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Debiased inference 
for heterogeneous subpopulations 
in a high‑dimensional logistic 
regression model
Hyunjin Kim , Eun Ryung Lee * & Seyoung Park *

Due to the prevalence of complex data, data heterogeneity is often observed in contemporary 
scientific studies and various applications. Motivated by studies on cancer cell lines, we consider 
the analysis of heterogeneous subpopulations with binary responses and high‑dimensional 
covariates. In many practical scenarios, it is common to use a single regression model for the 
entire data set. To do this effectively, it is critical to quantify the heterogeneity of the effect of 
covariates across subpopulations through appropriate statistical inference. However, the high 
dimensionality and discrete nature of the data can lead to challenges in inference. Therefore, we 
propose a novel statistical inference method for a high‑dimensional logistic regression model that 
accounts for heterogeneous subpopulations. Our primary goal is to investigate heterogeneity across 
subpopulations by testing the equivalence of the effect of a covariate and the significance of the 
overall effects of a covariate. To achieve overall sparsity of the coefficients and their fusions across 
subpopulations, we employ a fused group Lasso penalization method. In addition, we develop a 
statistical inference method that incorporates bias correction of the proposed penalized method. To 
address computational issues due to the nonlinear log‑likelihood and the fused Lasso penalty, we 
propose a computationally efficient and fast algorithm by adapting the ideas of the proximal gradient 
method and the alternating direction method of multipliers (ADMM) to our settings. Furthermore, 
we develop non‑asymptotic analyses for the proposed fused group Lasso and prove that the debiased 
test statistics admit chi‑squared approximations even in the presence of high‑dimensional variables. 
In simulations, the proposed test outperforms existing methods. The practical effectiveness of the 
proposed method is demonstrated by analyzing data from the Cancer Cell Line Encyclopedia (CCLE).

Significant efforts have been made in recent research to perform screening genetic profiling and drug testing in 
human cancer cell lines to explore how genomic backgrounds influence response to  therapy1. These efforts have 
resulted in valuable cancer cell line (CCL) data resources, such as the Cancer Cell Line Encyclopedia (CCLE)2. 
CCLE data provide responses to 24 anticancer drugs in hundreds of cell lines across multiple tumor types, along 
with genomic information about these cell lines, such as the expression of nearly 20,000 genes. These data are 
often used to build computational models to predict drug  response3. For example, to predict drug response using 
gene expression, researchers have used several methods, including Ridge  regression4, mixture  regression5, sup-
port vector  machine6, random  forest7, and neural  networks8.

Given that recent large public CCL datasets, such as CCLE, include multiple cancer types, there is a need to 
develop statistical inference to assess the heterogeneity of the effects of gene expression on a drug across multiple 
tumor types. Quantifying the heterogeneity of the effects of genes across different tumors can provide valuable 
information in drug response modeling, as cancer tissue heterogeneity must be considered when modeling drug 
response across different cancer  types9. Different tumor types may be characterized by their own tumor-specific 
genes, and thus tumor type interactions may need to be considered. In addition, it is often observed that patients 
with different types of cancer have similar expression patterns of certain genes, but the efficacy of treatments 
varies. For example, HER2 overexpression has been observed in subsets of patients with cancers such as breast 
and gastric cancer, but a HER2 inhibitor, pertuzumab, is more effective in treating HER2-positive breast cancer 
compared to HER2-positive gastric  cancer10. Therefore, interactions with tumor type may need to be considered 
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for more accurate statistical analysis. Several studies have attempted to develop statistical modeling methods for 
drug response that account for heterogeneity between different cancer  types11,12. However, a common approach 
is still to analyze several tumor types  simultaneously2,13. This approach assumes that there are no interaction 
effects with tumor-specific factors. Such inconsistencies in the current literature raises a critical research question 
regarding the uniformity of the effects of gene expression on drug response across different cancer types. To date, 
this question remains unanswered. This paper aims to fill this gap by developing a statistical test for homogeneity 
in the effects of gene expression on drug response across multiple cancer types. This task is particularly chal-
lenging due to the high-dimensional nature of CCLE data. In a different context, heterogeneity testing between 
studies in meta-analyses has been  investigated14,15.

In this study, we focus on statistical inference for the heterogeneity of the effects of gene expression on drug 
sensitivity across different cancer types representing distinct subpopulations. We consider a binary response 
setting, where the response for a cell line represents whether that cell line is sensitive or resistant to a drug, 
because determining whether a patient is sensitive or resistant to anticancer drugs is critical to treatment. More 
specifically, we focus on statistical inference in a high-dimensional logistic regression model where the population 
is stratified into heterogeneous subpopulations, i.e., cancer types. We consider the problem of testing whether 
a given covariate has the same effect on the binary response in different subpopulations in high-dimensional 
logistic regression settings as follows: for some j ∈ {1, . . . , p} and c ∈ R,

where β(g)
j  is the underlying regression coefficient of the jth covariate for the gth subpopulation, and c can be 

specified, e.g. c = 0 , or c can be unspecified. The null hypothesis with unspecified c indicates homogeneity, 
i.e., equal effects of the covariate. Testing (1) with unspecified c can provide valuable information in pharma-
cogenomics research, which studies how genes influence response to a drug. In addition, it may be helpful in 
understanding variations in drug response between cancer types in terms of gene expression. On the other hand, 
specifying c, e.g. c = 0 , suggests that the covariate has zero effect, i.e., it is not significant. Testing (1) with c = 0 
can provide candidates for gene expression markers of drug sensitivity that can be applied to multiple cancer 
types. Such versatile gene expressions are very useful for research and clinical  settings16. While testing (1) can 
provide valuable insights, standard maximum likelihood estimation cannot be used for CCLE data analysis due 
to the high dimensionality of genes compared to the number of cell lines for tumor types. In recent years, much 
effort has been devoted to statistical inference for high-dimensional generalized linear models. Several studies 
have considered inference for either low-dimensional coefficients or a single coefficient in the presence of a 
large number of nuisance parameters. For example, Van de Geer et al.17 studied the theoretical properties of a 
bias-corrected  Lasso18 estimator called desparsified Lasso or debiased Lasso. Theoretical properties of different 
types of bias-corrected estimators have also been studied under high-dimensional linear regression  settings19,20. 
In addition, Ning and  Liu21 proposed a decorrelated score test that can be applied to generic penalized M esti-
mators. Other researchers have considered interval estimation for a single  coefficient22,23. More recently, Ma 
et al.24 considered the multiple testing problem for high-dimensional logistic regression in two-sample settings.

Despite the nice theoretical properties of these methods in high-dimensional regimes, these methods were 
developed in classical single-population settings and thus may not be optimal for analyzing data consisting of 
heterogeneous subpopulations. In addition, the combination of limited sample sizes for cancer types and the 
high dimensionality of gene expression data poses challenges in obtaining accurate results when testing the 
homogeneity or significance of a gene’s effect on a drug across different cancer types. Instead of considering 
inference based on Lasso penalized estimation, a common approach in existing high-dimensional inference, we 
propose statistical inference based on the fused group Lasso. Our proposed testing procedure consists of two 
steps. In the first step, we compute a suitable estimator for the underlying coefficients using variable selection and 
homogeneity detection. Our proposed objective function includes a negative log-likelihood, a group Lasso-type 
 penalty25, and a fusion-type  penalty26. The group Lasso-type penalty controls overall sparsity in the model, i.e., 
removes irrelevant covariates in all subpopulations, while the fusion-type penalty promotes similarities between 
coefficients across subpopulations, which can improve estimation efficiency by clustering regression  coefficients27. 
Thus, the combination of group Lasso-type and fusion-type penalties allows for sparsity control and integration of 
samples from different cancer types, effectively addressing the challenges posed by small sample sizes for cancer 
types. The effectiveness of our tests over Lasso-based approaches is demonstrated by a simulation model in sec-
tion “Simultation study for an imbalanced design”, where sample sizes for subpopulations are relatively limited. 
In the second step, we develop a bias correction procedure to correct the bias of our fused group Lasso estimator 
obtained in the first step. In essence, we extend the de-sparsified Lasso concept of Javanmard and  Montanari19 to 
the fused group Lasso method, thereby facilitating statistical inference in high-dimensional regression scenarios. 
This advancement requires rigorous theoretical investigations of the fused group Lasso technique. However, to 
the best of our current knowledge, there are limited theoretical investigations of fused group Lasso problems.

