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Data‑driven, two‑stage machine 
learning algorithm‑based 
prediction scheme for assessing 
1‑year and 3‑year mortality risk 
in chronic hemodialysis patients
Wen‑Teng Lee 1, Yu‑Wei Fang 1,2, Wei‑Shan Chang 3,4, Kai‑Yuan Hsiao 3,4, Ben‑Chang Shia 3,4, 
Mingchih Chen 3,4* & Ming‑Hsien Tsai 1,2*

Life expectancy is likely to be substantially reduced in patients undergoing chronic hemodialysis 
(CHD). However, machine learning (ML) may predict the risk factors of mortality in patients with 
CHD by analyzing the serum laboratory data from regular dialysis routine. This study aimed to 
establish the mortality prediction model of CHD patients by adopting two-stage ML algorithm-based 
prediction scheme, combined with importance of risk factors identified by different ML methods. This 
is a retrospective, observational cohort study. We included 800 patients undergoing CHD between 
December 2006 and December 2012 in Shin-Kong Wu Ho-Su Memorial Hospital. This study analyzed 
laboratory data including 44 indicators. We used five ML methods, namely, logistic regression (LGR), 
decision tree (DT), random forest (RF), gradient boosting (GB), and eXtreme gradient boosting (XGB), 
to develop a two-stage ML algorithm-based prediction scheme and evaluate the important factors 
that predict CHD mortality. LGR served as a bench method. Regarding the validation and testing 
datasets from 1- and 3-year mortality prediction model, the RF had better accuracy and area-under-
curve results among the five different ML methods. The stepwise RF model, which incorporates the 
most important factors of CHD mortality risk based on the average rank from DT, RF, GB, and XGB, 
exhibited superior predictive performance compared to LGR in predicting mortality among CHD 
patients over both 1-year and 3-year periods. We had developed a two-stage ML algorithm-based 
prediction scheme by implementing the stepwise RF that demonstrated satisfactory performance 
in predicting mortality in patients with CHD over 1- and 3-year periods. The findings of this study 
can offer valuable information to nephrologists, enhancing patient-centered decision-making and 
increasing awareness about risky laboratory data, particularly for patients with a high short-term 
mortality risk.

Patients on hemodialysis (HD) had a significantly higher mortality rate than the general population1–4. The 
life expectancy of patients with chronic hemodialysis (CHD) can be affected by underlying conditions such as 
aging, anemia, C-reactive protein, hypoalbuminemia, phosphorus, previous cardiovascular event, and dialysis 
adequacy2,5–10. Temporary vascular catheter could also be an independent risk factor of mortality in patients 
with CHD6,11. Previous studies already reported some clinical factors associated with mortality risks in patients 
with CHD; however, patients with end-stage kidney disease present considerable heterogeneity in the disease 
pattern with broad comorbidities12,13. Thus, making a survival outcome prediction model via limited clinical 
indicators remains challenging.
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Various approaches have been attempted to modify the mortality prediction models for patients with CHD. 
The systematic review of Panupong Hansrivijit et al. demonstrated the precision of factors in predicting mortal-
ity in patients with chronic kidney disease, including those undergoing HD and peritoneal dialysis14. Moreo-
ver, Chava L. Ramspek et al. conducted a systemic review and further meta-analysis of independent external 
validation studies to determine the most ideal predictive performance study13. Mikko Haapio et al. performed 
two developed prognostic models of newly entered mortality prediction for patients with chronic dialysis via 
logistic regression (LGR) with stepwise variable selection and showed some variables to establish a practical, 
fine-performing model; however, they may overestimate the mortality risk because of considerably the lower 
mortality rate observed in the newer cohort10.

Recently, artificial intelligence (AI) has become increasingly popular in the field of patient survival/mortal-
ity analysis. Patients with CHD can provide robust serum laboratory data during HD treatments, considering 
that physicians commonly use them to monitor patients’ condition. Machine learning (ML), a branch of AI that 
imitates human intelligence by incorporating and analyzing available data, is widely utilized in this context15–17. 
It has a unique potential for predicting survival outcomes and identifying mortality risk factors in patients with 
CHD. Powerful prediction models for patients with CHD have been developed using ML methods such as 
LGR, random forest (RF), and eXtreme gradient boosting (XGB). The research field encompasses diverse areas, 
including dialysis adequacy predictions18, survival prognostic prediction19–21, and time-dependent adverse event 
prediction22.

Identifying mortality risk factors in patients with CHD may facilitate early intervention and improve out-
comes. Given that various ML techniques are still undergoing development and competition23, relying on a single 
approach may not consistently outperform others in all conditions. Therefore, the performance and accuracy of 
these techniques should be evaluated comprehensively. Hence, this study aimed to investigate the importance of 
risk factors identified using multiple ML methods. We also sought to establish a two-stage ML algorithm-based 
prediction scheme by comparing the accuracy and consistency of different ML methods to determine the most 
suitable model and identify common risk factors among patients with CHD who experienced mortality events 
in different years.

Methods
Study design and population
This retrospective observational cohort included 805 patients who received HD at Shin-Kong Wu Ho-Su Memo-
rial Hospital between December 2006 and December 2012. The primary objective of creating this cohort was to 
assess the impact of reducing intra-dialysis phosphorus on mortality in patients with CHD was evaluated24. This 
cohort excluded the following criteria: (1) a history of hospitalization for acute events, including cardiovascular, 
cerebrovascular, and infectious diseases; (2) newly active diseases within 3 months before the data collection; 
and (3) missing information. After completing the essential data preprocessing steps before applying machine 
learning (ML) methods in the present study, a total of 800 patients were selected, as they had complete and rel-
evant data required for further analysis. These patients were deemed suitable for inclusion in the study, ensuring 
a comprehensive dataset for subsequent ML modeling and analysis.

