies on HRMAS-NMR–based metabolomics, 
while the latter employs GC–TOF–MS analysis. Nonetheless, both studies offer significant insights from perspec-
tives differing from our own.

In the present study, we used an LC–MS metabolomics approach to examine global metabolic profiles in 
serum samples of AML patients by evaluating small molecules compositions in patients and healthy controls; 
evaluating differences in metabolomic profiles in patients with complete recurrence (CR) and no recurrence 
(NR); assessing metabolomic differences between AML patients with different cytogenetic risk; and investigating 
metabolomic differences in patients with or without FLT3-ITD gene mutation; we also carried out a comparison 
between patients with FLT3-ITD, CBF-AML (Core binding factor acute myelogenous leukemia), and MLL AML 
(mixed-lineage leukemia gene) in comparison to control subjects.

Materials and methods
Patient cohort and classification
All experimental procedures were approved by the ethics and research committee of the Medical University of 
Bialystok, Poland, and were performed in accordance with institutional guidelines at Bialystok University Hospi-
tal (R-I-002/393/2018). After obtaining informed consent, a total of 100 serum samples collected from previously 
untreated acute non-promyelocytic leukemia patients were included in the study (Table 1). The median age of 
the patients at the time of sample collection was 50, and the range was 18–67. Forty-five subjects were female, 
and fifty-five were male. Diagnoses were established following the WHO classification  system8. Blood counts 
and flow cytometry were performed to confirm the presence of blastic cells, whereas cytogenetic and molecular 
studies, including FISH (AML1/ETO, CBFß/MYH11, MLLT3-MLL and frequently mutated genes FLT3-ITD, 
NPM1, CEBPA, TP53), were carried out to determine the risk group of the patients according to WHO recom-
mendations. Participants included in the study were free from autoimmune, infectious, or metabolic diseases 
such as dyslipidemia and diabetes. Additionally, none of the control subjects had a history of neoplasia. Serum 
samples were collected before treatment from all included AML patients and after treatment from those AML 
patients with complete remission (CR) in the fasting state (in the morning).

Table 1.  Characteristics of the AML patients. AML acute myeloid leukaemia, CR complete remission, 
NPM1mut mutated nucleophosmin, biallelic CEBPAmut mutated core-binding factor leukaemia, FLT3-
ITD internal tandem duplication of Fms-like tyrosine kinase 3.

Number of patients 100

Mean (range) age, year 50 (18–67)

Mean (± SD) white blood cell count (G/l) 38.12 (2.0–212.3)

Mean (range) the percentage of the blastic cells in peripheral blood 47 (0–98)

Mean (range) of blastic cells percentage? in bone marrow 56 (20–93)

 1. Acute myeloid leukemia with recurrent genetic abnormalities n (%)

t(8;21) (q22;q22);(AML1/ETO) 8 (8%)

inv(16) (p13;q22) or t(16;16) (p13;q22); (CBFß/ MYH11) 6 (6%)

t(9;11); MLLT3-MLL 9 (9%)

NPM1wtFLT3low/NPM1mutFLT3wt 5 (5%)

NPM1wtFLT3high 15 (15%)

Biallelic CEBPAmut 1 (1%)

 2. AML with multilineage dysplasia without antecedent MDS 10 (10%)

 3. AML therapy-related 0 (0.0%)

 4. AML not otherwise categorized (FAB classification) n (%)

AML, minimally differentiated 5 (5%)

AML without maturation 10 (10%)

AML with maturation 10 (10%)

Acute myelomonocytic leukaemia (AMMoL) 9 (9%)

Acute monoblastic leukaemia 7 (7%)

Acute monocytic leukaemia 5 (5%)

DAC 51

DA 49

The outcome of induction therapy DAC or DA

CR achieved after the first induction, n, % 50 (50%)

Favourable risk 15 (15.0%)

Intermediate I and II risk 50 (50.0%)

Unfavourable risk 45 (45.0%)
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Patients were classified based on risk as follows: 15 patients had good risk (8 patients with t(8;21), 6 with 
inv(16) and one with mutated core-binding factor leukemia  (CEBPAmut)), 50 subjects had intermediate risk 
(including patients with diploid karyotype features, 5 patients with both mutated nucleophosmin  (NPM1mut) 
and internal tandem duplication of Fms-like tyrosine kinase 3 (FLT3-ITD) and 15 patients with FLT3-ITD 
without  NMP1mut), and 45 subjects were classified as having unfavorable risk (with del(5q), del(7q) or complex 
(≥ 3) abnormalities).

