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Development of a distributed 
nonlinear Muskingum model 
by considering snowmelt effects 
for flood routing in the Red River
Vida Atashi 1*, Reza Barati 2 & Yeo Howe Lim 3

This research paper presents the development of a nonlinear Muskingum model which achieves 
precise flood routing through river reaches while considering lateral inflow conditions. Fourteen pairs 
of flood hydrograph found at two specific United States Geological Survey (USGS) stations located 
along the Red River of the North, namely Grand Forks and Drayton, are used for the calibrations and 
validations of the Muskingum model. To enhance the accuracy of the procedure, a reach is divided 
into multiple sub-reaches, and the Muskingum model calculations are performed individually for 
each interval using the distributed Muskingum method. Notably, the model development process 
incorporates the use of the Salp Swarm algorithm. The obtained results demonstrate the effectiveness 
of the developed nonlinear Muskingum model in accurately routing floods through the very gentle 
river with a bed slope of (0.0002–0.0003). The events were categorized into three groups based on 
their dominant drivers: Group A (Snowmelt-driven floods), Group B (Rain-on-snow-induced floods), 
and Group C (Mixed floods influenced by both snowmelt and rainfall). For the sub-reaches in Group 
A, single sub-reach (NR = 1), the Performance Evaluation Criteria (PEC) yielded the highest value 
for SSE, amounting to 404.9 ×  106. In Group B, when NR = 2, PEC results the highest value were 
SSE = 730.2 ×  106. The number of sub-reaches in a model has a significant influence on parameter 
estimates and model performance, as demonstrated by the analysis of hydrologic parameters and 
performance evaluation criteria. Optimal performance varied across case studies, emphasizing the 
importance of selecting the appropriate number of sub-reaches for peak discharge predictions.

Flood routing is a process of simulating the movement of water in a river or stream system during a flood 
event using mathematical models. The goal of flood routing is to predict the behavior of the water as it moves 
through the system, including the peak flow, the timing of the peak flow, and the overall duration of the flood. 
There are two basic approaches to routing flood waves in natural channels: hydrologic (lumped) and hydraulic 
routing. Hydrologic (lumped) routing is a simplified approach that treats the entire river or stream system as a 
single unit. This approach relies on the storage continuity equation, which states that the change in storage in a 
system is equal to the difference between the inflow and outflow. Hydraulic routing is a more complex approach 
that considers the physical characteristics of the river or stream system, such as the channel geometry, the 
roughness of the bed, and the presence of any structures. Hydrologic routing is typically used for flood forecasting 
and planning, while hydraulic routing is more commonly used for the design and operation of flood control 
 structures1,2. The Muskingum model is a widely accepted hydrologic routing model due to its adequate levels of 
accuracy and the reliable relationships between its parameters and channel properties.

Muskingum model
The Muskingum method is founded on the fundamental principles of mass and momentum conservation, 
positing that the discharge at a given point in the river can be derived by subtracting the outflow from the  inflow3. 
This model uses a linear reservoir approach to model the river channel characterized by two parameters, namely, 
the wave travel time (K) and the reach weighting factor (x).
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The travel time (K) is the time required for the water to travel through the reach, which is dependent on the 
channel geometry, roughness, and other hydraulic characteristics. The reach weighting factor (x) is the proportion 
of the discharge that enters the reach from the upstream section, which is also known as the weighting coefficient. 
These parameters can be determined using various techniques, including trial and error, optimization algorithms, 
and regression analysis. The Muskingum model can be represented mathematically as  follows4:

where O is the discharge at the downstream end of the reach  (m3/s), and I is the discharge at the upstream end 
of the reach  (m3/s). x is the weighting factor for the reach (ranges between 0 and 0.5 for reservoir storage and 
between 0 and 0.3 for stream  channels5), K is the travel time for the reach(s), and S is the storage volumes of the 
reach  (m3). By combining Eq. (1) with the continuity equation an explicit equation can be obtained to calculate 
the outflow at the next time step:

The subscripts 1 and 2 on I and O represent the values at time t1 and t2 respectively. C0, C1, and C2 are the 
coefficients.

The traditional linear Muskingum model seeks a method of parameter estimation to determine the values 
of K and x. However, the linear Muskingum model leads to considerable inaccuracy in the forecast of flood 
behavior throughout its propagation along a river because natural channel reaches often have a nonlinear storage-
discharge connection. To address this limitation, models such as the Muskingum model have been modified to 
account for the nonlinearity of flow movement processes.  Gill6 introduced a nonlinear storage equation using 
the exponent of the Muskingum storage equation as the third parameter, and later models such as the Nonlinear 
Muskingum model (NLMM) have been developed to include lateral inflows and better simulate the nonlinear 
processes of flood movements in rivers. As stated by Perumal et al.7 there exists no “truly physically based” flood 
routing model which does not require any calibration. Although the roughness factor is a property of the natural 
conditions, it is considered as a model tuning parameter in the routing process of Muskingum–Cunge  models8,9.