This study conformed to the principles of the Declaration of Helsinki, with approval by the Ethics Committee 
of the Shin-Kong Wu Ho-Su Memorial Hospital (protocol No.: 20220112R). Given that our study was based on 
medical records and data review, informed consent was relinquished by the Ethics Committee of the Shin-Kong 
Wu Ho-Su Memorial Hospital. Furthermore, patient information was anonymized and de-identified before the 
analysis.

Data collection
This study included 44 variables, such as demographic, biochemical laboratory data, and underlying comor-
bidities with disease and drugs (e.g., diabetic mellitus, hypertension, cardiovascular disease (CVD), chronic 
obstructive pulmonary disease, renin–angiotensin–aldosterone system blocker, antiplatelet drug, statin, and 
beta-blocker). We incorporated all these factors into our analysis because of their critical relevance and strong 
association to clinical outcomes in CHD patients. Additionally, these parameters were easily obtainable in clini-
cal practice.

In this study, CVD was characterized as a composite of various conditions significantly affecting the mortality 
of CHD patients. These encompass coronary artery diseases, heart failure, hypertensive heart disease, arrhyth-
mias, valvular heart disease, peripheral artery disease, and thromboembolic disease. Within our clinical practice, 
routine follow-ups for CHD patients encompassed serum biochemical laboratory assessments, including dialysis 
quality, electrolyte levels, hemogram, nutritional status, iron profile, lipid profile, and parathyroid function.

The biochemical laboratory data in our study included urea kinetics (Kt/V), urea reduction ratio (URR), blood 
urea nitrogen (BUN, mg/dL) from pre- and post-HD, creatinine (Cr, mg/dL) from pre- and post-HD, sodium 
(Na, mEq/L) from pre- and post-HD, potassium (K, mEq/L) from pre- and post-HD, ionized calcium (iCa, 
mEq/L), phosphate from pre- and post-HD (P, mg/dL), intact parathyroid hormone (iPTH, pg/mL), alkaline 
phosphatase (IU/L), aspartate aminotransferase (AST, U/L), alanine transaminase (ALT, U/L), total bilirubin 
(mg/dL), aluminum (ng/mL), uric acid (mg/dL), albumin (g/dL), triglyceride (mg/dL), total cholesterol (mg/
dL), high-density lipoprotein (mg/dL), low-density lipoprotein (LDL, mg/dL), hemoglobin (g/dL), hematocrit 
(%), mean corpuscular volume (MCV, fL), ferritin (μg/L), iron (μg/dL), total iron binding capacity (TIBC) (μg/
dL), transferrin saturation (TSAT) (%), ante cibum (AC) blood glucose (mg/dL), post cibum (PC) blood glucose 
(mg/dL), total protein (g/dL), and cardiothoracic ratio (CTR) (%). Following an 8-h fast for routine biochemical 
testing, blood samples were collected from patients both before and after their dialysis session. Without using a 
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tourniquet, samples were collected from tunneled catheters, arteriovenous fistulas, or grafts; the initial sample 
was discarded from heparin-primed catheters.

Statistical analyses
Continuous data were reported as mean ± standard deviation and categorical data were expressed as numbers 
(%) of patients. To compare the means of continuous variables, analysis of variance (ANOVA) was employed. 
Additionally, the chi-square test (χ2 test) was utilized to compare categorical variables between different groups.

Figure 1 presents the algorithm of data-driven ML methods in CHD patients. We divided the prediction 
subgroups into 1- and 3-year mortality. Each subgroup utilized ML algorithms to construct prediction models 
and evaluate the important factors. To establish the fundamentals of model building and validation, we fol-
lowed a multistage process. First, we divided the patients into validation and testing datasets. The validation 
dataset comprised 80% of patients with CHD, while the remaining 20% constituted the testing dataset. Next, we 
employed a tenfold method on the validation dataset. This method involved dividing the dataset into 10 equal 
parts or folds, ensuring data randomization. Once the folds were established, we proceeded to build five dif-
ferent ML models: LGR, decision tree (DT), RF, gradient boosting (GB), and XGB. Through this approach, the 
performance of each model can be thoroughly validated and evaluated according to the different folds from the 
validation dataset. All five ML models were evaluated their respective indicators, including accuracy, sensitivity, 
specificity, and area under the curve (AUC).

After the evaluation of these ML models, we compared the results with those of the LGR model and the best 
modified model from other four. To achieve this, we selected the most significant risk variables from the LGR 
model alone, while the four remaining models (DT, RF, GB, and XGB) ranked such variables by averaging their 
rankings. We used these top variables from LGR to modify the rebuilt logistic regression (rebuilt LGR) model 
and modify the best model among the four remaining models by incorporating the variables with the highest 
average rank into the most suitable model. Finally, we compared the results with the best remodified model 
and the rebuilt LGR model through validation and compared the results with the previous training dataset. A 
two-tailed p value of < 0.05 was considered statistically significant. All statistical data were analyzed using R for 
MacOS version 4.2.1.