AML patients were treated in the Haematology Department of the University Hospital of Bialystok from 2012 
to 2019 with 7-day induction chemotherapy regimens corresponding to the standard therapy based on the Pol-
ish Adult Leukaemia Group; notably, the treatment schedules depended on the preferences of the center or the 
hematologist. Briefly, cytarabine was delivered as a continuous IV infusion for seven consecutive days at a dose 
of 200 mg/m2, while anthracycline was delivered for three consecutive days as an IV push at a dose of 60 mg/
m2 in a DA schedule. Additionally, cladribine was administered for 5 days as an IV push at a dose of 5 mg/m2 
in DAC  schedule9. After induction, the morphological response was evaluated following the recommendation 
of Chason et al.10; among the selected samples, CR was observed in 50 patients after the first induction, and 50 
patients were nonresponders (NR).

We performed rigorous age- and gender-matching between the patients diagnosed with AML and the healthy 
control group, meticulously ensuring that any potential influences from age and gender variables were effectively 
minimized in our study. The control group was population-based and comprised twenty age-matched healthy 
volunteers (10 males, 10 females). Samples were collected from the subjects if they were free of fever for 1 week, 
not receiving any medications, not being pregnant and did not have a history of any chronic diseases.

Experimental methods
The experimental methods are described in the Supplementary Materials.

Results
In this study, we obtained the metabolic profiles of 120 serum samples collected from 100 AML patients and 
20 healthy controls (Table 1). We then used these profiles to evaluate several comparisons: metabolomic dif-
ferences between AML patients and controls; metabolomic differences between patients based on the type of 
response to induction therapy, namely, CR or NR; metabolomic differences before and after induction in a group 
of responders; metabolomic differences between patients in different risk groups according to the 2017 ELN 
recommendations for the diagnosis and management of  AML11; and metabolomic differences between AML 
patients with and without FLT3-ITD mutation.

Differences between AML patients and controls
The first comparison identified the metabolomic differences between AML patients and healthy controls. Meta-
bolic pathway impact analysis showed differences mostly in the lipid profiles, especially of glycerophosphocho-
line (PC), lysoglycerophosphocholine (LPC) and sphingomyelin (SM) (Supplementary Fig. 1A). However, not 
only lipids but also singular metabolites in the serum samples were affected. In comparison to healthy controls, 
AML patients had an increased abundance of sterol sulfate conjugate (ST) (21:1;O2;S) of 259%, PC (28:0) of 
238%, amino-hexadecanoic acid of 107%, acyl carnitine (AC) (8:0) of 87%, and cortisol of 84%. Additionally, 
the tricarboxylic acid (TCA) metabolite citric acid and PC (34:5) in AML patients compared to healthy controls 
were decreased by 98% and 83%, respectively (Supplementary Table 2). An OPLS-DA model clearly separated 
the AML patients from the controls, as shown in Supplementary Fig. 2A and B in the Supplementary Materials. 
Models based on both LC–MS ionization modes present a clear separation of the studied groups with good  R2 
and  Q2 values (Supplementary Materials).

Differences between types of responses (CR vs. NR)
The second comparison focused on the possible impact on metabolome in types of responses (CR, n = 50, NR, 
n = 50) to the applied regimen. Metabolic pathway impact analysis showed that the most affected pathway was 
glycerophospholipid metabolism (Supplementary Fig. 1B), as in the second comparison. The most affected SM 
(d18:1/12:0) was elevated by 80% in patients with CR compared to NR (Supplementary Table 3). OPLS-DA 
models were built to distinguish these groups and, as shown in Supplementary Fig. 3A and B in the Supplemen-
tary Materials, CR group is separated from the NR group. Models for both ionization modes data present a clear 
separation of the studied groups with good  R2 and  Q2 values (Supplementary Materials).

