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Long‑range and high‑precision 
localization method for underwater 
bionic positioning system 
based on joint active–passive 
electrolocation
Meijiang Hou 1,2, Hailong Wu 1,2, Jiegang Peng 1* & Ke Li 1

Active electrolocation organ of weakly electric fish act as a proximity detection system with high 
accuracy in recognizing object parameters such as size and shape. In contrast, some fish with passive 
electrolocation organ are able to detect objects at a greater range. This paper proposes a joint 
active–passive electrolocation algorithm for long-range and high-precision underwater localization, 
inspired by the active and passive electroreceptive organs of fish. The study begins by designing a 
large experimental platform for the underwater localization system to investigate the response of 
underwater objects to active and passive electric fields. Based on the response, the paper proposes 
separate underwater active and passive electrolocation algorithms, which are then combined to 
form a joint algorithm. Experimental results demonstrate that the proposed algorithm achieves high 
localization accuracy and long detection distance. The joint active–passive electrolocation algorithm 
has potential applications in submarine resource exploration, underwater robotics, and maritime 
military projects, while also providing new ideas for future research on long-range underwater object 
detection and identification based on electrolocation.

As society progresses and science and technology continue to develop, positioning technology is becoming 
increasingly sophisticated. Various forms of positioning technology, such as satellite positioning technology, base 
station positioning technology, and Wi-Fi positioning technology1–4, are widely applied in aviation, aerospace, 
navigation, surveying and mapping, military operations, natural disaster prevention, location search, vehicle 
navigation, personnel search and rescue, and numerous other fields. This has made it an indispensable and 
significant aspect of social life. However, although there are numerous positioning technologies available, most 
are only applicable to terrestrial or aerial environments. Given the complexity of the underwater environment, 
many of the existing positioning technologies are no longer suitable. As one of the important technologies for 
exploring underwater environment, underwater positioning technology has great application value in under-
water resource exploration, underwater military construction and underwater robot navigation. In the ocean, 
the main technologies that can achieve positioning are acoustic, optical and GPS5–7. The advantages of acoustic 
methods are long positioning distance and mature technology. However, the acoustic method is easily affected 
by the environmental conditions of the water body, such as the thermocline in the ocean, bottom characteristics, 
tidal velocity, etc. The optical method can reach the centimeter level in close range positioning, but the method 
is greatly affected by the clarity in seawater. GPS has the advantages of high positioning accuracy, good flexibility 
and easy operation on land. However, its signal cannot be propagated in the underwater environment, and the 
realization of underwater positioning requires the use of other equipment, which makes the positioning cost 
increase8. Due to the limitation of these methods in underwater environment, we need to study other methods 
suitable for underwater positioning.

In fact, as early as the middle of the last century, biologists discovered a primitive sense for underwater locali-
zation, which came from a fish in nature, the weakly electric fish. Weakly electric fish can recognize their external 
environment in the dim, murky ocean in order to hunt for prey and avoid obstacles and natural predators because 
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of a special ability they have, namely, electrolocation. Weakly electric fish have organs on their tails composed of 
special electric disclike cells called electric organ discharges (EOD), which can emit a voltage signal of a certain 
size to create an electric field around their bodies. Its body epidermis is distributed with electric field receptors, 
which are extremely sensitive, complex and practical, almost replacing the function of vision and smell in their 
daily work9. This means that understanding and imitating the localization mechanism of weak electric fish can 
provide us with a new underwater localization method.

There are two types of electrolocation, active and passive10,11. Active electrolocation is that the weakly elec-
tric fish establishes a low-frequency electric field around its body through the EOD and receives the electric 
field through the electric field receptors. When an object enters the electric field area established by the weakly 
electric fish, the electric field will change, and the changed electric field signal is received by the electric field 
receptor organ of the weakly electric fish and transmitted to the brain of the weakly electric fish for process-
ing and analysis, so as to recognize the existence of the object and determine the location of the object, but the 
locating range is very limited12. This is because the active electric field emitter is like a pair of electric dipoles, 
and the intensity of the generated electric field decays with the cube of the distance13. Passive electrolocation 
are widely found in weakly electric fish, rays, sharks, catfish, and cetaceans, which sense electric field signals 
from the outside world through their electric field receptors and then identify and locate the object emitting the 
electric field signal14–17. In contrast to active electrolocation, passive electrolocation has a much wider effective 
range, and these fish are able to locate objects and communicate with other fish at distances greater than the 
active electrolocation distance18. Because the electric field received by passive electrolocation is generated by 
other organisms, the magnitude of this electric field is inversely proportional to the square of the distance19. 
Inspired by the above electric field perception of fish, many methods of underwater electric field detection have 
been proposed. For example, in active electric field detection, Bai et al. proposed an algorithm implemented in 
a robotic active sensing system that can recognize the size, shape, orientation and position of ellipsoidal objects 
with high localization accuracy, but the recognition range is only 20 cm20. Jiang et al. proposed an underwater 
moving object localization method based on the active electric field induction principle and long and short term 
memory network, and the experimental results show that the method has a two-dimensional average absolute 
localization error of 5.38 mm and a two-dimensional average relative localization error of 1.06% in a 500 mm 
× 80 mm area, which means that the localization error of the method is small and the localization accuracy is 
high21. In terms of passive electric field detection, Cho et al. proposed a real-time underwater object detec-
tion method using the geophysical direct current resistivity technique, and validated it in the field at sea. The 
method belongs to passive electric field detection, which can detect moving objects at a distance of 1 m away 
in real time, and the distortion response becomes clear when the excitation current increases to more than 20 
A22. Jun-Zheng Zheng et al. proposed a localization scheme for a small underwater robot that swims freely in a 
large-scale environment23. The localization distance of this scheme is related to the designed transmitter, whose 
maximum detectable range is about 2.32–2.76 m, and the error has a large impact on the positioning accuracy. 
In summary, the active electric field can detect the size and shape of an object and can locate the position of the 
object, but the electric field strength decreases rapidly with distance, making the effective localization distance 
very limited. Compared with the active electric field, the passive electric field has a wider localization range, but 
its localization accuracy is lower.