Note that Zhou et al.28 considered fused sparse group Lasso in a multiple response linear regression model 
without rigorous convergence and inference analyses. The theoretical analysis of the combined penalty of group 
Lasso-type and fusion-type is highly non-trivial. In particular, the penalty function is not decomposable with 
respect to the support of the parameter, which means that the existing theory of decomposable  regularizers29 
cannot be  applied30. In addition, we provide a computationally efficient algorithm to address the computational 
difficulties arising from the logistic log-likelihood and the fused Lasso penalty. By integrating the principles of 
the proximal gradient method and the ADMM into our framework, we effectively handle the computational 
complexity associated with our settings. Furthermore, our theory and methods can be easily extended to general 
fused group lasso settings, such as those with discrete responses.

(1)H0 : β(1)
j = · · · = β

(G)
j = c vs H1 : not H0,
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To test the hypothesis (1), existing high-dimensional inference methods based on ℓ1 norm penalization, 
such as the Lasso, could be considered. A naive approach would be to test (1) by applying a separate penalized 
logistic regression for each subpopulation, using an existing ℓ1 norm-based penalization method, such as the 
debiased  Lasso17. However, when the sparsity patterns of the underlying coefficients are similar across differ-
ent subpopulations—as is the case in the CCLE data example—the proposed fused group Lasso approach can 
combine subpopulations and increase the sample size, resulting in better performance. This was also observed 
in our simulation analysis and in different  contexts31.

The rest of the paper is organized as follows. Section “Method and theory” describes the proposed penalization 
method, its debiased version, and the test statistics with their theoretical properties. Section “Implementation” 
presents an algorithm that solves the proposed penalization method. Section “Simulation study” examines the 
finite sample performance of the proposed test along with other competing methods. Section “Application to 
the CCLE data” illustrates the application of our approach to the Cancer Cell Line Encyclopedia (CCLE)  data2. 
Finally, Section “Conclusion” concludes the paper. Additional simulation results are presented in the Supple-
mentary material.

Method and theory
In this section, we introduce the proposed penalization and test statistics. First, we introduce the notations that 
will be used throughout the paper. For any positive integer d, let Id be the d × d identity matrix, and 1d and 0d 
be the d × 1 vectors of all 1’s and 0’s, respectively. Let 0d1×d2 and 1d1×d2 be d1 × d2 matrices whose entries are all 
0’s and 1’s, respectively. When the size of the matrix is obvious, the subscript is sometimes omitted. For an index 
1 ≤ l ≤ d , let el denote the p× 1 vector with one at the lth location and zero everywhere else. For any d × 1 vector 
a = (a1, . . . , ad)

⊤ , let �a�q :=
(

∑d
ℓ=1 a

q
ℓ

)1/q
 for 1 ≤ q < ∞ and �a�max := max1≤ℓ≤d |aℓ| . For a set S, let |S| 

denote the cardinality of S. For a vector a and an index set of elements, say S, let aS be the |S| × 1 sub-vector of 
a with elements in S. For a matrix A = (Aij)d1×d2 , we let

and use vec (A) to represent vectorization by staking the columns of a matrix A . For a symmetric matrix A , 
let �min(A) be the minimum eigenvalue of A . Given a matrix A and an index set of rows, say R, let AR,· denote 
sub-matrix of A with rows in R. We also use Ai,· to represent the ith row of A . For any vectors a and b of equal 
length, let �a, b� :=

∑

i aibi . For any matrices A and B with equal dimensions, let �A,B� :=
∑

i,j AijBij . For 
non-negative sequences {an}∞n=1 and {bn}∞n=1 , we write an ≪ bn or an = o(bn) if bn > 0 and an/bn → 0 . We also 
write an = O(bn) or an � bn if an ≤ Cbn for some positive constant C. Let a ∨ b and a ∧ b denote max(a, b) and 
min(a, b) , respectively.

Setting and problem
Here we present a logistic regression model for heterogeneous subpopulations. Suppose the data come from G 
independent subpopulations, such as tumor sample groups generated independently in CCLE data. For each 
subpopulation 1 ≤ g ≤ G , there exist ng pairs 

{

x
(g)
i , y

(g)
i

}ng

i=1
 , where y(g)i ∈ {0, 1} represents a binary response 

(e.g., binary drug response) of the ith subject in the gth group (e.g., tumor group) and 
x
(g)
i =

(

x
(g)
i1 , . . . , x

(g)
ip

)⊤
∈ R

p represents a p-dimensional vector of covariates, e.g. gene expression variables. 
We consider the following logistic regression model

 for each group g = 1, . . . ,G and samples i = 1, . . . , ng , where β(g) := (β
(g)
1 , . . . ,β

(g)
p )⊤ represents the underlying 

group-specific coefficient vector for the gth group. Let β(j) :=
(

β
(1)
j , . . . ,β

(G)
j

)⊤
 denote the underlying coefficient 

vector for the jth covariate. We consider the high-dimensional setting where the number of covariates p increases 
with samples sizes n1, . . . , nG . Let n =

∑G
g=1 ng be the total sample size. We assume that the groups are hetero-

geneous but share similar characteristics in the sense that most regression covariates have similar effects on the 
response across different groups. In this study, we consider the case where only a few covariates, e.g., a small 
number of gene expressions in the CCLE data example, are relevant to the response across different groups, i.e., 
the index set S := {j : �β(j)�2 �= 0} is sparse in that s := |S| ≪ p . We also assume that only a few pairs of groups 
have different covariate effects, i.e., � :=

{

(j, g , g ′) : β(g)
j �= β

(g ′)
j

}

 is sparse in that s̃ := |�| ≪ sG2.
For a matrix notation, let

�A�max := max
i,j

|Aij|, �A�1 :=
∑

i,j

|Aij|, �A�F :=
√

∑

i,j

A2
ij , |||A|||1 := max

j

∑

i

|Aij|,

(2)y
(g)
i | x(g)i ∼ Bernoulli









exp

�

�

x
(g)
i

�⊤
β(g)

�

1+ exp

�

�

x
(g)
i

�⊤
β(g)

�









y(g) =
[

y
(g)
1 , . . . , y

(g)
ng

]⊤
∈ R

ng

X(g) =
[

x
(g)
1 , . . . , x

(g)
ng

]⊤
∈ R

ng×p
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for 1 ≤ g ≤ G , where each column of X(g) has a zero mean and ℓ2 norm √ng  . Let y be the binary response vector 
and X be the covariate matrix defined by

 where X is a block-diagonal matrix, consisting of X(g)’s. Define the coefficient matrix B as 
B =

[

β(1), . . . ,β(G)
]

∈ R
p×G . Our main goal is to test the homogeneity of the effects of the lth covariate across 

the G groups, i.e., for 1 ≤ l ≤ p,

Another goal is to test whether the lth covariate is significant to at least one of the groups:

The penalization method
We propose to test (3) or (4) based on the penalized method using the fused group Lasso. For any y ∈ {0, 1} and 
ν ∈ R , define ℓ(y, ν) = −yν + log(1+ exp(ν)) . For the loss function ℓ(y, ν) , let ℓ̇(y, ν) and ℓ̈(y, ν) denote its first 
a n d  s e c o n d  d e r i v a t i v e s  w i t h  r e s p e c t  t o  ν  ,  r e s p e c t i v e l y.  F o r  a  m a t r i x 
� = (�jg )1≤j≤p,1≤g≤G =

(

�(1), . . . ,�(G)
)

=
(

�⊤
(1), . . . ,�

⊤
(p)

)⊤
 , let

 
We propose B̂ , which solves the following optimization problem:

where �1 and �2 are non-negative penalty parameters and wj ’s and vj,gg ′ ’s are non-negative weights.
Let B̂ =

(

β̂jg

)

1≤j≤p,1≤g≤G
=

(

β̂
(1)
, . . . , β̂

(G)
)

=
(

β̂⊤
(1), · · · , β̂⊤

(p)

)⊤
 . In (5), the two penalty terms are 

based on the sparsity assumption, as explained in section “Setting and problem”: The group Lasso-type penalty 
promotes overall sparsity in the total coefficients, i.e., many β̂(j) ’s are the zero vector; while the fusion-type penalty 
promotes similarities among β̂jg ’s for 1 ≤ g ≤ G . For the weights wj and vj,gg ′ , we consider the following optimiza-
tion problem:

 Let B̃ =
(

β̃jg

)

1≤j≤p,1≤g≤G
=

(

β̃
(1)
, . . . , β̃

(G)
)

=
(

β̃
⊤
(1), . . . , β̃

⊤
(p)

)⊤
 . Following  Zou32, we set

The following theorem presents an estimation error bound for the initial estimator B̃ . For the details of the Con-
ditions 1–2 assumed to derive Theorem 1, please refer to section S3.1 of the Supplementary materials.