Additionally, we attempted to analyze differences between the DA and DAC approaches in ChT of AML. 
However, we were unable to obtain any statistically significant results for differences in successful treatment 
outcomes. Thus, the results of this comparison are not included.

Differences between ELN risk groups
Another comparison evaluated different ELN risk groups, namely, those with favorable (group 1), intermediate 
(group 2) or adverse (group 3) risk, stratified based on the 2017 ELM recommendations.

For the first comparison (group 2 vs. group 1), metabolic pathway impact analysis showed that the most 
affected pathway was glycerophospholipid metabolism (Supplementary Fig. 4A). Overall, there were 11 dysregu-
lated compounds (Fig. 1A). Three of them were significant and represented PCs (34:5, 36:5, and 38:6) However, 
PE (16:0/20:5) and glycolithocholate sulfate, which increased in abundance by 226% and 110%, respectively, 
exhibited nonsignificant increases (Supplementary Table 4).

For the second comparison (group 3 vs. group 1), glycerophospholipid metabolism and sphingolipid metabo-
lism (Supplementary Fig. 4B) were affected. Overall, there were 43 dysregulated compounds (Fig. 1B). The 
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metabolites that experienced the most significant impacts were PCs (28:0) and (34:5), showing reductions of 
99% and 84% in group 3 in comparison to group 1, respectively. On the other hand, PE (16:0/20:5), choline, 
and Cer (d18:1/16:0) displayed notable increases of 360%, 88%, and 83% in group 3 in comparison to group 1, 
respectively (Supplementary Table 5).

For the third comparison (group 3 vs. group 2), glycerophospholipid metabolism (Supplementary Fig. 4C) 
was the most affected metabolic pathway with 8 dysregulated compounds overall (Fig. 1C). Despite PCs being 
the most altered, 2-aminohexadecanoic acid had the greatest increase in abundance of 171% in group 3 in com-
parison to group 1 (Supplementary Table 6). When comparing the differences between these ELN risk groups, 
the most discriminating compounds were lipids (Supplementary Fig. 4A–C).

OPLS-DA (Supplementary Fig. 5A–F) models were built to distinguish groups based on both ionization 
modes data, and the results indicated clear group separation with good  R2 and  Q2 values (Supplementary 
Materials).

Figure 1.  Importance in Projection (VIP) plot of metabolites contributing to group separation between (A) 
AML patients and controls. (B) Before and after treatment. (C) CR and NR. The VIP plot illustrates the most 
significant metabolite features identified through OPLS-DA. The colored boxes on the right side indicate the 
relative concentration of corresponding metabolites in serum samples. VIP is a composite score that considers 
the OPLS-DA loadings’ squared sums, incorporating the degree to which the Y-variable is explained in each 
dimension. CR, Complete recurrence; NR, No recurrence.
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Differences between the patients with and without FLT3-ITD mutation
This comparison assessed metabolomic differences between the patients with (n = 20) and without (n = 21) FLT3 
mutation. Metabolic pathway impact analysis showed that the most affected pathway was glycerophospholipid 
metabolism (Supplementary Fig. 6). Overall, there were 40 dysregulated compounds. When comparing AML 
patients with and without FLT3 mutation, the most discriminating compounds were lipids (Fig. 2). The most 
affected lipid was SM (d33:1), which was decreased by 80.3% in patients with FLT3 mutation in comparison 
to patients without FLT3 mutation (Supplementary Table 7). OPLS-DA models were built for both ionization 
modes data, and the obtained results are shown in the Supplementary Materials (Supplementary Fig. 7A and B), 
indicating clear group separation with good  R2 and  Q2 values (Supplementary Materials).

Differences between the patients with chromosomal aberrations of AML and control subjects
For deeper investigation of ELM classification, we conducted comparisons focused on the most common chro-
mosomal aberrations in AML in comparison to healthy subjects. These abnormalities encompassed FLT-ITD, 
CBF, and MLL. In both comparisons of AML patients with FLT-ITD mutation and CBF-AML with the control 
group, the most distinguishing compounds were found within sphingolipid and glycerophospholipid metabolism 
(Supplementary Fig. 8A and B). For MLL-AML patients, the differentiating factors were related to glycerophos-
pholipid metabolism and amino acid metabolism (Supplementary Fig. 8C).