Due to the complexity and uncertainty of the underwater environment, underwater electric field localiza-
tion faces many challenges, such as changes in water temperature, salinity, and current velocity. To overcome 
these challenges, algorithms need to be designed to handle these complexities and improve the accuracy and 
reliability of underwater electric localization. Algorithms can extract useful information from the signal and 
reduce the influence of interfering signals to achieve accurate localization and tracking of underwater targets. 
Due to the relatively late development of underwater electric field localization technology, the research value 
of this technology is still to be explored, which makes that so far there are still only a few researchers engaged 
in this area of research, and even fewer research on underwater electric field localization algorithms, and most 
of the localization algorithms are designed according to the specific localization system in their research, and 
their universality is still to be further studied. For instance, in passive electric localization, Kim et al. proposed 
an axis calibration method for underwater electric field measurement sensors, and for the sensing array they 
designed, they used the Levenberg optimization algorithm to optimize the measured values, and the simulation 
results show that the algorithm can effectively reduce the localization error of their proposed axis calibration 
method for underwater robots24. In addition, Shang et al. proposed an underwater target localization method 
combining the subspace scanning algorithm and the meta-evolutionary programming particle swarm optimi-
zation algorithm, and they used this method to simulate and analyze the localization performance of uniform 
circular and cross-shaped electrode arrays, and the results showed that the method can effectively improve the 
localization accuracy without changing the localization accuracy and search speed25. In terms of active electric 
field localization, Yesol et al. proposed an algorithm that can decompose the measurement signal into multiple 
frequency coefficients and verified the feasibility of this algorithm in a localization system designed by them, in 
which the sensing arrays are multiple receiving electrodes arranged in a line11. Sylvain Lanneau et al. designed 
an algorithm that can be used for shape estimation and location localization of an elongated probe consisting 
of four metal rings and used a multi-signal classification algorithm to localize objects in a localization study26. 
Xu et al. proposed an active localization method based on a hybrid polarization multi-signal classification algo-
rithm, and simulations and experimental analyses of a uniform circular antenna were performed to verify the 
effectiveness of the method27.

All of the above positioning methods are realized by designing different sensing arrays and using correspond-
ing algorithms to locate the object or the positioning system itself. And our team mainly studies the controlled 
underwater electric field localization system, that is, by controlling the movement of the localization system, so 
that it is constantly close to the measured object, and when the movement of the localization system is within 
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a certain range near the measured object, it indicates that the localization is successful. In terms of localization 
algorithms, our team has also conducted extensive research on algorithms applicable to controlled underwater 
electric field localization systems. In the preliminary research, our group found that the feature maps based on the 
time-domain data processing method would generate a lot of burrs due to the presence of environmental noise28, 
so the performance of the time-domain localization algorithm is easily affected by the environmental noise. In 
order to improve the anti-interference ability, robustness and stability of the underwater electric positioning 
system, our group designed a one-dimensional underwater frequency domain positioning algorithm based on 
FFT feature extraction29. On this basis, our team proposed a two-dimensional underwater active electrolocation 
system and studied three frequency domain localization algorithms, namely cross location algorithm, stochastic 
location algorithm and particle swarm optimization algorithm30. By comparison, the particle swarm optimization 
algorithm has the best overall performance. However, although the system based on particle swarm optimization 
algorithm can locate the underwater target, the algorithm is prone to fall into local optimum, which leads to 
the failure of localization. Therefore, we need to improve the algorithm or find other algorithms that are more 
suitable for controlled underwater electric field localization systems.

In this paper, we propose a novel approach to overcome the limitations of both active and passive electroloca-
tion by combining their strengths. Our idea is based on the team’s extensive research on bionic systems and the 
development of a large experimental platform for the study of underwater electrolocation. The response charac-
teristics of both active and passive electric fields have been thoroughly studied using the experimental platform, 
and a joint active–passive electrolocation algorithm has been designed based on these findings. The algorithm 
incorporates three nature-inspired optimization algorithms, namely particle swarm optimization (PSO), simu-
lated annealing (SA), and hill climbing. Among them, PSO and SA form the PSOSA combined optimization 
algorithm, which improves on the separate PSO and SA, and is used for localization when the active electric 
field is operating in the combined active–passive electrolocation system. Whereas, the hill climbing algorithm 
is used for localization during passive electric field. The feasibility of the proposed algorithm has been verified 
through extensive experiments, and the results indicate that it can accurately position underwater targets over 
long distances. This combination of active and passive electrolocation provides a promising solution to address 
the challenges faced by traditional electrolocation methods.