Theorem 1 Assume that Conditions 1–2 in the Supplementary materials hold, and max1≤g≤G �β(g)�1 ≤ C̃ for 
some absolute constant C̃ > 0 . Let the penalty parameters �̃1 and �̃2 be chosen so that

 Then, it holds that with probability at least 1− 1/(pG),

Theorem 1 implies that if we take

 then the initial estimator B̃ satisfies

y =
[

(y(1))⊤, . . . , (y(G))⊤
]

∈ R
n

X = diag
(

X(1), . . . ,X(G)
)

∈ R
n×pG ,

(3)H0 : β(1)
l = · · · = β

(G)
l vs H1 : not H0.

(4)H0 : β(1)
l = · · · = β

(G)
l = 0 vs H1 : not H0.

Ln(�) = 1

n

G
∑

g=1

ng
∑

i=1

ℓ

(

y
(g)
i ,

(

x
(g)
i

)⊤
�(g)

)

.

(5)B̂ := argmin
�∈Rp×G

Ln(�)+ �1

p
∑

j=1

wj��(j)�2 + �2

p
∑

j=1

∑

g<g ′
vj,gg ′ |�jg −�jg ′ |,

(6)B̃ := argmin
�∈Rp×G

Ln(�)+ �̃1

p
∑

j=1

��(j)�2 + �̃2

p
∑

j=1

∑

g<g ′
|�jg −�jg ′ |.

wj = 1/�β̃(j)�2, vj,gg ′ = 1/|β̃jg − β̃jg ′ |.

�̃1 ≥
√

16G(log p+ logG)

n
, �̃2 = G−3/2

�̃1.

�B̃− B�2F � �̃
2
1s + �̃

2
2 s̃.

�̃1 ≍
√

G(log p+ logG)

n
, �̃2 ≍

√

log p+ logG

nG2
,
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The following theorem presents the theoretical properties of the estimator B̂ . For the details of the additional 
Conditions 3–4 required to prove Theorem thm2, please see section S3.1 in the Supplementary materials.

Theorem 2 Assume that the conditions of Theorem 1 and Conditions 3–4 in the Supplementary materials hold. 
Consider a minimizer B̂ with �2 = G−3/2

�1 and

 Define the estimators of S and � by

 Then, P(Ŝ = S) → 1 and P(�̂ = �) → 1.

Theorem 2 shows that the proposed fused group Lasso consistently selects relevant covariates and finds the 
same covariate effects across groups under additional conditions on the correlations between relevant and irrel-
evant covariates and on the minimum signal strengths. However, if a covariate of interest j is not selected in B̂ , 
i.e., j /∈ Ŝ , statistical inference under the original model is impossible for B̂ , while the debiased version of B̂ may 
give some useful information, e.g., asymptotic distributions and p-values.

Debiased test
In this subsection, we develop the debiased version of the fused group Lasso estimator B̂ for statistical inference. 
For 1 ≤ g ≤ G , let

 Let �̂
(g) be an estimator of �(g) defined by

 Using the main idea of Javanmard and  Montanari19, let M̂(g) :=
[

m̂
(g)
1 , . . . , m̂

(g)
p

]⊤
∈ R

p×p be the estimate of 
M

(g) defined by solving the quadratic programming

 for each 1 ≤ j ≤ p and 1 ≤ g ≤ G , where µg = C1

√

log p/ng  for some constant C1 > 0 . We propose a debiased 
estimator: for g = 1, . . . ,G,

In the debiased estimation approach, Javanmard and  Montanari19 considered only linear regression, while Van 
de Geer et al.17 examined a generalized linear model. Van de Geer et al.17 used nodewise  regression33 to esti-
mate standard errors for the debiased Lasso estimator. While we use the bias correction technique developed 
by Javanmard and  Montanari19, our proposed method differs from existing methods. Specifically, we use the 
quadratic programming considered in Javanmard and  Montanari19 to estimate M(g) s instead of approximating 
the inverse of the sample covariance matrix for covariates. Compared to our method, most existing debiased 
inference methods for high-dimensional generalized linear models use nodewise regression (e.g. Ma et al.24, 
Tian and  Feng34,  Caner35). In addition, most of these existing methods were developed for statistical inference 
about a parameter in the classical single-population setting, and thus are Lasso to estimate parameters for a 
single population. In contrast, we develop tests based on our fused group Lasso for inference about parameters 
for multiple subpopulations.

To derive an asymptotic normality of the debiased  Lasso17, Van de Geer et al.17 assumed that each row of M(g) 
has a small number of non-zero entries. However, this assumption of exact sparsity may not hold in the general-
ized linear model, as pointed out by Xia et al.36. As demonstrated in Javanmard and  Montanari19, we can achieve 
asymptotic normality of the proposed debiased estimator without assuming exact sparsity for M(g) . Theorem 3 
presents the theoretical properties of the proposed debiased estimator b̂

(g) . See section S3.2 of the Supplementary 
materials for the details of Condition 5, which is crucial for proving Theorem thm123.

�B̃− B�2F = Op

(

(

sG + s̃

G2

) log(p ∨ G)

n

)

.

8C̃

√

G(log p+ logG)

n
≤ �1 ≍

√

G(log p+ logG)

n
.

Ŝ := {j : �β̂(j)�2 �= 0}, �̂ := {(j, g , g ′) : β̂jg �= β̂jg ′ }.

�(g) := E

[

n−1
g

ng
∑

i=1

ℓ̈

(

y
(g)
i , [x(g)i ]⊤β(g)

)

x
(g)
i [x(g)i ]⊤

]

M
(g) := (�(g))−1.

�̂
(g) := n−1

g

ng
∑

i=1

ℓ̈

(

y
(g)
i , [x(g)i ]⊤β̂(g)

)

x
(g)
i [x(g)i ]⊤.

(7)m̂
(g)
j = argmin

m∈Rp

1

2
m

⊤�̂
(g)

m subject to ��̂(g)
m− ej�max ≤ µg

b̂
(g) := β̂

(g) − M̂
(g)

ng

ng
∑

i=1

ℓ̇

(

y
(g)
i , [x(g)i ]⊤β̂(g)

)

x
(g)
i .
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Theorem 3 Suppose conditions of Theorem 2 and Condition 5 in the Supplementary materials hold. Then, the 
debiased estimator satisfies

 where maxg ��g�max = op(1).

Let V̂ (g) := M̂
(g)

�̂
(g)

[

M̂
(g)

]⊤
 and V̂ (j) be the G × G diagonal matrix with diagonal elements 

{

1
ng
V̂

(g)
jj

}G

g=1
 . 

Let b̂(j) :=
[

b̂
(1)
j , . . . , b̂

(G)
j

]⊤
 . Define Sj =

[

Sj1, . . . , SjG
]⊤ := V̂

−1/2
(j)

(

b̂(j) − β(j)

)

 and S0j := V̂
−1/2
(j) b̂(j) . For a given 

significance level 0 < α < 1 , we reject the null hypothesis H0 in (4) when ‖S0j ‖22 > χ2
α(G) , where χ2

α(G) represents 
the upper α-quantile of a central χ2 distribution with G degrees of freedom. The notion of weak convergence is 
not well defined in our setting, since we consider the case where G diverges with n. Theorem 4 shows that our 
test for the hypothesis (4) is still valid in the χ2 approximation.

Theorem 4 Suppose conditions of Theorem 3 hold, and G7/2 = o(min1≤g≤G ng ) . Then, we have

The following Corollary implies b̂
⊤
(j)V̂

−1
(j) b̂(j)

d→ χ2
G under the null hypothesis H0 : β(1)

j = · · · = β
(G)
j = 0 

in (4).

Corollary 1 Assume Conditions of Theorem 4. Then, under the null hypothesis H0 in (4), for any significance level 
0 < α < 1 , we have

Based on this result, the corresponding chi-square test statistic for the hypothesis (4) is ‖S0j ‖22 , i.e., reject H0 
in (4) if ‖S0j ‖22 > χ2

α(G).
Next, we consider testing the homogeneity hypothesis in (3), which can be rewritten as

where D represents the (G − 1)× G matrix such that Dℓℓ = 1 and Dℓ,ℓ+1 = −1 for ℓ = 1, . . . ,G − 1 . Define

Theorem 5 shows that the test procedure for the hypothesis (3) based on ‖K j‖22 admits a χ2 approximation.