In the patient group with FLT-ITD mutation, the most pronounced alterations were observed in PCs ((20:0) 
increased by 159%, and (34:5) decreased by 90%). Moreover, there were notable increases in sterols (ST 24:1;O4;S 
and ST 19:2;O3;S) by 128% and 86%, respectively, along with an 84% rise in cortisol levels (Supplementary 
Table 8). In the case of CBF-AML patients, distinct differences compared to controls were noted and displayed 
a heightened abundance of various molecules, including PCs ((35:2) by 255% and (38:6) by 147%), sterol (ST 
24:1;O4;S by 158%), SM ((d18:2/14:0) by 143%), and LPC ((24:0) by 134%). Citric acid levels were notably 
reduced by 98% (Supplementary Table 9). In the context of MLL-AML, significant differences were observed in 
elevated abundance of PCs ((P-38:4)/PC(O-38:5) by 252%), sterol (ST 24:1;O4;S by 154%) and cortisol (by 105%), 
with decreased abundance of citric acid (by 97%) and PC ((34:5) by 92%) (Supplementary Table 9).

When making comparisons between FLT-ITD patients and the control group, the most discriminative com-
pounds that stood out were specific types of SMs: (d32:1), (31:1), (d18:1/12:0), and (d18:2/14:0) (Fig. 3A). In the 
case of CBF-AML patients compared to the control group, the compounds that exhibited the most discriminat-
ing value were certain types of PCs: (34:5) and (36:6), along with LPC (22:0) (Fig. 3B). Lastly, when analyzing 
AML patients with and without MLL in comparison to the control group, the discriminative compounds were 
PC (28:0) and SMs ((d33:1) and (d18:1/12:0)) (Fig. 3C).

OPLS-DA models were constructed to differentiate these categories (Supplementary Fig. 9A–F). In both ioni-
zation modes, the data exhibited distinct segregation among the investigated groups, as evidenced by favorable 
R2 and Q2 values (Supplementary Materials).

Figure 2.  Importance in Projection (VIP) plot of metabolites contributing to group separation between patients 
with FLT3-ITD mutation and those with FLT3-WT. The VIP plot illustrates the most significant metabolite 
features identified through OPLS-DA. The colored boxes on the right side indicate the relative concentration of 
corresponding metabolites in serum samples. VIP is a composite score that considers the OPLS-DA loadings’ 
squared sums, incorporating the degree to which the Y-variable is explained in each dimension.
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Discussion
AML is aggressive and the most commonly occurring hematological malignancy characterized by clonal pro-
liferation of myeloid cells at various stages of  maturation12,13. Despite advances in diagnosis, stratification and 
treatment, the disease remains largely incurable with a high percentage of relapses, which causes a 5-year life 
expectancy not exceeding 25–30%12–14. AML is a heterogeneous disorder characterized by the accumulation of 
gene alterations, along with translocations and inversions, that contribute to disease biology and prognosis and, 
most importantly, carry prognostic importance. The discovery of novel discriminative biomarkers remains of 
utmost importance to provide new outcome definitions and therapeutic targets. Despite a multitude of efforts, 
the identification of crucial pathways and proteins involved in either promotion or inhibition of cell growth, 
progression of AML and susceptibility of AML cells to cytotoxic drugs is still warranted.

The repurposing of cellular energy metabolism is by no means the only metabolic trait that cancers can 
express. Another metabolic idiosyncrasy that cancer cells use to their advantage is the production of so-called 
oncometabolites. Indeed, lower plasma levels of cholesterol, lipids, and unsaturated fatty acids have been found in 
AML mice in comparison to healthy  controls15,16, highlighting an involvement of fatty acid metabolism in AML, 
possibly related to the demand for lipids and cholesterol in tumor proliferation. The study of the mechanisms 
underlying the relationship between oncometabolites and tumor repopulation is fundamental for identifying 
efficient anticancer therapeutic strategies and novel serum biomarkers to overcome cancer relapse.