Furthermore, as pointed out by Koussis, nonlinear routing models like the nonlinear Muskingum model 
possess an advantage in their ability to accurately replicate the rapid surge of a flood wave, a task that linear 
models often struggle  with10,11. It should be noted that the Muskingum–Cunge is not a “linear model”. However, 
it is a “time-variant linear model”, which means that it is “locally linear” in time, but the overall behavior is 
nonlinear. Every flood routing model necessitates specific input parameters and data. In some river segments, 
all the required inputs are readily available, and the choice of a model can be based on personal expertise and 
computational capacity. When there are no constraints on these factors, the use of a dynamic wave model is the 
most suitable option. For the Muskingum–Cunge model, essential input parameters include initial conditions, 
upstream boundary conditions, Manning’s roughness coefficient, length of the routing reach, river cross-sections, 
and the bed  slope12, while nonlinear Muskingum model requires the initial condition, upstream boundary 
condition and the hydrologic parameters. One of the important motivations of the authors is to suggest alternative 
hydrological flood routing model for using in modeling software of hydrologic processes of watershed systems 
such as HEC-HMS (hydrologic modeling system) and SWAT (soil and water assessment tool). The proposed and 
rigorously validated distributed hydrological Muskingum model can serve as a valuable addition to hydrological 
software, effectively mitigating uncertainties in flood modeling. It’s important to note that this study primarily 
emphasizes the nonlinear Muskingum routing models.

Nonlinear Muskingum model
Previous research has advocated a nonlinear Muskingum model for accounting nonlinearity, which allows for 
a better representation of the nonlinear relationship between the inflow at the upstream end and outflow at the 
downstream end of the river channel, which is presented in Eq. (3)5,6,13–15:

where m takes the nonlinearity without lateral inflow to the models. These models feature an extra parameter 
m (= exponent power), which may be calculated using various parameter estimation approaches. On the other 
hand, K with dimension of L3(1−m)Tm  in nonlinear models unlike the linear model does not describe the travel 
time of the flood wave. In addition, x does not have to be the same as in the linear model. Equation (4) shows a 
modified storage equation that considers lateral  inflow16:

where β is the parameter accounting for the lateral inflow. The storage at time t + 1 is shown in equation below.

By substituting Eq. (4) into Eq. (5), with consideration of lateral inflow in a nonlinear relationship between the 
inflow at the upstream end and outflow at the downstream end, the storage at time t + 1 is represented in Eq. (6):

The NLMM with the lateral inflow (NLMM-L) has been suggested as an accurate solution method for 
addressing the nonlinear Muskingum  model17–26. The Muskingum model can be solved using various numerical 

(1)S = K[xI + (1− x)O]

(2)O2 = C0I2 + C1I1 + C2O1

(3)S = K[xIt + (1− x)Ot]
m

(4)
dS

dt
=

�S

�t
= (1+ β)It − Ot

(5)St+1 = St +�S

(6)St = K[(1+ β)xIt + (1− x)Qt]
m
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methods, with the fourth-order Runge–Kutta method standing out as one of the most accurate approaches. Here, 
the fourth order Runge–Kutta method has been offered as an accurate and acceptable solution method among 
the different explicit solution methods for addressing the nonlinear Muskingum model since it is simpler than 
the Runge–Kutta–Fehlberg  method27,28.

It’s important to note that  Cunge12 established a vital connection between the flood routing parameters 
within the Muskingum approach and the channel properties, as well as flow characteristics. This connection 
was achieved by utilizing an approximation error derived from a Taylor series expansion of grid specifications 
and employing a diffusion analogy. Consequently, Cunge introduced a model known as the Muskingum–Cunge 
model, which has served as a cornerstone for further research and  refinement7,29–35.

This particular class of flood routing models necessitates a set of crucial input parameters, including the 
initial condition, upstream boundary condition, Manning’s roughness coefficient, length of the routing reach, 
cross-sections along the river reach, and the bed slope. Within these inputs, the Manning’s roughness coefficient 
stands out as a notable source of uncertainty for Muskingum–Cunge models. This coefficient is closely linked to 
surface roughness, vegetation, channel irregularities, channel alignment, silting, scouring, obstruction, channel 
size, and shape, as well as the magnitudes of stages and  discharges36. Most of these factors exhibit variations from 
one flood event to another within a given river  reach9. As a result, the roughness variations within a river reach 
are inherently three-dimensional, making them challenging to model. Therefore, there’s a need to strategically 
select a single parameter as the roughness coefficient through a calibration process to align the flood routing 
results, particularly when only a single set of inflow and corresponding outflow hydrographs are available for 
the considered river  reach7,8.

In contrast, the traditional linear Muskingum model primarily relies on the initial condition, upstream 
boundary condition, and various hydrologic  parameters10,11. One of the principal motivations of the authors is 
to propose an alternative hydrological flood routing model suitable for integration into modeling software for 
hydrologic processes within watershed systems like HEC-HMS (hydrologic modeling system) and SWAT (soil 
and water assessment tool). Consequently, the primary focus of this study revolves around enhancing nonlinear 
Muskingum routing models.