Results
Study population characteristics
We included 800 patients receiving HD, with 718 of them surviving at the 1-year mark and 519 surviving at the 
3-year mark. Table 1 summarizes the participants’ basic characteristics, comorbidities, and laboratory data. The 
overall mean age of the study population was 63.30 ± 13.26 years. In the subgroup with a one-year observation, 
the mean age of the survival group was 62.73 ± 13.20 years, whereas the mortality group had a mean age of 
73.55 ± 11.94 years. For the with a 3-year observation, the survival group had a mean age of 60.92 ± 13.04 years, 
while the mortality group had a mean age of 71.24 ± 11.43 years.

Figure 1.   The algorithm of data-driven machine-learning methods in chronic hemodialysis patients.
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Table 1.   The baseline characteristics of study population. COPD chronic obstructive pulmonary disease, 
RAAS renin–angiotensin–aldosterone system, Kt/V urea kinetic, URR​ urea reduction ratio, BUN blood urea 
nitrogen, AC Ante Cibum (before meals), PC Post Cibum (after meals), iPTH intact parathyroid hormone, 
AST aspartate aminotransferase, ALT alanine transaminase, HDL high-density lipoprotein, LDL low-density 
lipoprotein, MCV mean corpuscular volume, TIBC total iron binding capacity, TSAT transferrin saturation, 
CTR​ cardiothoracic ratio. p values * * p value < 0.05 are and **p value < 0.001.

Variables Total (n = 800)

1-year observation 3-year observation

Alive (n = 718) Dead (n = 42) Alive (n = 519) Dead (n = 147)

Demography

 Male 405 (50.63) 362 (50.42) 24 (57.14) 276 (53.18) 69 (46.94)

 Age (years) 63.30 ± 13.26 62.73 ± 13.20 ** 73.55 ± 11.94 ** 60.92 ± 13.04 ** 71.24 ± 11.43 **

 Hemodialysis time (years) 4.23 ± 4.65 4.33 ± 4.71 4.34 ± 4.22 4.62 ± 4.79 4.45 ± 4.50

Comorbidities and medications

 Diabetic mellitus 342 (42.75) 305 (42.48) 18 (42.86) 206 (39.69) 71 (48.30)

 Hypertension 335 (41.88) 302 (42.06) * 10 (23.81) * 211 (40.66) 56 (38.10)

 Cardiovascular disease 225 (28.13) 200 (27.86) 15 (35.71) 132 (25.43) * 54 (36.73) *

 COPD 54 (6.75) 51 (7.10) 2 (4.76) 39 (7.51) 8 (5.44)

 RAAS blocker 277 (34.63) 252 (35.10) * 6 (14.29) * 188 (36.22) * 33 (22.45) *

 Anti-platelet 285 (35.63) 256 (35.65) 15 (35.71) 171 (32.95) * 62 (42.18) *

 Statin 149 (18.63) 134 (18.66) 8 (19.05) 100 (19.27) 26 (17.69)

 Beta blocker 159 (19.88) 144 (20.06) 7 (16.67) 114 (21.97) 22 (14.97)

Biochemical laboratory data

 Kt/V 1.34 ± 0.24 1.34 ± 0.22 ** 1.49 ± 0.44 ** 1.35 ± 0.22 1.37 ± 0.30

 URR​ 0.73 ± 0.06 0.73 ± 0.06 0.76 ± 0.07 0.73 ± 0.06 0.74 ± 0.06

 BUN (pre-HD) (mg/dL) 69.02 ± 18.27 69.31 ± 18.19 * 62.36 ± 20.71 * 69.41 ± 17.96 66.14 ± 19.96

 BUN (post-HD) (mg/dL) 18.58 ± 7.33 18.75 ± 7.37 * 15.17 ± 7.32 * 18.54 ± 7.42 17.32 ± 6.62

 Creatinine (pre-HD) (mg/dL) 9.41 ± 2.32 9.48 ± 2.28 ** 8.03 ± 2.65 ** 9.68 ± 2.28 ** 8.39 ± 2.21 **

 Creatinine (post-HD) (mg/dL) 3.09 ± 0.95 3.12 ± 0.93 ** 2.57 ± 1.19 ** 3.15 ± 0.94 ** 2.79 ± 0.93 **

 AC blood sugar (mg/dL) 114.16 ± 57.07 113.85 ± 56.65 116.94 ± 64.04 110.73 ± 55.20 * 123.28 ± 64.63 *

 PC blood sugar (mg/dL) 220.67 ± 94.27 222.27 ± 94.50 228.10 ± 106.23 224.25 ± 98.24 232.10 ± 99.19

 Sodium (Na, mEq) 139.28 ± 3.70 139.35 ± 3.54 138.95 ± 5.73 139.45 ± 3.44 139.18 ± 4.39

 Potassium (pre-HD) (K, mEq) 4.70 ± 0.69 4.72 ± 0.69 * 4.40 ± 0.74 * 4.74 ± 0.67 4.57 ± 0.70

 Potassium (post-HD) (K, mEq) 3.20 ± 0.37 3.20 ± 0.37 3.14 ± 0.43 3.19 ± 0.36 3.17 ± 0.35

 Ionized calcium (iCa, mEq) 4.62 ± 0.45 4.62 ± 0.45 4.61 ± 0.43 4.61 ± 0.44 4.69 ± 0.46

 Phosphate (pre-HD) (P, mg/dL) 5.20 ± 1.48 5.21 ± 1.48 * 4.61 ± 1.38 * 5.25 ± 1.48 4.98 ± 1.54