Figure 3.  Importance in Projection (VIP) plot of metabolites contributing to group separation between 
patients with distinct genetic subgroups in comparison to control group. (A) FLT3-ITD to control group; (B) 
CBF-AML to control group; (C) MLL to control group. The VIP plot illustrates the most significant metabolite 
features identified through OPLS-DA. The colored boxes on the right side indicate the relative concentration of 
corresponding metabolites in serum samples. VIP is a composite score that considers the OPLS-DA loadings’ 
squared sums, incorporating the degree to which the Y-variable is explained in each dimension. CBF-AML, 
Core binding factor acute myelogenous leukemia; MLL, Mixed-lineage leukemia gene.
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Thus, in this research, we focused on metabolites that can differentiate AML status based on specific condi-
tions, namely, treatment outcome (CR and NR), treatment regimen in patients with CR, risk classification, and 
presence or absence of FLT3-ITD mutation.

The key to understanding metabolomic changes was to first research the differences between AML patients 
and healthy controls, and this was our starting point for making further comparisons. The alterations uncovered 
in this research were mostly lipid- and TCA-based. The composition of decreased PCs, LPCs, SMs and PEs is 
quite common for malignancies due to the Warburg effect and the necessity of extracellular lipid intake for tumor 
growth (Fig. 4). Our findings are consistent with the conclusions drawn by Lo Presti et al.4 concerning elevated 
PEs levels in bone marrow cells. This phenomenon, commonly observed in cancers, is associated with an increase 
in cellular PC levels, indicating heightened cellular proliferation. The most decreased PC was (34:5) by 83% and 
citric acid by 98% in comparison to healthy controls. The results for citric acid in AML patients seemed to be 
in accordance with Zeng et al.’s17 research based on a metabolomics investigation of TCA cycle alterations. The 
overexpressed IDH-2 gene in AML promotes leukemia cell survival and proliferation in vitro as well as in vivo 
through active IDH-2-mediated conversion of alpha-ketoglutarate to isocitrate/citrate to facilitate glutamine 
utilization for fatty acid (FA) synthesis. FA, which was also decreased in serum, is essential for the proliferation 
of leukemia cells. In conclusion, the increased demand of tumor cells for basic building components of cell 
membranes and their substrates for their precursors by extra- and intracellular means may lead to a decreased 
abundance of these components in serum. Lo Presti et al.4 recently brought attention to notable discrepancies in 
the levels of other metabolites among patients with IDH mutations—amino acids, indicating that the status of 
IDH has implications for multiple metabolic pathways. In fact, we also detected certain disruptions in amino acid 
metabolism (Supplementary Table 2). Additionally, Jones et al.18 determined that amino acids are metabolized in 
the TCA cycle in leukemic stem cells (LSCs). They further revealed that LSCs derived from individuals with de 
novo AML exhibit a specific reliance on amino acid metabolism for oxidative phosphorylation. In our findings, 
a reduction in amino acids was observed in the serum (Supplementary Table 2). Conversely, existing literature 
indicates an elevated presence of amino acids within cell  lines18. Nonetheless, as discussed earlier, this contrast 
could be attributed to the Warburg effect, where LSCs consume essential cellular building blocks, potentially 
leading to their depletion in the serum. Interestingly, concerning the variations in fatty acid levels, Jones et al.18 
also made an intriguing observation. When examining LSCs from relapsed patients, they identified a notable 
adaptation: the LSCs developed the capability to counteract the loss of amino acids by increasing their fatty acid 
metabolism. This phenomenon was not witnessed in LSCs from treatment-naive patients.