Research on the response characteristics of underwater electric field
To achieve underwater electric field localization, we built an underwater electrolocation system. The schematic 
diagram of the experimental platform is shown in Fig. 1a, and the experimental platform of the system is shown 
in Fig. 1b. The system consists of four main modules: an electric field signal transmission and acquisition module, 
a signal data processing and analysis module, a motion control module, and a pool that simulates the underwater 
environment. The electric field signal transmission and acquisition module is responsible for generating and 
transmitting an electric field, as well as acquiring the electric field signals reflected from the target object. The 
signal data processing and analysis module is responsible for processing and analyzing the acquired electric field 
signals to determine the location of the target object. The motion control module is responsible for controlling the 
movement of the underwater vehicle to the target object. The pool is used to simulate the underwater environ-
ment of the test system, and its size is 4 m × 2.9 m × 0.5 m. Figure 1c shows the arrangement of the electrodes, 
ordered from top to bottom, with the first and fifth electrodes being the active electric field transmitting elec-
trodes; the second and fourth electrodes being the active electric field receiving electrodes; the third electrode 
being the passive electric field receiving electrode; and the other passive electric field receiving electrode being 
placed at the distal end of the pool and grounded. Noise in the experiments was suppressed by filters. All the 
following experiments were performed on this platform. In the research process, LabVIEW and Python were 
mainly used, where LabVIEW was used for the development of the experimental software and Python was used 
for the simulation of the algorithm.

As mentioned earlier, electric fish can sense the presence of objects in the water using low frequency electric 
fields. When an object enters the electric field environment established by the electric fish, it distorts the electric 
field and produces a corresponding change in voltage amplitude, which is then sensed by the electric fish. In addi-
tion, the electric fish can determine the direction and position of the object and localize it by detecting the weak 
electrical signals emitted by the object. In order to study the response characteristics of the object under test to 
active and passive electric fields, we placed a solid aluminum cylinder as a target object in a pool and measured 
the voltage amplitude around it by controlling the motion of the underwater electric positioning system. Figure 2 
shows the response test of the active electric field with the target object placed at the coordinates x = 50, y = 52 
of a 100 cm by 100 cm grid covering the exploration area. Figure 2a illustrates the location of the target object, 
while Fig. 2b shows the characteristics of the response of the target object to the active electric field, where the 
projection of the lowest point of the amplitude in the xy-plane indicates the location of the target object. From 
the figure, it can be seen that when the localization system is far away from the target object, the characteristic 
values of the collected electric field response float around the amplitude of 0.072 V, and the absolute value of the 
fluctuation range is within 0.01 V. When the localization system is within 5 cm of the target object, the response 
value decreases sharply, and the minimum response value of 0.027 V occurs in the location of the target object.

In the test of the response of the target object to the passive electric field (Fig. 3), the target object was placed 
at the coordinates x = 70, y = 70 of a 140-cm by 140-cm grid covering the exploration area, and a signal source 
was placed at its bottom to simulate that it could emit an electric signal, as shown in Fig. 3a. Figure 3b represents 
the response characteristics of the target object to the passive electric field, where the projection of the highest 
point of amplitude in the xy-plane indicates the location of the object. From the figure, it can be seen that as 
the detection distance of the localization system decreases, the characteristic value of the collected electric field 
response gradually increases. Especially when the positioning system is far away from the target object, the slope 
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of the eigenvalue change is small, but as the distance decreases, the slope of the eigenvalue change becomes larger 
and larger until it reaches the maximum value at the target object.

The experimental results reveal that the response characteristics of the active electric field exhibit rapid 
fluctuations in proximity to the object, and exhibit minimal variations at a distance, which hinders its utility for 
long-range positioning. In contrast, the response characteristics of the passive electric field exhibit a desirable 
curve, with a clear gradient of the electric field that varies with distance, making it favorable for long-range 
positioning. Subsequently, we shall investigate localization algorithms that are based on the distinct response 
characteristics of the electric field.

Figure 1.   The experimental platform. (a) Schematic diagram; (b) physical diagram; (c) electrodes arrangement.
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Localization algorithm design
From the previous section, it can be seen that there are significant differences in the response of the object under 
test to the active and passive electric fields. Therefore, in this section, the corresponding localization algorithms 
will be designed based on the characteristics of the object’s response to active and passive electric fields obtained 
in the previous section to realize active and passive electrolocation, respectively. Then, combining the active elec-
tric field’s ability to recognize more information about the object and the passive electric field’s ability to increase 
the detection distance, the two algorithms are combined to form a joint active–passive electrolocation algorithm.

Active electrolocation strategy based on bionic algorithm
In accordance with the response properties of underwater target objects within an active electric field, the precise 
localization of such objects can be achieved by identifying the nadir of the underwater electric field response 

Figure 2.   Response of active electric field. (a) The top view of the experiment platform; (b) the three-
dimensional image of the response characteristics of the target object in active electric field.