Theorem 5 Assume Conditions of Theorem 4. Then, we have

Corollary 2 Assume the conditions of Theorem 4. Then, under the null hypothesis H0 in (3), for any significance 
level 0 < α < 1 , we have

Corollary 2 implies that under H0 : β(1)
j = · · · = β

(G)
j  in (3), it holds that

Based on this result, the corresponding chi-square test statistic for the hypothesis (3) is ‖K0
j ‖22 , i.e., reject H0 in 

(3) if �K0
j �22 > χ2

α(G − 1).

Implementation
In this section we present the computational algorithm for solving (6). The algorithm for (5) can be obtained 
in a similar way. We use the proximal gradient method to solve (6). Let B̃(t) be the tth update in the proximal 
gradient method. Then the (t + 1) th update B̃(t+1) is given by

√
ng

(

b̂
(g) − β(g)

)

= − M̂
(g)

√
ng

ng
∑

i=1

ℓ̇

(

y
(g)
i ,

[

x
(g)
i

]⊤
β(g)

)

x
(g)
i +�g ,

sup
x

|P
(

�Sj�22 ≤ x
)

− P(χ2(G) ≤ x)| → 0.

lim
n→∞

P
(

�S0j �22 > χ2
α(G)

)

= α.

H0 : Dβ(j) = 0 vs H1 : not H0,

K j :=
(

DV̂ (j)D
⊤
)−1/2

D(b̂(j) − β(j))

K
0
j :=

(

DV̂ (j)D
⊤
)−1/2

Db̂(j).

sup
x

∣

∣

∣
P
(

�K j�22 ≤ x
)

− P
(

χ2(G − 1) ≤ x
)

∣

∣

∣ → 0.

lim
n→∞

P
(

�K0
j �22 > χ2

α(G − 1)
)

= α.

b̂
⊤
(j)D

⊤(DV̂ (j)D
⊤)−1

Db̂(j)
d→ χ2

G−1.

(8)

argmin
�∈Rp×G

1

n
Ln

(

B̃
(t)
)

+
〈

∇Ln(B̃
(t)
),�− B̃

(t)
〉

+ η

2
��− B̃

(t)�2F + �̃1

p
∑

j=1

��j,·�2 + �̃2

p
∑

j=1

∑

g<g ′
|�jg −�jg ′ |.
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 We set η =
∑G

g=1 �X(g)�2F/4n based on the convergence properties of the proximal gradient  method37. Note 
that ∇Ln(�) is Lipschitz continuous with Lipschitz parameter 

∑G
g=1 �X(g)�2F/(4n) . Let Ln,A(�) be the first-order 

approximation of Ln(�) at a matrix A . Then, (8) can be rewritten as

 To compute (9), we use the alternating direction method of multipliers (ADMM)38. Let H be the G by G(G − 1)/2 
matrix satisfying

By introducing surrogate variables A and F , (9) can be converted to solving the following optimization problem:

The corresponding augmented Lagrangian is

 where U  and W  represent dual variables and ρ > 0 is a fixed parameter. Let B̃(t+1,s) be the sth update in the 
ADMM to compute B̃(t+1) . Then, B̃(t+1) for t = 0, 1, 2, . . . is obtained by iterating the following updates: starting 
with A(0) = U

(0) = 0p×G and F(0) = W
(0) = 0

p× G(G−1)
2

 , we repeat for s = 1, . . . , S,

(9)argmin
�

L
n,B̃

(t) (�)+ η

2
��− B̃

(t)�2F + �̃1

p
∑

j=1

��j,·�2 + �̃2

p
∑

j=1

∑

g<g ′
|�jg −�jg ′ |.

p
∑

j=1

∑

g<g ′
|�jg −�jg ′ | = ��H�1.

(10)
min
�,A,F

L
n,B̃

(t) (�)+ η

2
��− B̃

(t)�2F + �̃1

p
∑

j=1

�Aj,·�2 + �̃2�F�1

subject to A = � and�H = F .

K (t)(�,A, F ,W ,U) :=L
n,B̃

(t) (�)+ η

2
��− B̃

(t)�2F + �̃1

p
∑

j=1

∥

∥Aj,·
∥

∥

2
+ �̃2�F�1

+ �U ,�− A� + �W ,�H − F� + ρ

2
��− A�2F + ρ

2
��H − F�2F ,

Algorithm 1.  ADMM algorithm for the fused group Lasso logistic regression in (6)
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 and B̃(t+1) is updated as B̃(t+1) = B̃
(t+1,S) , where the derivations of each update in (11) can be found in sec-

tion “ADMM update”. We set S = 50 , ρ = 1 , and the maximum iteration number T = 200 by analysis. The 
proposed ADMM algorithm is summarized in Algorithm 1. In our simulation and real data examples, it was 
observed that the algorithm achieves fast convergence. On average, it completes in less than one second, imple-
mented on an Intel Xeon (2.20 GHz). See also section “Computational time comparison”.

ADMM update
In this section, we include details of the ADMM update presented at (11).

Update for B̃(t+1,s) : For simplicity, let

 By the convexity, B̃(t+1,s) must satisfy

Thus, it holds that

where V := −∇Ln

(

B̃
(t)
)

+ ηB̃
(t) + ρA(s−1) + ρF(s−1)

H
⊤ − U

(s−1) −W
(s−1)

H
⊤.

Update for A(s) : A(s) is defined by

 which is separable with respect to j’s. For each 1 ≤ j ≤ p , let sj be the subgradient of ‖x‖2 at x = A
(s)
j.  , i.e.,

By the convexity, it holds that for 1 ≤ j ≤ p,

By the definition of sj , we obtain that for j = 1, . . . , p,

Update for F(s) : F(s) can be derived using the definition of subgradient of ℓ1 norm. For each 
(i, j) ∈ {1, . . . , p} ×

{

1, . . . , G(G−1)
2

}

 , it must hold that

where ζij is defined by

By the definition, F(s) = (F
(s)
ij )

1≤i≤p, 1≤j≤ G(G−1)
2

 is given by

(11)

B̃
(t+1,s) = argmin

�

K (t)
(

�,A(s−1), F(s−1),W (s−1),U (s−1)
)

A
(s) = argmin

A

K (t)
(

B̃
(t+1,s)

,A, F(s−1),W (s−1),U (s−1)
)

F
(s) = argmin

F

K (t)
(

B̃
(t+1,s)

,A(s), F ,W (s−1),U (s−1)
)

W
(s) = W

(s−1) + ρ

(

B̃
(t+1,s)

H − F
(s)
)

,

U
(s) = U

(s−1) + ρ

(

B̃
(t+1,s) − A

(s)
)

,

K (t,s−1)(�) := K (t)
(

�,A(s−1), F(s−1),W (s−1),U (s−1)
)

.

∂K (t,s−1)(�)

∂�
|
�=B̃

(t+1,s)= 0p×G .

B̃
(t+1,s)

(

ρHH
⊤ + (η + ρ)IG

)

= V ,

A
(s) = argmin

A

−�U (s−1),A� + ρ

2
�B̃(t+1,s) − A�2F + �̃1

p
∑

j=1

�Aj,·�2,

sj =
{

some x ∈ R
1×G with �x�2 ≤ 1 if A

(s)
j. = 0⊤G

A
(s)
j,· /�A

(s)
j,· �2 otherwise.

−ρ

(

B̃
(t+1,s)
j,· − A

(s)
j,·
)

− U
(s−1)
j,· + �̃1sj = 0⊤G .

A
(s)
j,· = max



0, 1− �̃1/ρ

�B̃(t+1,s)
j,· + U

(s−1)
j,· /ρ�2



 ·
�

B̃
(t+1,s)
j,· +

U
(s−1)
j,·
ρ

�

.

−W
(s−1)
ij − ρ

[

B̃
(t+1,s)

H − F
(s)
]

ij
+ �̃2ζij = 0,

ζij =











1 if F
(s)
ij > 0

−1 if F
(s)
ij < 0

some x with |x| ≤ 1 if F
(s)
ij = 0.
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where F̆(s)ij =
[

B̃
(t+1,s)

H

]

ij
+ W

(s−1)
ij

ρ
.