Additionally, fewer changes were observed in the SM and ceramide serum composition of AML patients. 
SM has been reported to be related to vital cell activities, such as growth, adhesion and  survival19. Additionally, 
ceramides are correlated with cellular  responses20 and are mostly found in high concentrations within the cell 
membrane of eukaryotic cells due to their role as component lipids of sphingomyelin. Thus, eventual changes in 

Figure 4.  Main findings summary. White boxes depict data that falls beyond the scope of this research but 
holds relevance. White boxes or circles marked with “*” indicate literature data, while red boxes represent 
the primary discoveries of this study. Upward and downward arrows symbolize changes in the abundance of 
specified compounds. Arrows pointing in specific directions illustrate the progression of biochemical pathways. 
Gal-9, Galectin-9; CTRH,corticotropin-releasing hormone; ACTH, Adrenocorticotropic hormone. Created with 
BioRender.com.
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one of these components may affect or be an outcome of their disturbances. SM distribution on the outer surface 
of the cell membrane and on serum lipoprotein levels reflects the state of the cell membrane. Hori et al.21 found 
that differences in SM serum composition may have a significant physiological impact on cell fluidity due to 
lipid serum-cell membrane exhaustion. It was already suggested that a reduction in fluidity of cell membranes 
affects hemolysis and white blood cell migration due to decreased blood cell  deformability22. Additionally, Hori 
et al.21 suggested that membrane fluidity is lower in patients with hematologic malignancies and that many SM 
species show concentration-dependent correlations with LDL in hematologic malignancies. This seems to be in 
accordance with our finding of decreased SMs in AML patients due to its increased uptake.

However, the most affected in AML patients compared to controls was sterol sulfate (ST 21:1;O2;S) by 259%. 
One of the roles of ST in cells is regulation of lipid metabolism, inflammatory responses and cell proliferation by 
correlation with cholesterol levels and depression of immune system responses by related mechanisms. Thus, the 
increased appearance in serum may indicate that tumor cells affect the regulation of lipid metabolism and the 
immune system to grow and survive, respectively. This seems plausible in accordance with Tatsuguchi et al.’s22 
colon cancer research, which indicates that ST, a cholesterol sulfate, acts as an inhibitor of cell infiltration by 
effector T cells. There was also an increased presence of acylcarnitine (AC(8:0) by 87%) in serum. Simultaneously 
with STs, AC also plays a regulatory role in lipid metabolism, as it is broken down by plasma esterase present in 
blood to carnitine, which is used to transport FA into cells. Consequently, its elevated abundance seems to be 
correlated with tumor proliferation.

Additionally, we observed an abundance increase of over 100% of amino-hexadecanoic acid, which belongs 
to the lipoamino acid family. However, the main issue in the analysis of lipoamino acids is related to the low 
levels at which they occur naturally, and there is a concern that high results might be obtained because of the 
physiological effects of sampling  methods23. Moreover, this is the first report on this topic in AML analysis. In 
eukaryotic cells, lipoamino acids are minor but ubiquitous components of cell membranes. Due to FA derivatives, 
their increased abundance may be correlated with tumor cell proliferation and increased production of their 
components, which eventually may not be anchored to the cell membrane for various reasons.

Interestingly, it was also noted that there was an increase in cortisol levels, a vital hormone originating from 
the human adrenal cortex. Sakhnevych et al.24 revealed that cortisol initiates LPHN1 expression at the transcrip-
tional level, prompting translation within human AML cells (Fig. 4). Notably, cortisol lacks this effect in healthy 
leukocytes. This cascade results in galectin-9 secretion, safeguarding AML cells from immune response by NK 
cells or cytotoxic T cells. Thus, elevated levels of cortisol in AML patients indicate a potential for immune evasion.

In our study, we conducted an analysis of metabolomic changes within a post-treatment cohort, stratifying 
patients into responders and non-responders. Our primary objective was to uncover disparities in metabolomic 
profiles, potentially offering a novel means of assessing the efficacy of post-induction therapy. Notably, our inves-
tigation directed our attention towards alterations in glycerophospholipid metabolism, specifically focusing on 
SMs that displayed heightened abundance. This finding aligned with prior  research25,26. Glycerophospholipid 
metabolism modifications have attracted significant attention due to their profound implications in the landscape 
of tumor progression and development. In the context of highly proliferating cancer cells, there is a demand for 
the de novo synthesis of fatty acids, a process vital for the continuous generation of glycerophospholipids essential 
for membrane synthesis. Glycerophospholipids hold a pivotal position in a range of cellular functions. These 
functions encompass not only the structural shaping of cell membranes but also their involvement in intricate 
signaling  pathways27. Elevated serum glycerophospholipids could signal effective therapy-induced cancer cell 
elimination, causing the release of lipids from cell membranes.