 Phosphate (post-HD) (P, mg/dL) 2.21 ± 0.57 2.23 ± 0.57 ** 1.88 ± 0.62 ** 2.24 ± 0.58 * 2.07 ± 0.54 *

 iPTH (pg/mL) 166.54 ± 191.61 169.86 ± 196.23 * 98.37 ± 95.58 * 174.30 ± 194.17 * 122.07 ± 133.60 *

 Alkaline phosphatase (IU/L) 97.70 ± 86.00 96.14 ± 83.50 * 131.74 ± 135.32 * 96.00 ± 91.97 111.63 ± 86.03

 AST (U/L) 22.89 ± 22.21 22.54 ± 22.80 * 30.38 ± 17.71 * 22.37 ± 25.46 * 27.09 ± 16.43 *

 ALT (U/L) 23.51 ± 22.37 23.31 ± 22.81 27.45 ± 17.89 23.12 ± 23.67 26.90 ± 22.68

 Total bilirubin (mg/dL) 0.39 ± 0.23 0.39 ± 0.20 ** 0.54 ± 0.46 ** 0.39 ± 0.21 * 0.44 ± 0.31 *

 Total protein (g/dL) 7.33 ± 0.65 7.35 ± 0.64 7.37 ± 0.79 7.37 ± 0.63 7.42 ± 0.70

 Albumin (g/dL) 4.14 ± 0.40 4.16 ± 0.38 ** 3.76 ± 0.54 ** 4.20 ± 0.38 ** 3.98 ± 0.44 **

 HDL (mg/dL) 50.57 ± 17.08 50.68 ± 17.11 48.06 ± 19.49 51.30 ± 17.31 50.33 ± 17.82

 LDL (mg/dL) 104.56 ± 35.62 105.18 ± 34.52 * 92.17 ± 49.37 * 106.80 ± 35.12 * 98.52 ± 37.94 *

 Total cholesterol (mg/dL) 174.73 ± 43.71 175.24 ± 42.86 161.42 ± 57.67 176.43 ± 42.05 169.22 ± 46.86

 Triglyceride (mg/dL) 163.65 ± 148.97 165.35 ± 152.02 124.00 ± 87.27 160.10 ± 130.62 153.51 ± 110.25

 Uric acid (mg/dL) 6.74 ± 2.27 6.75 ± 2.26 6.53 ± 2.01 6.81 ± 2.26 * 6.31 ± 2.41 *

 Hemoglobin (g/dL) 10.31 ± 1.49 10.33 ± 1.41 10.53 ± 2.40 10.38 ± 1.45 10.48 ± 1.75

 Hematocrit (%) 31.73 ± 4.31 31.78 ± 4.07 32.52 ± 6.97 31.95 ± 4.17 32.37 ± 5.05

 MCV (fL) 93.30 ± 7.40 93.31 ± 7.26 93.94 ± 8.67 93.28 ± 7.44 93.82 ± 7.43

 Iron (μg/dL) 75.01 ± 33.97 75.11 ± 33.72 73.08 ± 37.27 76.16 ± 34.37 73.13 ± 31.66

 TIBC (μg/dL) 221.64 ± 46.53 222.06 ± 45.46 210.58 ± 62.15 221.92 ± 44.84 221.46 ± 51.00

 TSAT (%) 34.54 ± 15.56 34.45 ± 15.29 36.28 ± 17.47 35.07 ± 15.86 33.61 ± 13.65

 Ferritin (μg/L) 559.86 ± 363.00 566.61 ± 367.27 497.92 ± 292.65 574.45 ± 362.43 529.77 ± 279.26

 Aluminum (ng/mL) 7.72 ± 7.66 7.48 ± 7.54 * 11.00 ± 8.84 * 7.36 ± 7.30 * 9.33 ± 9.30 *

 CTR (%) 50.71 ± 6.82 50.50 ± 6.85 ** 55.35 ± 5.96 ** 49.96 ± 6.81 ** 54.17 ± 6.34 **
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Comparison of survival prediction performance among different ML methods
Table 2 shows the comparison of survival prediction performance among different ML models, including LGR, 
DT, RF, GB, and XGB, in terms of accuracy, sensitivity, specificity, and AUC. For the 1-year mortality prediction 
model, both RF and GB showed high accuracy and AUC in both validation and testing datasets. Specifically, RF 
had 0.948 accuracy in validation datasets and 0.941 in testing datasets, while GB had 0.949 and 0.941, respectively. 
Regarding AUC, RF obtained 0.734 in validation datasets and 0.806 in testing datasets, while GB had 0.737 and 
0.793, respectively. For the 3-year mortality prediction model, RF had the highest accuracy in both validation and 
testing datasets (0.794 and 0.804, respectively), and its AUC values were 0.751 and 0.763, respectively, indicat-
ing solid performance. Overall, RF outperformed other models in terms of accuracy and AUC for all four study 
cutoff periods in both validation and testing datasets.

Ranking of CHD mortality risk variables using ML methods
Figure 2 presents the average ranking of variables from four ML models (DT, RF, GB, and XGB) in 1- and 3-year 
mortality predication. Given that RF had the highest accuracy and AUC results in both the validation and testing 
datasets, we selected it as the optimal modified model for our study and subsequently put the top average ranking 
variables. Figure 3 illustrates the RF accuracy trends by the accumulated number of variables for the 1- and 3-year 
mortality prediction models. The 1- and 3-year accuracy trends of mortality prediction model for RF indicated 
that only the top 14 and 12 important variables were required to achieve the maximum accuracy, respectively.