Figure 3.   Response of passive electric field. (a) The top view of the experiment platform. (b) The three-
dimensional image of the response characteristics of the target object in passive electric field.
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value. This enables the transformation of the active electric field localization quandary into an optimization 
problem. An optimization problem, by definition, involves determining the maximum or minimum value of a 
particular objective function under specified constraints. Bionic algorithms, as heuristic methodologies derived 
from natural phenomena and biological entities, closely emulate natural behaviors. Since the design of the under-
water active electric field system is inspired by biological organs, the use of bionic algorithms in active electric 
localization is a reasonable and effective choice. Through the bionic algorithm, the behaviors and mechanisms of 
living organisms can be simulated, which makes the positioning system more in line with natural behaviors and 
improves the accuracy and adaptability of positioning. In addition, since the expression of the objective function 
in the localization process is unknown, traditional optimization algorithms may not be directly applied. There-
fore, the use of meta-heuristic bionic algorithms is a successful way to achieve localization. The meta-heuristic 
bionic algorithm is able to simulate the behavior of organisms in nature and gradually approach the optimal solu-
tion by searching and optimizing, so as to achieve the localization goal in the case of unknown objective function.

At present, the common meta-heuristic algorithms include simulated annealing algorithm (SA), genetic 
algorithm (GA) and particle swarm optimization algorithm (PSO)25,31,32. The SA is inspired by the behavior of 
solid matter in bionics as it changes with temperature. In optimization problems, the SA searches for the global 
optimal solution by the degree of random variation of states in the temperature control system. The basic idea 
is to introduce a certain degree of randomness in the search process in order to overcome the distress caused by 
the multi-peaked problem, so that the algorithm has enough chances to jump out of the local minima and find 
the global optimal solution. SA has the advantages of being simple and easy to implement, and having a strong 
ability of global search, however, the algorithm is slow to converge and requires a large amount of computational 
resources.GA are inspired by the evolutionary theory in bionics. In optimization problems, GA is an optimization 
algorithm that simulates the mechanism of natural selection and genetic inheritance, and gradually optimizes 
the population by three basic operations: selection, crossover and mutation, so that the population gradually 
converges to the global optimal solution. Its greatest advantage is its parallelism, which is suitable for solving 
optimization problems with high dimensionality, but its convergence speed is slow. PSO is inspired by the col-
lective behavior of flocks of birds or schools of fish in bionics. In the optimization problem, the PSO achieves 
efficient solution of the optimization problem by simulating the process of “individual” following and “group” 
learning and collaboration of particles. The basic idea is to treat each individual as a particle, and use the historical 
optimal position and the global optimal position as a guide to continuously adjust its own position and speed, 
so that the algorithm gradually approximates the global optimal solution. Its advantages are simple and easy to 
implement, better adaptability to the constraints of the problem, and parallelizable processing, however, the algo-
rithm is sensitive to the local optimal solution of the problem, and it is easy to fall into the local optimal solution.

Its advantages are simple and easy to implement, better adaptability to the constraints of the problem, and 
parallelizable processing, however, the algorithm is sensitive to the local optimal solution of the problem, and 
it is easy to fall into the local optimal solution. The response characteristic value of underwater active electric 
field is taken as the model of optimization problem. In the simulation experiment, 0.027 V, minimum value, 
is used as the criterion to judge whether the positioning is successful. Three algorithms, PSO, GA and SA, are 
simulated for 1000 times respectively. The success rate of the three algorithms in 1000 simulation tests, as well 
as the fastest, slowest and average iterations when successful are analyzed and explored. The simulation results 
are shown in Table 1.

From Table 1, it can be seen that the optimization success rate is 100% for SA, 97.8% for PSO and 76.5% for 
GA in 1000 tests. This means that SA succeeded in finding the optimal solution every time in conducting 1000 
tests, whereas PSO and GA did not reach the optimal solution in a part of the tests, but the success rate of PSO is 
also relatively high. In terms of average number of iterations, the average number of iterations for SA is 125.904, 
PSO is 27.525 and GA is 339.553. This indicates that PSO’s algorithm is usually faster than SA and GA in find-
ing the optimal solution, while GA requires the most iterations. Based on the data in Table 1, it can be seen that 
PSO performs best in terms of the number of iterations and also performs well in terms of the success rate; SA 
performs best in terms of the success rate but has a higher number of iterations; and GA performs the worst 
in terms of the success rate and the number of iterations, which is not applicable to our proposed localization 
system. Taken together, the above analysis allows us to explore a localization algorithm that is more suitable for 
active electrical localization. Combining the success rate advantage of SA with the speed advantage of PSO, the 
Metropolis acceptance probability criterion of SA is introduced into PSO, so as to improve PSO, and the improved 
algorithm is called PSOSA combined optimization algorithm.

In PSO, each particle will accept the new position calculated according to the position update formula with 
a 100% probability. In PSOSA combined optimization algorithm, Metropolis criterion will determine the prob-
ability of accepting new position according to the difference between the fitness values of the new position and 
the old position of the particle. This optimization makes it easier for the particle swarm to jump out of the local 
optimal solution in the update process, and the fluctuation of the overall fitness value will be reduced when the 
search approaches the end. Selecting the appropriate cooling method in the optimized algorithm determines 

Table 1.   Simulation performance comparison of three algorithms.