Simulation study
In this section, we present empirical results through simulation analysis. A main objective of the simulation 
analysis is to investigate the finite sample performance of the proposed method (Debiased Fused Group Lasso; 
DFGL) in testing the following hypotheses:

 To investigate the advantages of the proposed tests over existing ℓ1 penalized approaches that do not use a fusion 
penalty, we compared the proposed method with the following methods:

• DL (Debiased Lasso) : Chi-squared test based on applying debiased  Lasso17 separately for each subpopulation
• DL-B: Bonferroni correction using p-values obtained by applying debiased  Lasso17 separately for each sub-

population
• DL-E (Debiased Lasso based on the Exact inverse of the information matrix): Chi-squared test based on 

applying debiased  Lasso36 separately for each subpopulation, where this bias-correction method is developed 
for the scenario where the sample size is greater than the number of regressors

• DL-E-B: Bonferroni correction using p-values obtained by applying debiased  Lasso36 separately for each 
subpopulation

We also compared the proposed method with DR-B, Bonferroni correction based on debiased  Ridge39. R code 
(https:// github. com/ luxia- bios/ Debia sedLa ssoGL Ms) was used to implement DL-E, and R package hdi40 was used 
to implement DL and DR-B. We also used R code (https:// web. stanf ord. edu/ ~monta nar/ ssLas so/) to solve the 
quadratic programming (7). Following Javanmard and  Montanari19, we set µg in (7) as µg = c

√

log p/ng  for some 
positive constant c. Specifically, we set c = 0.7 based on the results of the sensitivity analysis of c summarized 
in the Supplementary material. 5-fold cross-validation was used to determine the regularization parameters for 
the proposed penalization method.

Simulation setting
In our simulation study, we fix G = 7 and simulate x(g)i  for all (g, i) from the p-dimensional multivariate nor-
mal distribution with mean 0p and covariance matrix �x . Specifically, we consider the following two different 
covariance matrices: (1) AR(1): [�x]ij = 0.5|i−j| ; or (2) Block: �x is a p× p block diagonal matrix consist-
ing of p/4 identical blocks, where the 4× 4 sub-block matrix, denoted by �b , is a Toeplitz matrix such that 
[�b]ij = 0.5|i−j| , i = 1, . . . , 4; j = 1, . . . , 4 . Then, the response variables are generated independently as follows: 
for 1 ≤ g ≤ G, 1 ≤ i ≤ ng,

where β(j) =
(

β
(1)
j , . . . ,β

(G)
j

)⊤
∈ R

G is set as

We set n1 = · · · = nG = m and consider the following two specifications of (m, p): (m, p) = (200, 80) or 
(m, p) = (300, 120) . For each case, we simulate M = 100 Monte Carlo samples and summarize the results over 
100 replications.

F
(s)
ij =



















�

B̃
(t+1,s)

H

�

ij
+ W

(s−1)
ij

ρ
− �̃2

ρ
if F̆

(s)
ij > �̃2

ρ

[B̃(t+1,s)
H]ij +

W
(s−1)
ij

ρ
+ �̃2

ρ
if F̆

(s)
ij < −�̃2

ρ

0 otherwise

(13)H0 : β(1)
j = · · · = β

(G)
j = 0 vs H1 : not H0,

(14)H0 : β(1)
j = · · · = β

(G)
j vs H1 : not H0.

y
(g)
i ∼ Bernoulli

(

exp([x(g)i ]⊤β(g))

1+ exp([x(g)i ]⊤β(g))

)

,

β(j) :=































































(− 0.6,− 0.6, 0.6, 0.6, 0.6, 0.6, 0.6) j = 1
(0.6, 0.6,− 0.6,− 0.6, 0.6, 0.6, 0.6) j = 2
(0.6, 0.6, 0.6, 0.6,− 0.4,− 0.4, 0.6) j = 3
(− 0.4, 0.6, 0.6, 0.6, 0.6, 0.6,− 0.4) j = 4
(0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4) j = 5
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) j = 6, 7
− (0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4) j = 8
(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5) j = 9, 10
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) j = 11
(2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5) j = 12
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) otherwise

.

https://github.com/luxia-bios/DebiasedLassoGLMs
https://web.stanford.edu/%7emontanar/ssLasso/
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Simulation results
First, we present simulation results when testing for homogeneity (14). Next, we present simulation results when 
testing for overall significance (13).

Testing homogeneity
We consider j = 1, 2, 3, 4 and j = 5, 8, 9, 10, 12 to measure powers and type I errors, respectively. Tables 1 and 
2 record the powers and type I errors of different methods when the significance level α is set to α = 0.05 . As 
shown in Table 1, DFGL outperforms the other approaches in terms of higher power. DL ranks second in terms 
of higher power in most cases, but fails to control Type I errors when the covariates of interest have strong sig-
nals. Competing approaches based on a debiased Lasso using the exact inverse of the information matrix also 
produce type I errors higher than the nominal level when the covariate with the strongest signal is considered. In 
contrast to the despecified Lasso-based chi-squared test procedures, our proposed DFGL and other Bonferroni-
corrected test procedures, including the Ridge-based DR-B, yield type I errors less than or close to the nominal 
level α = 0.05 , but these Bonferroni-corrected tests are conservative, as shown in Table 1. Note that the Ridge-
based approaches are known to be conservative in various  contexts19,41.

Testing significance
In this subsection, we examine the performance of the proposed significance test. We consider 
j = 1, 2, 3, 4, 5, 8, 9, 10, 12 to measure power, while we consider j = 6, 7, 11, 15, 20 to measure type I error. 
Tables S5 and S6 in the Supplementary materials report the performance of each method in terms of power and 
Type I error, respectively, when α = 0.05 . The proposed method generally has higher power compared to the 
competing approaches. In particular, the proposed method is superior to the competing approaches in terms 
of higher power when the covariates of interest have relatively weak signals. This result was also observed in a 
previous  study41, which investigated debiased group Lasso for linear regression. When sample sizes are set as 
n1 = . . . = nG = 300 , DL and the proposed DFGL sometimes provide similar power. However, DL fails to con-
trol Type I errors when the covariate of interest is correlated with covariates with strong signals. The proposed 
DFGL and the other methods, except DL, have type I errors less than or close to the significance level in all cases 
considered, but the other methods are conservative.

Multiple testing
We evaluate the empirical performance of the proposed testing procedures in the context of multiple testing. We 
consider the following two multiple testing problems, (15) and (16), respectively:

(15)H0,j : β
(1)
j = . . . = β

(G)
j vs H1 : notH0,j , j = 1, . . . , p

(16)H0,j : β
(1)
j = · · · = β

(G)
j = 0 vs H1 : not H0,j , j = 1, . . . , p.

Table 1.  Power for testing H0 : β
(1)
j = · · · = β

(G)
j  vs H1 : not H0 at α = 0.05 , where n1, . . . , nG are set as 

n1 = · · · = nG = m.

(m, p) j ming β
(g)

j
maxg β

(g)

j

Methods

DFGL DL DL-E DR-B DL-B DL-E-B

AR(1)

 (200, 80)

1 −0.6 0.6 0.93 0.84 0.54 0.00 0.00 0.00

2 − 0.6 0.6 0.87 0.76 0.33 0.00 0.00 0.00

3 − 0.4 0.6 0.62 0.44 0.21 0.00 0.00 0.00

4 − 0.4 0.6 0.76 0.54 0.22 0.00 0.00 0.00

 (300, 120)

1 − 0.6 0.6 1.00 0.97 0.78 0.00 0.00 0.00

2 − 0.6 0.6 0.97 0.93 0.61 0.00 0.00 0.00

3 − 0.4 0.6 0.90 0.75 0.44 0.00 0.00 0.00

4 − 0.4 0.6 0.88 0.87 0.48 0.00 0.00 0.00

Block

 (200, 80)

1 − 0.6 0.6 0.95 0.84 0.57 0.00 0.02 0.01

2 − 0.6 0.6 0.82 0.60 0.38 0.00 0.00 0.00

3 − 0.4 0.6 0.66 0.44 0.20 0.00 0.00 0.00

4 − 0.4 0.6 0.79 0.63 0.31 0.00 0.00 0.00

 (300, 120)

1 − 0.6 0.6 1.00 0.97 0.76 0.00 0.00 0.00

2 − 0.6 0.6 0.99 0.91 0.61 0.00 0.00 0.00

3 − 0.4 0.6 0.88 0.78 0.40 0.00 0.00 0.00

4 − 0.4 0.6 0.97 0.91 0.57 0.00 0.01 0.00
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To control the familywise error rate (FWER), we adjust p-values using the Bonferroni-Holm (BH)  procedure42. 
We also apply the BH procedure to p-values from DL and those from DL-E. We don’t consider methods using 
Bonefrroni-correction, i.e., DL-B, DL-E-B, and DR-B, for multiple testing. This is because they are too conserva-
tive, as observed in sections “Testing homogeneity” and “Testing significance”.