Table 3 summarizes the rankings of variables for CHD mortality risk via all of the five ML methods. The 
top half of Table 3 displays the average ranking of variables from DT, RF, GB, and XGB before reaching the 
maximum accuracy for the 1- and 3-year models. For the 1-year model, the top 14 variables included age, 
post-HD creatinine, AST, total bilirubin, post-HD BUN, pre-HD creatinine, Kt/V, CTR, LDL, albumin, iPTH, 
alkaline phosphatase, aluminum, and TIBC. For the 3-year model, the top 12 variables included age, AST, CTR, 
pre-HD creatinine, alkaline phosphatase, AC blood glucose, iPTH, iCa, post-HD creatinine, ferritin, ALT, and 
hematocrit. At the bottom half of Table 3, we list the significant variables identified by the LGR model before 
being used in the modified model. The significant variables in the 1-year model were age, CTR, ferritin, and 
ALT, whereas those in the 3-year model were age, CTR, iPTH, sex, alkaline phosphatase, pre-HD creatinine, 
post-HD creatinine, and phosphorus.

Survival prediction performance between the RF with stepwise remodeling and the rebuilt 
LGR
We used the highest average rank variables from DT, RF, GB, and XGB for the RF with stepwise remodeling 
method. The results were then compared with those of the rebuilt LGR model. Table 4 compares the survival 
prediction performance between RF stepwise modeling and rebuilt LGR in terms of accuracy, recall, specificity, 
and AUC. In the 1-year prediction model, the accuracy of RF stepwise modeling was 0.940, whereas that of the 
rebuilt LGR was 0.937. The specificity was 1.000 in the RF and 0.996 in the LGR, with AUCs of 0.727 and 0.576, 
respectively. In the 3-year prediction model, the accuracy of RF stepwise modeling was 0.801, whereas that of 
the rebuilt LGR was 0.767. Regarding specificity, RF and LGR obtained 0.989 and 0.940, with AUCs of 0.805 and 
0.806, respectively. Overall, the stepwise RF model demonstrated superior predictive performance compared to 
the traditional LGR method in predicting the mortality of CHD patients.

Advantage of DT algorithm
DT provided a useful and understandable algorithm. Figure 4A shows the algorithm of DT in the 1-year predic-
tion model. The first cutoff criterion was age below 60 years, which accounted for 41% of the validation dataset. 
The DT model judged the “age below 60 years” as survival (present as “0”), while the actual survival rate was 92%. 
The rest of the 59% then moved into the second cutoff criterion, that is, pre-HD creatinine level being greater 
or equal to 5.5 mg/dL; only 3% of the patients failed to meet the criterion. The DT model judged “age greater 

Table 2.   Comparison of survival prediction performance among different machine learning models. LGR 
logistic regression, DT decision tree, RF random forest, GB gradient boosting, XGB eXtreme gradient boosting, 
AUC​ area under curve.

Methods

Validation dataset Testing dataset

LGR DT RF GB XGB LGR DT RF GB XGB

1-year mortality

 Accuracy 0.930 0.929 0.948 0.949 0.930 0.912 0.934 0.941 0.941 0.912

 Sensitivity 0.161 0.043 0.020 0.063 0.161 0.044 0.156 0.000 0.022 0.044

 Specificity 0.971 0.978 1.000 0.999 0.971 0.967 0.983 1.000 0.999 0.967

 AUC​ 0.648 0.573 0.734 0.737 0.648 0.734 0.590 0.806 0.793 0.734

3-year mortality

 Accuracy 0.779 0.762 0.794 0.789 0.810 0.774 0.743 0.804 0.802 0.803

 Sensitivity 0.343 0.297 0.075 0.154 0.182 0.243 0.286 0.096 0.171 0.175

 Specificity 0.899 0.890 0.991 0.962 0.984 0.916 0.865 0.992 0.970 0.970

 AUC​ 0.746 0.679 0.751 0.754 0.786 0.756 0.660 0.763 0.773 0.788
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or equal to 60 years” and “pre-HD creatinine level less than 5.5 mg/dL” as a mortality result (present as “1”), 
but the actual survival rate was only 20% in the validation dataset. Further cutoff criteria included AST, TIBC, 
ALT, iron, MCV, pre-HD BUN, TSAT, triglyceride, AC glucose, and total cholesterol level sequentially. Finally, 
13 groups had been categorized and moved into the terminal (leaf) of the DT. Figure 4B shows the algorithm 
of DT in the 3-year prediction model. The first three cutoff criteria were the same (age below 60 years, pre-HD 
creatinine level greater or equal to 5.5 mg/dL, and AST below 45 U/L). Further cutoff criteria were TSAT, TIBC, 
ALT, age below 78 years, MCV, aluminum, alkaline phosphatase, and hemoglobin. Likewise, 13 groups had been 
categorized and moved into the terminal (leaf) of the DT.

Discussion
Our study adopted five ML methods to manage the best prediction model from different years of mortality in 
patients with CHD, then successfully developed a two-stage ML algorithm-based prediction scheme to achieve 
the stepwise RF model, which incorporates the most important factors of CHD mortality risk based on the 
average rank from DT, RF, GB, and XGB. The stepwise RF model in our study demonstrated superior predic-
tive performance compared to the traditional LGR method for mortality in CHD patients over both 1-year and 
3-year model. Finally, we can integrate our proposed ML scheme into the electronic reporting system to enhance 
patient care (Fig. 5).