We performed additional data analysis to research whether there is any outcome disparity between DAC 
versus DA regimens for patients with CR. However, we were unable to observe any statistically significant dif-
ferences in the metabolome of patients with remission according to the different regimens. On the other hand, 
there is a single study showing the possible impact of cladribine on metabolomics changes, mostly in CLL patients 
(metabolic response patterns of nucleotides in B-cell chronic lymphocytic leukemia to cladribine, fludarabine 
and deoxycoformycin), which showed a possible determination of “metabolic response patterns’’ of nucleotides 
in CLL cells treated with drugs that might distinguish patients with susceptible and refractory CLL prior to 
 chemotherapy28.

A previously not researched topic, namely, the metabolomics differences in patients stratified based on the 
2017 ELN risk classification, was investigated in the current study. The comparisons were performed before start-
ing therapy; thus, the results represent the metabolome unaffected by medications. ELN classification stratifies 
patients into three risk categories (1—favorable, 2—intermediate, and 3—adverse) by refining the prognostic 
value of specific genetic mutations in comparison to the previous classification from  201029. The first compari-
son (2 vs. 1) presented a slight change in PCs with a decreased abundance of up to 61%. However, the second 
comparison (3 vs. 1) represented a more vast library of disturbed metabolites compared to the highest and lowest 
risk stratifications. In addition to other glycerophospholipid metabolism compounds being mostly decreased, 
PE (16:0/20:5) was elevated by 360%, as well as in the first comparison where the same compound was increased 
by 226%. However, in the third comparison (3 vs. 2), PE (16:0/20:5) was not significant. This may indicate that 
PE (16:0/20:5) may be used as a discriminating biomarker between the first and other risk factor groups. PE 
(16:0/20:5) was not previously described as a biomarker in AML or in any other study. We were also able to 
observe an alpha-amino fatty acid of chain length C16, a 2-aminohexadecanoic acid, by analyzing the third 
comparison (3 vs. 2), which is the only significantly changed compound that may be discriminative between both 
higher-risk-stratified groups of patients. In conclusion, observations of these results present three discrimina-
tive compounds able to stratify patients based on EML risk classification just by serum metabolomics analysis.

Many genetic aberrations are intragenetic and can only be detected using molecular biology techniques. 
Internal duplication of the FLT3-ITD gene occurs in approximately 23% of patients with a normal karyotype. 
Thus, our aim was to research differences in the metabolomes of patients with or without FLT3 mutation, which 
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in the future may contribute to the discovery of new biomarkers or therapeutic approaches. In both comparisons, 
FLT3-ITD/FLT3-WT and FLT3-ITD/Controls, the compounds were mostly SMs, PCs and LPCs involved in 
glycerophospholipid metabolism. Interestingly, in FLT3-ITD/FLT3-WT comparison, SM(d33:1) stood out the 
most (decreased by 80.3%) and appeared already in the overall discrimination between case and control, but 
not as much decreased (by 67%), indicating a slightly more discriminative manner in the presence or absence of 
mutation if disease is diagnosed. However, some studies on pediatric patients’ plasma and cell samples state that 
FLT3-ITD does not define the global leukemia metabolome but points to multiple metabolic feature disturbances, 
such as nucleosides, such as an increased abundance of guanine, hypoxanthine, inosine, adenosine, guanosine, 
and adenosine 5′-monophosphate and a decrease in tryptophan and 5-formyl-hydroxykynurenine30. This obser-
vation also corresponds to the findings of Lo Presti et al.4. In their study, they effectively differentiated between 
the FLT3-ITD and FLT3-WT subgroups. This distinction was attributed, among other factors, to a significant 
increase in choline levels among FLT3-ITD patients compared to those with FLT3-WT. The conversion of choline 
into PC contributes to the rise in PC levels, and this escalation is pivotal in facilitating cell transformation and 
promoting cancerous proliferation. Our results indicated increased levels of PC (40:5) by almost 51%. However, 
this result was not significant after p-value correction (Supplementary Table 7).