When considering multiple testing for significance (16), we measure FWER and power as follows:

• FWER: The percentage of the cases where H0,j is rejected for some j ∈ Sc,
• Power: Average of the empirical power 

∑

j∈S I
(

H0,j is rejected
)

/s,

where S = {j : H0,j is false } with cardinality s = |S|. Power and FWER are measured in the same way when 
considering homogeneity tests. Table 3 summarizes the results. The proposed DFGL has the highest power in 
all cases, while providing FWER below the nominal level α = 0.05 . Among the competing methods, DL has 
incorrect control of FWER when considering the homogeneity test (15) and DL-E has poor power, especially 
when considering the homogeneity test (15).

Table 2.  Type I error for testing H0 : β
(1)
j = · · · = β

(G)
j  vs H1 : not H0 at α = 0.05 , where n1, . . . , nG are set as 

n1 = · · · = nG = m.

(m, p) j ming β
(g)

j
maxg β

(g)

j

Methods

DFGL DL DL-E DR-B DL-B DL-E-B

AR(1)

 (200, 80)

5 0.4 0.4 0.01 0.02 0.00 0.00 0.00 0.00

8 − 0.4 − 0.4 0.01 0.03 0.01 0.00 0.00 0.00

9 1.5 1.5 0.02 0.21 0.05 0.00 0.00 0.00

10 1.5 1.5 0.05 0.16 0.04 0.00 0.00 0.00

12 2.5 2.5 0.04 0.35 0.12 0.00 0.00 0.00

 (300, 120)

5 0.4 0.4 0.04 0.02 0.02 0.00 0.00 0.00

8 − 0.4 − 0.4 0.02 0.02 0.00 0.00 0.00 0.00

9 1.5 1.5 0.03 0.11 0.05 0.00 0.00 0.00

10 1.5 1.5 0.02 0.09 0.08 0.00 0.00 0.00

12 2.5 2.5 0.00 0.22 0.14 0.00 0.00 0.00

Block

 (200, 80)

5 0.4 0.4 0.04 0.03 0.02 0.00 0.00 0.00

8 − 0.4 − 0.4 0.02 0.01 0.00 0.00 0.00 0.00

9 1.5 1.5 0.05 0.28 0.15 0.00 0.01 0.00

10 1.5 1.5 0.04 0.15 0.04 0.00 0.00 0.00

12 2.5 2.5 0.05 0.36 0.21 0.00 0.01 0.01

 (300, 120)

5 0.4 0.4 0.01 0.00 0.00 0.00 0.00 0.00

8 − 0.4 − 0.4 0.03 0.02 0.00 0.00 0.00 0.00

9 1.5 1.5 0.02 0.26 0.14 0.00 0.00 0.00

10 1.5 1.5 0.02 0.15 0.07 0.00 0.00 0.00

12 2.5 2.5 0.03 0.33 0.19 0.00 0.01 0.00

Table 3.  Performances of multiple testing at α = 0.05 , where n1, . . . , nG are set as n1 = · · · = nG = m.

Testing Covariate m p

Power FWER

DFGL DL DL-E DFGL DL DL-E

Homogeneity

AR(1)
200 80 0.408 (0.253) 0.170 (0.197) 0.015 (0.069) 0.000 0.190 0.000

300 120 0.618 (0.229) 0.358 (0.208) 0.120 (0.172) 0.000 0.060 0.020

Block
200 80 0.395 (0.291) 0.178 (0.231) 0.045 (0.097) 0.000 0.140 0.000

300 120 0.690 (0.236) 0.380 (0.245) 0.085 (0.139) 0.010 0.140 0.000

Significance

AR(1)
200 80 0.649 (0.131) 0.518 (0.104) 0.352 (0.048) 0.000 0.030 0.000

300 120 0.791 (0.092) 0.684 (0.090) 0.428 (0.088) 0.000 0.010 0.000

Block
200 80 0.690 (0.141) 0.501 (0.110) 0.377 (0.067) 0.010 0.030 0.000

300 120 0.841 (0.110) 0.677 (0.116) 0.421 (0.085) 0.010 0.020 0.000
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Simultation study for an imbalanced design
In this section, we perform a simulation analysis to assess the performance of DFGL when the sample sizes for 
the groups vary. Specifically, we consider the following model parameters: G = 3 , p = 300 , n1 = 90 , n2 = 70 , 
and n3 = 40 , reflecting the dimension of a subset of the CCLE data analyzed in section “Application to the CCLE 
data”. For each group, we simulate the covariates x(g)i  from p-dimensional multivariate normal distribution with 
mean 0p and covariance matrix �x where [�x]ij = 0.5|i−j| . We set s = |S| = 6 where S = {j : �β(j)�2 > 0} and 
randomly draw elements of S from {1, . . . , p} . As a result, we obtained S = {85, 129, 167, 187, 211, 270} , and we 
set β(j) = (β

(1)
j , · · · ,β(G)

j )⊤ ∈ R
G as follows:

Due to the relatively small sample sizes ( n1 = 90 , n2 = 70 , and n3 = 40 ), we consider DPL (Debiased Pooled-
Lasso) as an additional competing approach. DPL refers to a chi-squared test based on applying bias  correction17 
to Pooled-Lasso, which adapts to Lasso to analyze samples from different groups together, i.e., {y,X} . Here, 
y =

[

(y(1))⊤, . . . , (y(G))⊤
]⊤ , and X = diag

(

X(1), . . . ,X(G)
)

 represents a block diagonal matrix consisting of 
X(1), . . . ,X(G) . Note that DL-E can’t be used in this simulation analysis because p > ng for g = 1, 2, 3.

Testing homogeneity
We consider j = 167, 187, 211, 270 and j = 1, 2, 3, 85, 129 to measure powers and type I errors, respectively. 
Tables 4 and 5 show the powers and type I errors of different methods when α = 0.05 . DFGL outperforms the 
other methods in terms of higher power. In addition, DFGL successfully controls Type I errors; however, Lasso-
based methods, including DL, DPL, and DL-B, produce Type I errors higher than the significance level when 
testing the null hypothesis H0 : β(1)

129 = β
(2)
129 = β

(3)
129 where β(1)

129 = β
(2)
129 = β

(3)
129 = 2.

Testing signficance
We consider j = 85, 129, 167, 187, 211, 270 and j = 1, 2, 3 to measure powers and type I errors, respectively. 
Tables 6 and 7 show the powers and type I errors of different methods when α = 0.05 . While all methods produce 
type I errors close to or below the significance level, DFGL has higher powers compared to all other methods.

The observed higher power of DFGL in testing for significance and homogeneity compared to Lasso-based 
approaches is attributed to the fused group Lasso regularization. This regularization method allows for increasing 
sample sizes in regression parameter estimation by combining subpopulations, leading to more accurate statistical 
inference. These results suggest the effectiveness of our DFGL in analyzing data characterized by limited sample 
sizes for groups, such as the CCLE data.

β(j) :=































(1.5, 1.5, 1.5) j = 85
(2.0, 2.0, 2.0) j = 129
(1.0, 1.0,−1.0) j = 167
(−1.0, 1.0, 1.0) j = 187
(0.8, 0.8,−0.8) j = 211
(0.8,−0.8, 0.8) j = 270
(0.0, 0.0, 0.0) otherwise

.