All five ML models individually provided solid and consistent performance in predicting the morality of 
patients with CHD, which were divided into the validation and testing datasets. Regarding the validation and 
testing datasets from 1- and 3-year mortality prediction model, the RF had better accuracy and area-under-curve 
results among the five different ML methods. Moreover, the RF only required the top 14 important variables from 
1-year accuracy trend and only top 12 variables from the 3-year accuracy trend to reach the maximum accuracy. 
Interestingly, both the RF stepwise modeling and rebuilt LGR methods needed considerably fewer variables to 
provide a similar performance from all 44 variables of the 1-year and 3-year models while demonstrating high 
efficiency in analyzing mortality risk prediction in patients with CHD. Notably, although the DT method did 
not exhibit the highest accuracy and AUC, it showed a good potential because it provided an algorithm that is 
very comprehensible and offered some selectable and adjustable variables according to the current clinical trend 
or physician’s clinical preference.

The top important variables of CHD identified by the five different ML methods provide consistent results. The 
average rank from all ML methods concluded that age, creatinine (pre- and post-HD), and CTR were the most 
frequent top variables in all four cutoff periods. Albumin, aluminum, alkaline phosphatase, AST, and AC blood 
glucose were also top indicators for mortality prediction. Some of these important variables identified by ML 
methods agree with previous studies. For example, multiple prospective cohort studies reported that CTR​25–27, 
elevated serum alkaline phosphatase28–31, and lower serum albumin levels32–34 are associated with higher mortality 

Figure 2.   The average ranking of variables from four machine-learning models (decision tree, random forest, 
gradient boosting, and eXtreme gradient boosting ) in (A) 1-year and (B) 3-year mortality prediction. COPD 
chronic obstructive pulmonary disease, RAAS renin–angiotensin–aldosterone system, Kt/V urea kinetic, URR​ 
urea reduction ratio, BUN blood urea nitrogen, AC Ante Cibum (before meals), PC Post Cibum (after meals), 
Na sodium, K Potassium, iCa ionized calcium, iPTH intact parathyroid hormone, Alk-p alkaline phosphatase, 
AST aspartate aminotransferase, ALT alanine transaminase, Bil-T total bilirubin, HDL high-density lipoprotein, 
LDL low-density lipoprotein, Hb hemoglobin, Ht hematocrit, MCV mean corpuscular volume, TIBC total iron 
binding capacity, TSAT transferrin saturation, Al Aluminum (ng/mL), CTR​ cardiothoracic ratio.
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risk in patients with CHD. Higher serum aluminum levels also represent as a mortality risk factor35–37 and even 
has some potential associations with CTR, although the cause of the relationship or mechanism is still vague38.

Serum creatinine levels before and after HD were highlighted as the top-ranked variables from the ML models 
and also frequently measured in clinical practice. Walther et al. also concluded that pre-dialysis and interdialytic 
change of serum creatinine is highly related to mortality in patients undergoing HD39. However, muscle lean 
mass40–43, infection status44,45, severe illness46,47 and poor nutrition status39,45 that affects the metabolism and 
catabolism may influence the serum creatinine level. Some studies investigated the modified creatinine index 
(mCI) for better mortality prediction40,43,44,48. However, the baseline characteristic of serum creatinine level in 
patients with CHD could be more varied in different study periods, making it very difficult to define in clini-
cal practice. Moreover, the mCI incorporated age, sex, and Kt/V (urea kinetics) into the formula, resulting in 
multifactorial interference and potentially misleading the prediction bias.

URR, one of the most common indicators of HD dose delivery, is generally associated with decreased 
mortality49–52. Unexpectedly, the URR in our study did not match the top variable factors, probably because 
the URR in the survival group (1-year subgroup: 0.73 ± 0.06; 3-year subgroup: 0.73 ± 0.06) and mortality group 

Figure 3.   The random forest accuracy trend by the accumulated number of variables for (A) 1-year mortality 
and (B) 3-year mortality prediction models.
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Table 3.   The rankings of variables for CHD mortality risk via different machine learning models. CHD 
chronic hemodialysis, Kt/V urea kinetic, BUN blood urea nitrogen, iPTH intact parathyroid hormone, AST 
aspartate aminotransferase, ALT alanine transaminase, LDL low-density lipoprotein, TIBC total iron binding 
capacity.

Rank

The average ranking from Decision Tree (DT), 
Random Forest (RF), Gradient boosting (GB) 
and eXtreme Gradient Boosting (XGB)

1-year mortality 3-year mortality

1 Age Age

2 Creatinine (post-HD) AST

3 AST Cardiothoracic ratio

4 Total bilirubin Creatinine (pre-HD)

5 BUN (post-HD) Alkaline phosphatase

6 Creatinine (pre-HD) AC blood sugar

7 Kt/V iPTH

8 Cardiothoracic ratio iCa

9 LDL Creatinine (post-HD)

10 Albumin Ferritin

11 iPTH ALT

12 Alkaline phosphatase Hematocrit

13 Aluminum

14 TIBC

Rank

Logistic Regression (LGR)

1-year mortality 3-year mortality

1 Age Age

2 Cardiothoracic ratio Cardiothoracic ratio

3 Ferritin iPTH

4 ALT Sex

5 Alkaline phosphatase

6 Creatinine (pre-HD)

7 Creatinine (post-HD)

8 Phosphate (pre-HD)

Table 4.   The comparison of survival predicts from RF stepwise modeling and rebuild LGR. RF random forest, 
LGR logistic regression, AUC​ area under curve.