Algorithm Success rate (%) Fastest iterations Slowest iterations Average iterations

PSO 97.8 1 1000 27.525

GA 76.5 2 1000 339.553

SA 100.0 2 817 125.904
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the quality of the algorithm in the optimization process. Generally, when the search starts, the particle is in the 
highest temperature state, and will accept the bad new state with a great probability, so it is easy to jump out of 
the local optimal solution. When the temperature gradually decreases to the final stable state, the probability of 
the particle accepting the bad state is very low, so the particle can finally be in a relatively stable state. The cooling 
method selected in the PSOSA combined optimization algorithm is shown in Eq. (1):

where Tmax is mean the initial maximum temperature; Tk is the temperature of the kth iteration; k0 is a constant. 
From Eq. (1), it can be seen that the temperature decreases slowly with the increase of iterations, and the tem-
perature drops very quickly at the beginning of iteration, but very slowly at the end. This makes the algorithm 
update more at low temperature. Figure 4 shows the flow of the PSOSA combined optimization algorithm. The 
basic steps of PSOSA combined optimization algorithm are as below: 

(a)	 Randomly generate the velocity and position of n particles in 2D search space.
(b)	 According to the underwater electric field characteristic response value at the position of each particle, the 

fitness value of each particle is evaluated, and the historical optimal position of each particle and the global 
optimal position of the swarm are obtained according to the fitness value.

(c)	 Update the velocity and position of particles according to the velocity update Eq. (2) and the position update 
Eq. (3)33,34: 

where subscript d is the dimension of search space; k is the iteration of the particle; xi and vi are the position 
and velocity of particle i(i = 1, 2, 3, . . . , n) respectively; pi is the optimal position of particle i; pg is the optimal 
position in the particle swarm; ω is the inertia weight; c1 and c2 are two acceleration constants of particle; ξ and 
η are two random numbers in [0, 1]. 

(d)	 Evaluate the fitness value of particle swarm.

(1)Tk =
Tmax

k0 + k

(2)vkid = ωvk−1
id + c1ξ(p

k−1
id − xk−1

id )+ c2η(p
k−1
gd − xk−1

id )

(3)xkid = xk−1
id + vkid

Figure 4.   The process of PSOSA combined optimization algorithm.
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(e)	 Calculate the fitness value difference between the new position and the old position of each particle: 
�f = fnew − fold.If �f < 0 ,the particle will unconditionally accept the new position. Otherwise, particle 
will accept the new position according to Metropolis criterion, that is, the probability of particle accepting 
the new position in the algorithm is shown in Eq. (4):

 

(f)	 Stop if the solution is good enough or reaching the maximum iteration. Otherwise, reduce the temperature 
according to the cooling method, update the weight value and go back to step (b).

In the iterative process of the algorithm, if the updated velocity vkid exceeds the specified particle velocity range 
[vmin, vmax] , the boundary value is taken. If the updated particle position xkid exceeds the search range [xmin, xmax] , 
the boundary value is also taken.

In the search process, inertia weight ω is an important factor to determine the ability of local search and 
global search, which is updated according to the linear adjustment strategy proposed by Shi and Eberhart as 
shown in Eq. (5)34:

where kmax is the maximum iteration; ωmax and ωmax are the maximum and minimum values of ω , respectively.
In order to fully demonstrate the feasibility and effectiveness of the PSOSA combined optimization algorithm 

in the process of underwater target positioning, 1000 repeated simulation experiments were carried out for the 
PSO, SA and PSOSA combined optimization algorithms, and the results are shown in Table 2.

It can be seen from the above data, compared with PSO, the PSOSA combination optimization algorithm has 
obviously improved its success rate and speed. Although its success rate has not reached 100% success rate of SA, 
it can also reach a high success rate of 99.7%, and the average iterations is reduced to 12.393 in terms of speed. 
Therefore, PSOSA combination optimization algorithm not only improves the success rate, but also overcomes 
the disadvantage of slow speed of SA in the optimization process. Based on the above analysis, the PSOSA com-
binatorial optimization algorithm is selected as the active electrolocation method in this study.

Passive electrolocation strategy based on bionic algorithm
As previously delineated in this manuscript, the hill climbing algorithm draws its inspiration from natural 
phenomena. This hill climbing algorithm can be characterized as an optimization technique grounded in the 
observed behavior patterns of living organisms, analogous to the actions of certain animals or humans as they 
ascend hills or mountains in pursuit of elevated positions. Within the context of the hill climbing algorithm, 
the solution to a given problem is conceptualized as the apex of a mountain, with the optimization objective 
being the identification of the highest point on said peak. The algorithm commences with the existing solution, 
examining the adjacent points within the solution space, and subsequently contrasting the optimization goal 
values of these points with the present point. Upon the discovery of a higher point, the algorithm shifts to that 
position and resumes the examination of neighboring points. This iterative process persists until the algorithm 
reaches a local summit and is incapable of locating a higher point.

The basic steps of hill climbing algorithm are as below: 

(a)	 Randomly generate a starting position in 2D search space, and initialize the moving step size.
(b)	 Evaluate the fitness value of each position according to the underwater electric field characteristic response 

value.
(c)	 Compare the fitness values of the current position and four positions around the current position, which 

are one step size away from the current position. Select the position of the maximum value as the starting 
position of the next iteration.

(d)	 If the fitness value of the current position is greater than that of the four surrounding positions, the optimal 
position is found and the iteration is stopped. Otherwise, update the step size and go back to step (c).