Table 4.  Power for testing H0 : β
(1)
j = · · · = β

(G)
j  vs H1 : not H0 at α = 0.05.

j ming β
(g)

j
maxg β

(g)

j

Methods

DFGL DL DPL DR-B DL-B

167 − 1.0 1.0 0.56 0.32 0.33 0.07 0.30

187 − 1.0 1.0 0.77 0.53 0.54 0.11 0.54

211 − 0.8 0.8 0.26 0.18 0.13 0.00 0.18

270 − 0.8 0.8 0.42 0.24 0.28 0.02 0.22

Table 5.  Type I error for testing H0 : β
(1)
j = · · · = β

(G)
j  vs H1 : not H0 at α = 0.05.

j ming β
(g)

j
maxg β

(g)

j

Methods

DFGL DL DPL DR-B DL-B

1 0.0 0.0 0.03 0.03 0.04 0.00 0.02

2 0.0 0.0 0.02 0.01 0.00 0.00 0.00

3 0.0 0.0 0.00 0.00 0.00 0.00 0.01

85 1.5 1.5 0.02 0.04 0.02 0.00 0.04

129 2.0 2.0 0.04 0.09 0.09 0.00 0.10
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Multiple testing
In this section, we consider the two multiple testing problems (15) and (16), respectively. As in section Multiple 
testing, we use the BH procedure to control the familywise error rate. In this analysis, we don’t consider DR-B 
because it is conservative as observed in sections “Testing homogeneity” and “Testing signficance”. Table 8 sum-
marizes the results at the α = 0.05 significance level. Despite the limited sample size, which results in relatively 
low power, especially when testing for homogeneity, DFGL outperforms other methods in terms of higher power. 
All methods provide FWER below the nominal level α = 0.05.

Computational time comparison
In this subsection, we discuss the computational cost of computing the DFGL estimate and compare it with the 
costs of computing three estimates used in DL, DL-E, and DR-B. To compute Lasso or Ridge penalized estimate, 
we use R package glmnet. For the penalty parameters, we consider 100 candidates for (�1, �2) for DFGL, and 
100 candidates for the penalty parameter for DL, DL-E, and DR-B. The penalty parameters are determined 
using 5-fold Cross-Validation in all methods. Parallel computing is employed to compute estimates for each 
subpopulation separately in DL and DL-E.

In order to assess computational efficiency, we examine a simulation scenario with the AR(1) covariance 
matrix for the covariates, n1 = · · · = nG = 200 , and p = 80 . Table 9 presents the computational times required 
to compute four estimates, determined from 100 Monte Carlo simulations and executed on an Intel Xeon (2.20 
GHz) processor, are presented in Table 9. A noteworthy observation from Table 9 is that while the DFGL imple-
mentation requires slightly more time in comparison to the other methods, it remains significantly expeditious. 
This can be explained by the fact that DFGL involves addressing a more intricate large-scale problem, entailing a 
combined penalty of both group Lasso and fusion-type components, whereas the other methods involve simpler 
Lasso or Ridge techniques entailing a single penalty.

Application to the CCLE data
The dataset
In this section, we present real data analyses when our method is applied to the CCLE data. The CCLE data con-
tains information on cancer treatment responses for 24 drugs on 504 cancer cell lines of 23 cancer types, where 
the transcription profile of each cell line is characterized by the measured expression levels of 19,177 probes. 
Cancer cell lines are widely used to understand cancer biology and test the efficacy of novel  therapies43, and are 
also used to identify predictive biomarkers for anticancer drug  sensitivity13,44. We consider three cancer types that 
include at least 30 cancer cell lines: Lymphoid, Lung, and Skin in our CCLE data analysis. Our main objective is 
to check whether a specific gene is significant to binary drug response in at least one of these cancer types, and 
whether such significant genes have heterogeneous effects on a drug across the cancer types. Analyses similar to 
ours could be useful in two ways. First, examining the significance of the effects of a gene across different cancer 
types may lead to the identification of potential gene expression markers of drug response that can be used for 
multiple cancer types. Such versatile gene expression markers are valuable in  research16. Second, studying the 
heterogeneity of a gene’s effects across cancer types can provide insights into understanding differences in drug 
sensitivity across cancer types.

Following Park et al.45, we classify cancer cell lines into two categories for each drug. If a drug response value 
(IC50) is less than 0.5, then the cancer cell line is assigned to the “sensitive” category; otherwise, it is assigned 
to the “resistant” category. Then, most cancer cell lines are either sensitive or resistant to most drugs in some of 

Table 6.  Power for testing H0 : β
(1)
j = · · · = β

(G)
j  vs H1 : not H0 at α = 0.05.

j ming β
(g)

j
maxg β

(g)

j

Methods

DFGL DL DPL DR-B DL-B

85 1.5 1.5 0.99 0.92 0.91 0.64 0.90

129 2.0 2.0 1.00 1.00 1.00 0.97 1.00

167 − 1.0 1.0 0.67 0.43 0.47 0.14 0.37

187 − 1.0 1.0 0.71 0.47 0.46 0.09 0.42

211 − 0.8 0.8 0.41 0.30 0.23 0.05 0.22

270 − 0.8 0.8 0.39 0.26 0.26 0.04 0.25

Table 7.  Type I error for testing H0 : β
(1)
j = · · · = β

(G)
j  vs H1 : not H0 at α = 0.05.

j ming β
(g)

j
maxg β

(g)

j

Methods

DFGL DL DPL DR-B DL-B

1 0.0 0.0 0.04 0.04 0.03 0.00 0.02

2 0.0 0.0 0.02 0.01 0.00 0.00 0.00

3 0.0 0.0 0.01 0.02 0.01 0.00 0.03
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the three cancer types. For example, all lymphoid cancer cell lines are resistant to Erlotinib, and only one of the 
lung cancer cell lines is sensitive to Panobinostat. After removing these imbalanced drugs in our analysis, we 
consider the following five drugs: 17-AAG, AZD6244, Irinotecan, PD-0325901, and Topotecan. Table 10 presents 
the number of sensitive cell lines for each of these five drugs.

The analysis of ultra-high-dimensional (UHD) data, such as CCLE data analysis, is accompanied by several 
challenges, including high collinearity, spurious correlation, noise accumulation, and a significant computational 
burden. To alleviate these difficulties inherent in UHD data, it is desirable to reduce the dimensionality of the 
feature  space46,47. Similar to sure independence  screening46, we removed relatively irrelevant genes to each drug, 
respectively, before fitting models. The gene screening procedure is as follows: 

1. We selected the top 3,000 genes with the largest sample variances.
2. For j = 1, . . . , 3000 , we applied logistic regression using each gene and two dummy variables indicating 

cancer types.
3. We selected the top 300 genes with the smallest p-values for the significance test.

These screening procedures have been used in the literature on high-dimensional regressions (e.g. Park et al.48, 
Wang et al.49, Li et al.45).

While we analyze a set of p = 300 genes obtained from the screening procedure described above, the number 
of genes still exceeds the sample sizes for the cancer types. As a result, standard maximum likelihood estima-
tion couldn’t be used for statistical inference in a model containing the p = 300 genes. Lasso-based approaches, 
including debiased  Lasso17, which do not incorporate a fusion penalty, can be considered to test for heterogeneity 
or significance of a gene’s effects. However, it is worth noting that approaches based on lasso penalization may 
yield inaccurate results when applied to data characterized by limited sample sizes, as in the case of our CCLE 
dataset. This limitation was demonstrated in our simulation study in section “Simultation study for an imbal-
anced design”. To achieve more accurate statistical inference, we use our DFGL based on a fusion penalty that 
combines subpopulations.

Results
First, we identify important genes using the proposed penalized estimation (5). Figure 1 shows the estimated 
cancer-specific coefficients for selected genes. We can see that for each drug, the penalized estimates of the coef-
ficients for most genes are similar for at least two of the three cancer types. Next, we apply the proposed simulta-
neous significance test to investigate whether the genes detected through the penalization have significant effects 
on the drug when the effects of the other genes are adjusted. Figure 2 shows the debiased estimates corresponding 
to genes identified by the proposed significance test at the significance level α = 0.05 . Comparing Figs. 1 and 2, 
we found that most genes selected by the penalization are also significant at the significance level 0.05. However, 

Table 8.  Performances of multiple testing at α = 0.05.

Testing

Power FWER

DFGL DL DPL DL-B DFGL DL DPL DL-B

Homogeneity 0.120 (0.161) 0.020 (0.068) 0.015 (0.060) 0.025 (0.075) 0.040 0.000 0.000 0.000

Significance 0.408 (0.119) 0.227 (0.096) 0.227 (0.099) 0.133 (0.085) 0.010 0.010 0.000 0.010

Table 9.  Average computational times (in seconds) for implementing estimates.

DFGL DL DL-E DR-B

59.58 (0.30) 23.13 (0.63) 1.89 (0.19) 16.98 (1.46)

Table 10.  The number of sensitive cell lines for each drug across cancer types.