Method Number of variables Accuracy Sensitivity Specificity AUC​

1-year mortality prediction

 RF stepwise modeling 14 0.940 0.000 1.000 0.727

  RF (all variables) (Validation dataset) 44 0.948 0.020 1.000 0.734

  RF (all variables) (Testing dataset) 44 0.941 0.000 1.000 0.806

 Rebuild LGR 4 0.937 0.000 0.996 0.576

  LGR (All variables) (Validation dataset) 44 0.930 0.161 0.971 0.648

  LGR (all variables) (Testing dataset) 44 0.912 0.044 0.967 0.734

3-year mortality prediction

 RF stepwise modeling 12 0.801 0.096 0.989 0.805

  RF (all variables) (Validation dataset) 44 0.794 0.075 0.991 0.751

  RF (All variables)
(Testing dataset) 44 0.804 0.096 0.992 0.763

 Rebuild LGR 8 0.767 0.118 0.940 0.806

  LGR (All variables) (Validation dataset) 44 0.779 0.343 0.899 0.746

  LGR (All variables) (testing dataset) 44 0.774 0.243 0.913 0.756
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(0.76 ± 0.07 and 0.74 ± 0.06 respectively) were both in optimized dose (≥ 0.65) without statistically significance. 
Moreover, URR is higher in patients with sarcopenia or malnutrition, leading to higher mortality risk in those 
with CHD. McClellan et al. concluded that a URR of 0.70–0.74 has an increasing trend of mortality risk compared 
with 0.65–0.6953. Considering that the URR is also affected by urea distribution volume changes and urea genera-
tion during HD, the 2015 National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative (KDOQI) 
recommends the targeted single pool Kt/V (spKt/V) for the dialysis adequacy instead of URR​52.

Figure 4.   The algorithm of decision tree (DT) in the (A) 1-year prediction model (the 7th fold) and (B) 
3-year prediction model (the 1st fold). BUN blood urea nitrogen, AC ante Cibum (before meals), AST aspartate 
aminotransferase, ALT alanine transaminase, MCV mean corpuscular volume, TIBC total iron binding capacity, 
TSAT transferrin Saturation.
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Table 5 presents a range of data-driven ML methods employed for identifying risk factors and modifying 
mortality prediction in patients with CHD. Victoria Garcia-Montemayor et al. concluded that RF is adequate 
for mortality prediction in patients with CHD, superior to LGR20. According to Kaixiang Sheng et al., XGB 
can effectively identify high-risk patients within 1 year after HD initiation19. In the study of Covadonga Díez-
Sanmartín et al., combining XGBoost method with the corresponding Kaplan–Meier curve presentation to 
evaluate the risk profile of patients undergoing dialysis demonstrated very high accuracy, specificity, and AUC 
results16. Oguz Akbilgic et al. also used RF to identify the risk factors of mortality within 1 year after dialysis 
introduction and inferred that RF also had a strong prediction performance compared with other ML methods, 
such as artificial neural networks, support vector machines, and k-nearest neighbors algorithm21. Furthermore, 
Cheng-Hong Yang et al. revealed that whale optimization algorithm with full-adjusted-Cox proportional hazards 
(WOA-CoxPH) could evaluate risks better than RF and typical Cox proportional hazards (CoxPH) in patients 
with CHD54. However, these previous studies had a relatively short prediction period, mostly within 2 years. 
Our study emphasizes the characteristics of patients with CHD and has effectively achieved a robust predic-
tion performance for up to 3 years using the stepwise RF model, modified from two-stage ML algorithm-based 
prediction scheme. Figure 5 demonstrate our approach of the AI system by incorporating the top numerical 
risk variables selected by various ML methods, our study model can effectively assist physicians, caregivers, and 
patients in predicting short-term post-dialysis mortality outcomes. This model allows for enhanced patient-
centered decision-making and increased awareness about laboratory data that could be risk factors, especially 
for patients with a high short-term mortality risk. It also enables individuals to achieve a better quality of life 
earlier and helps avoid unnecessary healthcare expenditures.

This study has some limitations. First, the top variables modified by ML only provide the relationship of 
mortality in patients with CHD but not infer the positive or negative associations from these variables. Moreo-
ver, not all the top variables agree with previous study results, especially serum creatinine level, which can be 
affected by various clinical conditions that may mislead the data-driven ML results. In the future implementa-
tion of ML-identified variables to an unknown disease, these variables should be clinically investigated further. 
Second, we initially extended the analysis cutoff period up to 7 years but then only selected within 3 years to 
avoid data-censoring risk of bias by a high mortality rate after dialysis initiation. A long-term prediction model 
may need larger data and even longer study period for better qualification and quantification. Third, our dataset 
only contained a composite parameter for CVD. However, prognoses may vary among different CVD categories 
in CHD patients. Additional research may be required to examine the effects of subclassifications of CVD on 
mortality. Fourth, the individuals in our study were chosen from a pool that did not encompass recently hospital-
ized patients dealing with cardiovascular or infectious concerns. This subset was anticipated to exhibit a greater 
likelihood of survival compared to those who had recently been hospitalized, a factor that could potentially skew 
our study results. Therefore, our model may only be applicable to the CHD patients who are relatively stable. 
Finally, the developed prediction models by ML methods in our study are limited to a single medical center. 