The flow of the hill climbing algorithm is shown in Fig. 5.
To prove the feasibility of hill climbing algorithm, we carried out simulation experiment on the hill climb-

ing algorithm, taking the response characteristic value of passive electric field as the simulation model. In the 

(4)P = P(old − new) =

{

1, �f < 0

exp
(

−
�f
Tk

)

, �f ≥ 0

(5)ω = ωmax − k(ωmax − ωmin)/kmax

Table 2.   Simulation result.

Algorithm Success rate (%) Average iterations

PSO 97.4 31.562

SA 100 133.741

PSOSA combined optimization algorithm 99.7 12.393
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simulation, the starting position is random, and the positioning is regarded as successful when the algorithm 
searches the highest point.After 1000 simulation experiments, we obtained the following results (see Table 3): 
the hill-climbing algorithm can successfully localize to the highest point from any position. Therefore, the hill-
climbing algorithm can be applied to the underwater passive electric field localization problem.

Joint active–passive electrolocation algorithm
As stated in “Introduction” , the position, shape and size of an object can be identified using active electric field, 
but its detection range is narrow, which makes the active electrolocation limited to a small range of localization, 
while the passive electric field has a wider detection range, in order to make full use of the characteristics of the 
active and passive electric fields, we propose a new joint active–passive electrolocation algorithm. The basic idea 
of this algorithm is to first use passive electrolocation to guide the positioning device to the position near the 
underwater target, and then use active electrolocation to localize the target. Through passive electric positioning, 
we can determine the approximate position range of the target, and then use active electric positioning to further 
pinpoint the target. This joint positioning algorithm can make full use of the advantages of the two positioning 
methods to improve the accuracy and reliability of positioning.

The basic steps of the algorithm are as below: 

(a)	 Use passive electrolocation, set the range centered on the target. Randomly generate a starting position in 
2D search space, and initialize the moving step size.

(b)	 Compare the fitness values of the current position and four positions around the current position, which are 
one step size away from the current position. Move the positioning device to the position of the maximum 
value.

(c)	 If current position is within the set range, switch to active electrolocation, initialize the particle swarm. 
Otherwise, update the step size and go back to step (b).

Figure 5.   The process of hill climbing algorithm.

Table 3.   Simulation result of hill climbing algorithm.

Algorithm Success rate (%) Average iterations

Hill climbing algorithm 100.0 6.759
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(d)	 Update the velocity and position of particles. Compare the fitness value of particles, and then update the 
optimal fitness value and optimal position of particles and swarm. Move the positioning device to the 
optimal position of swarm.

(e)	 Stop if the solution is good enough or reaching the maximum iteration. Otherwise, go back to step (d). The 
process of joint active–passive electrolocation algorithm is shown in Fig. 6.

By combining passive and active electrical localization, we can search for a target over a wider range and 
acquire more information for more accurate localization.

Verification experiment
To validate the feasibility of the designed hill climbing algorithm, PSOSA combined optimization algorithm 
and joint active–passive electrolocation algorithm, we applied them to our designed underwater electrolocation 
system for underwater electrolocation experiments, respectively. In the experiment, both the transmitting and 
receiving electrodes are mounted on a bracket with a length of 270 mm × 270 mm, as shown in Fig. 7. The holder 
is evenly distributed with 100 holes of 16 mm diameter and used as a reference scale for positioning accuracy. 
The positioning accuracy in the experiment is expressed as the magnitude of the minimum distance between the 
nearest electrode to the edge of the target object and the edge of that object, and it indicates that the positioning 
system successfully locates the target object when the positioning accuracy is less than 100 mm. The target object 
used for the experiments in this section is an aluminum cylinder with a diameter of 60 mm, as shown in the gray 
circular surface in Fig. 7. In addition, the black dashed line in Fig. 7 indicates the successful localization range 
of 260 mm in diameter, i.e., when the object is located within the circle of the black dashed line, it indicates that 
our localization system has successfully localized the object.

In the experiments with the PSOSA combined optimization algorithm, the initial position of the positioning 
device is also used as the coordinate origin of the 2D detection plane. The target object is an aluminum cylinder 
placed at the center of the 100 cm × 100 cm 2D search space. The active electric field was generated by a continu-
ous sinusoidal signal with an amplitude of 2 V and a frequency of 100 Hz. During the experiment, the positioning 
device is guided by the PSOSA combined optimization algorithm and moves automatically from the initial posi-
tion step by step according to the detected values until it approaches the target position. The experimental results 

Figure 6.   Schematic diagram of the effective positioning range and accuracy calibration of the two-dimensional 
plane.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21475  | https://doi.org/10.1038/s41598-023-48957-x

www.nature.com/scientificreports/

are shown in Fig. 8, in which the ring lines of different colors indicate the voltage amplitude contours around 
the target object, the red dots indicate the optimization position after each iteration of the algorithm, that is, the 
position of the detection device in the two-dimensional detection plane after each iteration of the algorithm, the 
red dashed line, which indicates the optimization path of the algorithm for each iteration, i.e., the motion path 
of the detection device with the algorithm iteration, and the black five-pointed star is the actual position of the 
target object. The black pentagram is the actual position of the target object. Figure 8a shows the optimization 
process of the PSOSA combined optimization algorithm. In this experiment, the response characteristics of the 
target object to the active electric field are similar to Fig. 2b. From the figure, it can be seen that the detection 
device gradually approaches the target object as the number of iterations increases, and reaches the location of 
the target object after six iterations. Figure 8b shows the motion trajectory of the localization device on the 2D 
detection plane. The experimental results show that the PSOSA combined optimization algorithm can locate 
the target object quickly and accurately.