Additionally, we were not able to detect statistically significant ceramides in the serum metabolome. This 
result seems to be in accordance with the results of Dany et al.31, in which the presence of FLT3-ITD mutation 
suppresses ceramide generation and FLT3-ITD inhibition mediates ceramide-dependent mitophagy, leading to 
AML cell death. These findings combined may aid in composing and introducing new treatment approaches for 
AML patients with FLT3-ITD mutations, in which metabolomics has already been introduced in novel research 
on  gilteritinib32, FLT3-Inhibitor AC220 (quizartinib) and the Complex I Inhibitor IACS-01075933 or analyzing 
resistance to  sorafenib34.

Core binding factor acute myelogenous leukaemia (CBF-AML), comprising up to 12–15% of all AML  cases35 
characterised by the presence of either t(8;21) (q22;q22) or inv(16) (p13q22)/t(16;16), is considered good-risk 
AML in the context of cytarabine based intensive  chemotherapy36. Compared with other cytogenetic AML 
groups, patients with CBF-AML are considered a favorable AML risk group based on their high remission rate 
and survival probabilities. However, approximately one-half of patients with CBF-AML are still not cured, there is 
a need for markers to identify patients unlikely to respond to current treatment and to develop novel therapeutic 
approaches based on a better understanding of the pathophysiology of the  disease35. The general consensus is 
to reserve allogeneic Stem Cell Transplantation (SCT) for relapsed CBF AML. However, an argument can be 
made for SCT in the first remission for patients with suboptimal MRD clearance (minimal residual disease), 
where the expected risk of relapse might be  high37. Our results indicate PC (34:5) and LPC (22:0), as the most 
discriminative factor in the case of the metabolomics approach, a glycophospholipids (Fig. 3B).

The MLL (mixed-lineage leukemia) gene, located on chromosome 11q23, is involved in chromosomal trans-
locations in a subtype of acute leukemia, which represents approximately 10% of acute lymphoblastic leukemia 
and 2.8% of acute myeloid leukemia  cases38. Despite modern chemotherapeutic interventions and the use of 
hematopoietic stem cell transplantations, infants, children, and adults with MLL-r leukemia generally have a 
poor prognoses and response to these treatments. Based on the frequency of patients who relapse, do not achieve 
complete remission, or have brief event-free survival, there is a clear clinical need for a new effective  therapy39. 
Similarly to CBF, also glycerosphingolipids and sphinolipids seem to stand out the most in discriminative analysis 
(Fig. 3C).

The need for discriminative factors for CBF and new treatment targets for MLL could be explored through 
glycoproteomic research. Glycosylation, which starts in the endoplasmic reticulum (ER) and extends to the Golgi 
apparatus, is connected to protein glycosylation and lipid metabolism. Lipid synthesis and transport occur in the 
ER, with glycerophospholipids playing roles in cancer processes like growth, migration, and evading apoptosis, 
as well as in cell communication. Despite being distinct processes, glycosylation and lipid metabolism inter-
act, with glycotransferases affecting function. Recent research links glycosylation and lipid metabolism to ER 
protein quality control, suggesting impacts on phospholipid levels and ER  stress40. Sphingolipids, altered in our 
results, and glycoproteins are unrelated but might influence each other. Glycosidases, involved in glycoprotein 
breakdown, are linked to sphingolipid degradation. For instance, beta-galactosidase plays a role in sphingolipid 
and glycoprotein processing, possibly affecting glycosphingolipid-based signaling units. Enzymatic hydrolysis 
products might differ from the original  functions41.

As stated above, metabolomics in AML screening has recently gained attention in research for new bio-
markers or therapeutic targets. However, it is still poorly investigated, and in this work, we covered a new topic 
of unresearched differences in the metabolomes of AML patients. The differences may guide further research 
of new therapeutic approaches based on differences between patients stratified by risk ELM classification and 
in those with or without FLT3 mutation, CBF-AML, and MLL. Additionally, this study not only expands our 
knowledge of biology and metabolic pathways regarding metabolomics differences between patients with CR and 
NR but also guides further researchers in applying metabolomics as an aid in initial diagnosis or as a platform 
for identifying therapy targets.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to contain-
ing sensitive patient data but are available from the corresponding author on reasonable request.
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