Figure 5.   The application of the data-driven machine-learning methods in clinical practice from our study.
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Table 5.   Lecture review of the mortality prediction model in chronic hemodialysis patients. HD hemodialysis, 
PD peritoneal dialysis, PRISMA preferred reporting items for systematic reviews and meta-analyses, MOOSE 
meta-analyses of observational studies in epidemiology, NT-proBNP N-terminal pro-brain natriuretic peptide, 
suPAR soluble urokinase plasminogen activator receptor, CRP C-reactive protein, LGR logistic regression, DT 
decision tree, RF random forest, GB gradient boosting, XGB eXtreme gradient boosting, ANN artificial neural 
networks, KNN k-nearest neighbors algorithm, CoxPH full-adjusted-Cox proportional hazards. * The study 
by Kaixiang Sheng et al. involves 5,351 training cohort from a single center (1) and 5,828 testing cohort cases 
from 97 renal centers (2). Data obtained at dialysis initiation (3, 4, 7, 8, 11) and data 0–3 months after dialysis 
initiation (5, 6, 9, 10, 12). The average age and male ratio are also shown in the training dataset (3, 5, 7, 9) and 
testing data set (4, 6, 8, 10), respectively. ** The study by Cheng-Hong Yang et al. did not mention the overall 
study population average age, only provide the age ≥ 65 years group percentage instead (13). *** The study 
by Covadonga Díez-Sanmartín et al. utilized the dataset from the Organ Procurement and Transplantation 
Network (OPTN), consisting of medical data from patients located within the United States (14). The average 
age (15) and male ratio (16) of the study population is weighted average from all 8 clusters. The follow-up time 
is the highest survival mean time (17) from the study (Cluster 2).

Study Country Numbers Ages (years) Male (%) Dialysis type
Follow-up 
times (Years)

Reporting 
dataset Algorithms

Optimal 
model AUC​ Conclusion

Oguz Akbilgic 
et al. (2019) U.S 27,615 68.7 ± 11.2 98.1 HD 1.0 Training and 

Testing
RF, ANN, 
KNN RF

0.7185 (30-
day)
0.7446 (90-
day)
0.7504 (180-
day)
0.7488 (365-
day)

RF, ANN and 
KNN demon-
strated robust 
prediction 
performance 
in identifying 
mortality risk 
factors within 
the first year 
of dialysis 
initiation

Victoria 
Garcia-Mon-
temayor et al. 
(2020)

Spain 1,571 62.33 ± 15.89 61 HD 2.0 Training and 
Testing LGR and RF RF

0.7175 
(6-month)
0.7331 
(1-year)
0.7259 
(2-year)

RF outper-
forms LGR 
in developing 
mortality 
prediction 
models for 
HD patients

Kaixiang 
Sheng et al. 
(2020)

China 5,351(1)

5,828(2)

51.67 ± 16.48(3)

62.53 ± 16.20(4)

52.61 ± 16.59(5)

62.53 ± 16.20(6)

61.58(7)

60.47(8)

62.01(9)

60.71(10)

HD 1.0 Training and 
Testing XGB XGB 0.83(11)

0.85(12)

XGB effec-
tively identify 
the high-risk 
patients 
within one 
year after the 
HD initiation

Cheng-Hong 
Yang et al. 
(2022)

Taiwan 829  ≥ 65 years: 
35.22%(13) 45.36 HD 5.0 Training and 

Testing

CoxPH
Stepwise- 
CoxPH
WOA- 
CoxPH
RSF-CoxPH
Kaplan–
Meier

WOA- 
CoxPH

0.7404 
(CoxPH)
0.7388
(Stepwise-
CoxPH)
0.7406
(RSF-CoxPH) 
0.7409
(WOA- 
CoxPH)

WOA-CoxPH 
demonstrated 
superior risk 
assessment 
perfor-
mance in 
HD patients 
compared to 
RSF-CoxPH 
and typical 
selection 
CoxPH 
models

Covadonga 
Díez-
Sanmartín 
et al. (2023)

U.S.(14) 44,663  ≥ 60 years: 
45.83%(15) 62.09(16) HD 6.07(17) Training

XGB, 
Kaplan–
Meier

XGB, 
Kaplan–
Meier

99.08
(Multi-class 
AUC with 8 
clusters)

XGB 
combined 
with K–M 
demonstrates 
exceptional 
accuracy, 
specificity, 
and area 
under curve 
(AUC) 
outcomes

Our study Taiwan 800 63.30 ± 13.26 50.63 HD 3.0
Validation 
(Training) 
and Testing

LGR, DT, RF, 
GB, XGB Stepwise RF 0.727 (1-year)

0.805 (3-year)

Stepwise RF 
provided 
superior 
performance 
in predicting 
1-year and 
3-year mor-
tality risks 
from CHD 
patients
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Hence, the model modified from our study population may not be applicable to other similar at-risk research 
groups. Future studies on ML such as federated learning that incorporates multiple medical centers and research 
groups could be helpful for improving predictive performance and strengthening clinical decisions.

Conclusion
The adoption of the stepwise RF model, modified from two-stage ML algorithm-based prediction scheme, 
enhances patient-centered decision-making, and improves outcomes, particularly for patients with a high short-
term mortality risk in both 1-year and 3-year periods. The findings of this study can offer valuable information 
to nephrologists, increasing awareness about risky laboratory data. However, for longer prediction periods, 
future studies should consider incorporating larger study populations and diverse groups to further enhance 
predictive performance.

Data availability
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of confidentiality obligations. Further information on the data and instructions for requesting access can be 
obtained from the corresponding author.
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