In the localization experiments using the hill climbing algorithm, the initial position of the localization device 
was used as the coordinate origin of the two-dimensional detection plane. The target object was located at the 
center of the 140 cm × 140 cm two-dimensional search space. A continuous sinusoidal signal with an amplitude of 
2 V and a frequency of 100 Hz was emitted from the bottom of the target object. Similarly, during the experiment, 
the localization device was guided by the hill climbing algorithm to gradually move from the initial position until 
it approached the target position. The experimental results are shown in Fig. 9, in which the different colored ring 
lines indicate the voltage amplitude contours around the target object, the red dots indicate the optimal position 
of the algorithm after each iteration, i.e., the position of the positioning device around the target object, the red 
dashed line indicates the optimal path of the algorithm after each iteration, i.e., the position of the positioning 
device in the two-dimensional detection plane after each iteration of the algorithm, and the black five-pointed 
star is the actual position of the target object. Figure 9a shows the optimization process of the hill-climbing 
algorithm. In this experiment, the response characteristics of the target object to the passive electric field are 
similar to Fig. 3b. From the figure, it can be seen that the detection device gradually approaches the target object 

Figure 7.   The process of joint active–passive electrolocation algorithm.

Figure 8.   Result of active electrolocation. (a) 3-D; (b) 2-D.
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as the number of iterations increases. After 10 iterations, the location of the target object is reached. Figure 9b 
shows the motion trajectory of the localization device on the 2D detection plane. The experimental results show 
that the hill climbing algorithm can also locate the target object quickly and accurately.

In the experiments of the joint active–passive electrolocation algorithm, to highlight the localization perfor-
mance of the algorithm, the initial position of the localization device was set at a distance of 4 m from the target 
object. Considering that the size of the pool is 4 m × 2.9 m × 0.5 m, in order to achieve the detection distance of 
4 m, the localization device and the target object were respectively placed at the diagonal in the pool, as shown 
in Fig. 10. In this experiment, when performing passive electrolocation, the underwater electric field is provided 
by a signal source placed near the object with an amplitude of 15 V and a frequency of 100 Hz. After switching 
to active electrolocation, the transmitting electrode emits a sinusoidal excitation signal with an amplitude of 10 
V and a frequency of 100 Hz.

In the experiments of joint active–passive electrolocation algorithm, the hill climbing algorithm is firstly 
used to search the signal source location to make the localization device move near the target, and then switch 
to the PSOSA combined optimization algorithm to make the localization device move to the target location. 
A typical localization path in the experiment is shown in Fig. 11. The red dots indicate the position after each 
iteration update of the hill-climbing algorithm, the blue dots are the position after the iterative update of the 
PSOSA combined optimization algorithm, and the grey arcs are the equidistant lines centered on the target object. 
Figure 11a shows the joint localization path, and Fig. 11b shows a zoomed-in view of the localization path in 
the active electrolocation part of Fig. 11a. With the help of the hill climbing algorithm, the localization device 
started searching from the corner of the pool and gradually approached the target object, and after 4 iterations, 
the localization device successfully approached the vicinity of the target. Then the PSOSA combined optimization 
algorithm came into play, and through 12 iterations, the positioning device finally reached the target location 
and achieved the precise positioning of the target. The images taken from the positioning experiment verifica-
tion video are shown in Fig. 12. Where FigurFig. 12a shows the moment of electrolocation onset, Fig. 12b the 
moment of successful passive electrolocation guidance, and Fig. 12c the final position of active electrolocation. 

Figure 9.   Result of passive electrolocation. (a) 3-D; (b) 2-D.

Figure 10.   Schematic diagram of the joint active–passive electrolocation experiment in two dimensions.
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Figure 11.   Schematic diagram of the localization path for joint active–passive electrolocation. (a) Joint active–
passive localization path; (b) active localization path.

Figure 12.   Screenshot of part of the joint active–passive electrolocation experiment. (a) Positioning device 
starting position; (b) reaching the signal source position; (c) targeting success.
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After measurement, the positioning error was within 0.05 m, indicating that the positioning method has high 
accuracy and reliability.

Discussion
The above three experiments verified the feasibility of the three algorithms designed for underwater localization. 
The results show that all three algorithms can successfully localize the target object in no more than 16 itera-
tions, which proves that they have faster localization speed. Among them, the number of iterations of the joint 
active–passive electrolocation algorithm is higher than that of the independent hill-climbing algorithm and the 
PSOSA combined optimization algorithm. This is because the joint active–passive electrolocation algorithm, 
which is a combination of the latter two algorithms, was experimented in a larger pool, and a larger experimental 
range may increase the number of iterations. However, compared to the other algorithms listed in Table 1, the 
average number of iterations of the joint active–passive electrolocation algorithm is still relatively low, although 
it has a larger localization range, which indicates the fast localization speed of the proposed method.