Drug

Cancer type

Lung Lymphoid Skin

Sensitive Resistance Sensitive Resistance Sensitive Resistance

17-AAG 20 70 20 48 9 30

AZD6244 84 5 56 12 18 21

Irinotecan 4 46 15 30 12 18

PD-0325901 74 16 52 16 10 29

Topotecan 55 35 8 60 21 18
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Figure 1.  Heatmaps for fused group Lasso estimates β̂(g)
j  . Genes with estimated regression coefficients of 0’s are 

omitted when drawing the heatmap. The heatmap was created using the ggplot2  package50 (version 3.4.3; https:// 
cran.r- proje ct. org/ web/ packa ges/ ggplo t2/ index. html) in R  software51 (version 4.2.2 for Windows; https:// cran.r- 
proje ct. org/ bin/ windo ws/ base/ old/).

Figure 2.  Heatmaps for debiased estimates ˆb(g)j  . Genes with p-value for the simultaneous significance test 
greater than 0.05 were omitted when drawing the heatmap. The heatmap was created using the ggplot2 
 package50 (version 3.4.3; https:// cran.r- proje ct. org/ web/ packa ges/ ggplo t2/ index. html) in R  software51 (version 
4.2.2 for Windows; https:// cran.r- proje ct. org/ bin/ windo ws/ base/ old/).

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/bin/windows/base/old/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/bin/windows/base/old/
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some genes that were not detected by the penalization were found to be significant for those drugs. Such genes 
seem to have a significant effect in some of the cancer types or have weak signals across cancer types, as shown 
in Fig. 2. For example, the absolute value of the estimated effect of BASP1 on PD-0325901 is approximately 0.25 
in the skin cancer and less than 0.04 in the other cancer types.

We also use DL, DL-B, and DR-B for comparison with DFGL. In the simulation in section “Simultation study 
for an imbalanced design”, DPL shows similar performance to DL, so we do not consider DPL in the analysis. 
Note that DL-E can not be used in this analysis because the number of genes is larger than the sample sizes for 
the cancer types. Figure 3 compares the results of these methods in terms of testing significance for specific genes. 
We observe that DR-B seems to be too conservative, as observed in our simulation analysis. However, both the 
Lasso-based approaches and our method identify some common genes. For example, as shown in Fig. 3, all 
methods except for DR-B indicate the significance of the effects of SLFN11 on Irinotecan and Topotecan across 
cancer types. SLFN11 was previously identified as relevant to Irinotecan and Topotecan when a penalized mixture 
regression was applied to the CCLE  data5.

When performing a sensitivity analysis based on Bootstrap in section S4.4 in the Supplementary materi-
als, we observe that the following drug-gene pairs are relatively frequently identified by our significance test: 
SLFN11-Topotecan, SLFN11-Irinotecan, NQO1-17AAG, SIRPA-AZD6244, and ETV4-PD-0325901. These 
results demonstrate the significance of SLFN11 for Topotecan and Irinotecan. Notably, the remaining three 
gene-drug pairs were not detected by Lasso-based approaches at α = 0.05 , as shown in Fig. 3. However, NQO1 
was identified as an important gene for 17-AAG in the previous analyses of CCLE  data5,52, and ETV4 was also 
identified as a related gene to PD-0325901 in the CCLE data analysis performed by Liang et al.52. In addition, 
expression of ETV4, detected as a significant gene expression to PD-0325901, might modulate sensitivity to a 
MEK inhibitor  trametinib53. Hayashi et al.54 discovered that activation of MEK was induced by ligation of SIRPβ , 
while SIRPα (SIRPA) is significant to AZD6244. Despite the empirical evidence supporting our significant test 
results, the gene-drug pairs NQO1-17AAG, ETV4-PD-0325901, and SIPRα-AZD6244 were not identified by 
any of the other significance tests at α = 0.05 . These results suggest that DFGL may provide more accurate 
results for the significance of the association between a gene and a drug by combining different cancer types, 
as opposed to approaches based on Lasso or Ridge. Furthermore, as shown in Fig. 2, we expect the associations 
SIRPA-AZD6244 and ETV4-PD-0325901 to be relatively weak in specific cancer types. The relatively weak 
effects of SIPRA and ETV4 may result in Lasso-based approaches failing to detect them at the 0.05 significance 
level. This observation is consistent with our simulation results presented in section “Simultation study for an 
imbalanced design”, which indicate that Lasso-based approaches have lower power compared to our approach, 
especially when testing the significance of effects for covariates with relatively weak signals in simulated data 
with small sample sizes.

Our equivalence test shows different results for different cancer types, as summarized in Table 11, i.e., some 
genes have heterogeneous coefficients depending on the cancer type at the significance level α = 0.05 . The 
estimated effect of SLFN11 on Topotecan is relatively large in lung cancer cell lines compared to other cancer 
types. The p-value for the equivalence test corresponding to SLFN11 was less than 0.05 when Topoptecan was 
considered. However, we note that other methods suggest a lack of significance for the heterogeneity of the 
effects of SLFN11 on Topotecan at the α = 0.05 significance level. Further investigation is needed to determine 

Figure 3.  The results of testing significance for some selective genes. The heatmap was created using the ggplot2 
 package50 (version 3.4.4; https:// cran.r- proje ct. org/ web/ packa ges/ ggplo t2/ index. html) in R  software51 (version 
4.3.1 for Windows; https:// cran.r- proje ct. org/ bin/ windo ws/ base/ old/)..

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/bin/windows/base/old/
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whether SLFN11 has heterogeneous effects on the response to Topotecan in patients with different cancer types. 
However, in the sensitivity analysis based on Bootstrap in Section S4.4 in the Supplementary materials, the 
association between SLFN11 and Topotecan appears to be the most significant among all gene-drug pairs in 
terms of heterogeneous effects across cancer types. In addition, in the previous analysis of CCLE  data5, a penal-
ized mixture regression suggested that the effects of SLFN11 are different between some of the clusters. These 
results suggest that our method may uncover underlying heterogeneous effects of a gene across cancer types 
that are difficult to capture using Lasso or Ridge-based methods. We observed that some genes identified by 
the homogeneity test have positive estimated coefficients in specific cancer types. For Topotecan, the estimated 
effect of gene MAOA is only positive in skin cancer cell lines. Low expression of MAOA has been observed in 
melanoma skin cancer compared with normal  samples55, but high expression of MAOA has been observed in 
lung cancer  tissues56 and  lymphoma57.

Conclusion
In this paper, we propose two different tests: (1) testing the homogeneity of the effects of the covariate across dif-
ferent groups and (2) testing the significance of the covariate over groups. We develop non-asymptotic analyses 
for the proposed fused group Lasso and prove that the debiased test statistics admit chi-squared approximations 
even in the presence of high dimensional variables. The proposed tests generally outperform the existing bias-
correction methods based on  Lasso17,36 or  Ridge39 in that it proves higher power, while it controls type I error 
quite well as shown in section “Simulation study”. Through CCLE data analysis, we can observe that the proposed 
method can make significant scientific discoveries.

From a methodological point of view, there are some extensions to our method. First, our tests can be applied 
to generalized linear models, including linear regression and the Poisson regression model, although we focus 
on logistic regression. In addition, our theoretical analyses can be extended to the generalized linear regression 
(GLM) setting. Second, we expect that the performance of the proposed tests can be improved by simultaneously 
estimating the inverse of the information matrices across subpopulations, as in the joint estimation of precision 
 matrices58,59.

From the perspective of CCLE data analysis, there are several interesting directions for future research. 
Although our primary focus in CCLE data analysis was on the use of gene expression, which is known to be 
predictive of drug  response60, other omics features such as DNA copy number are available in the analysis of CCL 
data. It is of great interest to investigate which omics data are most predictive of drug response in a specific cancer 
type, or have heterogeneous effects on drug response across cancer types. Given the different characteristics of 
different types of omics data, it is expected that our method may have some limitations in the analysis of multi-
omics data. Therefore, a sophisticated extension of our method in estimation and construction of test statistics 
will be needed for the analysis of multi-omics data. In CCLE data, there are cell lines with missing responses 
to a drug. Therefore, an extension of our method to include cell lines with missing drug responses would be 
beneficial for the analysis of CCLE data.

Data availability
All data generated or analyzed during this study are included in supplementary information files.
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