During the experimental localization process, the position of the passive electric field switching to the active 
electric field is controlled by human. Under our research conditions, as shown by the simulation results in Table 2 
and the experimental results in Fig. 8, the PSOSA combined optimization algorithm can successfully locate the 
target object with fewer iterations when the detection device is within 50 cm from the target object. Therefore, 
for the convenience of the experiment, in the experiment of the joint active–passive electrolocation algorithm, 
it is set that the passive electrolocation switches the active electrolocation when the detection device is within 
50 cm from the target object. In fact, it is also possible to use the PSOSA combined optimization algorithm to 
locate the target object beyond the 50 cm range, but due to the distance limitation of the active electric field, the 
distance is too large to increase the number of iterations of the localization algorithm and reduce the success rate 
of the localization, because this is not the focus of the discussion in this paper, we will not go into detail here, 
interested readers can further study this.

We only demonstrated the results of the algorithm in a pool of size 4 m × 2.9 m × 0.5 m and only one 
localization path was shown. However, due to the wide range of passive electric field detection, the actual joint 
active–passive electric localization has a larger localization range than that in the experiment. In actual localiza-
tion, the randomness of the particle distribution during initialization makes the detection device localize the 
same target object at the same location several times, with different localization paths each time, and the num-
ber of iterations will also change. In order to facilitate the understanding of the positioning process of the joint 
active–passive electrolocation algorithm, we draw a multiple positioning schematic as in Fig. 13, in which the 
starting point of the four localizations is 4 m from the target object. localization path 1 indicates that after four 
iterations of the hill-climbing algorithm, the detector device has been moved to the object under test at a distance 
of less than 50 cm, and then switched to the PSOSA combined optimization algorithm for active electrolocation; 
localization path 4 indicates that after six iterations of the hill-climbing algorithm, the detection device is just 50 
cm away from the measured object, and then switches to the PSOSA combined optimization algorithm, which 
successfully locates the target object after a different number of iterations from Path 1; whereas Localization Paths 
2 and 3 are the two localization processes of the detection device at the same location, which indicates that the 
localization paths of the detection device are not the same even when the detection device is at the same location.

Although this paper only discusses the localization of an aluminum cylinder as the target object in fresh water, 
and due to the different conductivity of water, the response of the same object to the electric field is different35,36. 
However, according to the mechanism of the algorithm, even in seawater, a charged object in water can still 
be successfully localized using the hill-climbing algorithm; the PSOSA combined optimization algorithm can 

Figure 13.   Schematic diagram of the joint active–passive electrolocation algorithm for multiple localizations.
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still successfully localize an object with similar characteristics to the response of an aluminum cylinder to an 
active electric field in freshwater (e.g., Fig. 2b). Since the active–passive switching can be controlled artificially, 
this method can be applied to the following three cases: (1) when the target object is a charged body and the 
response characteristics to the active electric field are not similar to those in Fig. 2b, the hill-climbing algorithm 
can be used to localize it. (2) When the target object is not charged and the response characteristics to the active 
electric field are similar to Fig. 2b, it is directly switched to PSOSA combined optimization algorithm to achieve 
proximity localization. (3) When the target object is electrically charged and the response characteristics to the 
active electric field are similar to that of Fig. 2b, the joint active–passive electrolocation algorithm can be used 
to achieve long-distance localization.

The method proposed in this paper has higher localization accuracy than acoustic methods, farther localiza-
tion distance than optical methods, and simple algorithm with low cost. Combined with the fact that the active 
electric field has the ability to recognize the material, size and shape of the object under test, this method has 
great research value in locating an unknown discharged object at a long distance and with high accuracy and 
recognizing the characteristics of the object. For example, this method is applied to underwater work units for 
salvaging important objects such as flight data recorder. When the distance is far, passive electrolocation is used 
to search for the approximate position of the target object (the source of the electric field signal is not necessar-
ily on the target object due to the possible disintegration of the object), so that the underwater robotic working 
unit moves to the vicinity of the target object, and then switches to active electrolocation, so that the underwater 
robotic working unit can accurately locate the target and then recover it.

In summary, the algorithm designed in this paper is an effective underwater electrolocation algorithm.

Conclusions
In the present study, we design a novel joint active–passive electrolocation bionic algorithm that can be used 
for underwater high-precision and long-range positioning based on the characteristics of active electrolocation 
with high positioning accuracy and passive electrolocation with long positioning distance. One of the passive 
electrolocation component employs a hill climbing algorithm to facilitate long-range localization, whereas the 
active electrolocation element utilizes a particle swarm optimization simulated annealing (PSOSA) combined 
optimization algorithm for proximity positioning in order to improve the positioning accuracy. Furthermore, 
the PSOSA combined optimization algorithm, an amalgamation of the particle swarm optimization algorithm 
and the annealing algorithm, demonstrates a high localization success rate and reduced average iteration count. 
The practicability of the hill climbing algorithm, the PSOSA combined optimization algorithm, and the joint 
active–passive electrolocation algorithm is corroborated through a series of experiments. The empirical find-
ings indicate that the suggested algorithms yield considerable localization range and accuracy, rendering them 
suitable for applications in underwater robotics, search and rescue operations, and naval military endeavors. 
Nevertheless, the localization velocity of the proposed algorithm is inferior to that of the hill climbing algorithm 
and the PSOSA combined optimization algorithm individually. Future research will be conducted to examine 
the localization speed in greater depth.
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