To further improve its accuracy and convergence, optimization algorithms like the Salp Swarm algorithm 
have emerged as effective tools. Salp Swarm algorithm is a population-based optimization algorithm inspired 
by the swarming behavior of salps. The algorithm starts with a population of salps, each of which has a random 
position in the search space. In each iteration, the salps move towards the leader salp, which is the salp with 
the best  fitness37. The salps that have the best fitness values are more likely to be selected for reproduction, and 
their offspring are added to the population. This process continues until the algorithm converges on an optimal 
 solution38,39. SSA has been shown to outperform other optimization algorithms in terms of both accuracy and 
convergence  speed37 and has the potential to be used to solve a wide variety of  problems40,41.

Through the integration of the Salp Swarm algorithm and NLMM-L Muskingum method, the research seeks 
to address the challenges associated with snowmelt-induced flooding and provide more precise flood routing 
solutions for the study area. The objective of this research is to develop a nonlinear Muskingum model for the Red 
River between two USGS stream gauging stations, Grand Forks, and Drayton, in the US, using flood hydrographs 
caused by snowmelt in spring. This area was selected due to the recurrent flooding observed in the central part 
of the Red River and its adjacent floodplain regions, stretching between Grand Forks, ND, and Emerson, ND. 
These flood events are notably characterized by the substantial seasonal water area that consistently forms during 
wet spring  periods42. The flat terrain and downstream ice jams in the Red River and Lake Winnipeg contribute 
to the frequent flooding during spring seasons in wet years, including 1997, 2009, 2011, and 2013. The repeti-
tive nature of flood events in this section of the Red River underscores the importance of comprehending and 
effectively managing flood risks in the region.

The primary objective of this study is to develop a Muskingum model that can accurately estimate river 
discharge, considering lateral inflow conditions. The research methodology involves estimating the parameters 
(K, x, m, and β) of the nonlinear Muskingum models using a distributed flood routing model, utilizing the Salp 
Swarm algorithm. This approach divides the river reach into multiple intervals, allowing individual Muskingum 
model calculations for each interval, thereby improving the overall accuracy of the estimation process. The find-
ings of this research are expected to contribute to the enhancement of flood forecasting and warning systems in 
the Red River basin, enabling better preparedness and response to flood events.

Study area
The Red River Basin, spanning both the United States and Canada, encompasses an area of 117,185  km2, with 
most of its expanse situated in North Dakota, South Dakota, and  Minnesota43. Figure 1a shows the location of 
the basin. Characterized by a semi-arid climate, the region experiences cold winters and hot, dry summers, with 
the primary streamflow occurring during spring and early summer due to snowmelt or heavy  rainfall44. The Red 
River itself is a prominent watercourse within the basin, flowing northward along the border between Minnesota 
and North Dakota, as well as the Canadian provinces of North Dakota and Manitoba. Notably, the river is prone 
to frequent flooding, owing to its gentle flow and flat topography, and its broad and shallow floodplain exacerbates 
the vulnerability to heavy rain or spring snowmelt, resulting in historically devastating  floods45–49.

A recent study by Atashi et al.50 investigated various forecasting methods for water levels in flood warning 
systems. The study found that the Long Short-Term Memory (LSTM) method demonstrated superior accuracy 
and precision compared to classical statistical and machine learning approaches, making it a reliable choice for 
flood prediction, particularly for downstream stations lacking discharge  information50.
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Methodology
Grouping of dataset
For conducting flood routing analysis, it is essential to have observed flow hydrographs at specific upstream and 
downstream cross-section pairs.

For this study, we selected the existing USGS streamflow gauging stations at Drayton (Station No. 05092000) 
and Grand Forks (Station No. 05082500). These stations were chosen because they offer vital streamflow data 
necessary for hydrograph analysis in the region extending from Grand Forks to the US-Canada border. As 
mentioned, this area has experienced recurrent flooding, particularly in the central part of the Red River and the 
nearby floodplain regions, which extend from Grand Forks, ND, to Emerson, ND. The locations of the gauging 
stations are shown in Fig. 1b.

A total of fourteen flood events occurring between 1990 and 2022 were utilized to calibrate and validate the 
proposed model, with twelve events designated for calibration and two events for validation. These validation 
events specifically corresponded to the flood events in 2020 and 2022.

To form the groups, specific criteria were considered based on the distinct routing characteristics observed in 
different flood types. For instance, the 1997 flood primarily resulted from snowmelt with minimal rain-on-snow 
impact, while the 2022 flood predominantly comprised rain-on-snow conditions. The selection of these criteria 
was crucial to ensure accurate calibration results across all events. The summarized data for the fourteen flood 
occurrences between 1990 and 2022 is presented in Table 1, with the events categorized into Group A, Group B, 
and Group C. The criteria used for forming the groups include:

1. Snowmelt dominant events: flood events where the primary driver was snowmelt with minimal rain-on-
snow impact were categorized into Group A. These events typically exhibit specific routing characteristics 
associated with snowmelt-dominated hydrological processes.

2. Rain-on-snow dominant events: flood events predominantly characterized by rain-on-snow conditions were 
categorized into Group B. These events show distinct routing behavior resulting from the combined effects 
of rain and snowmelt on the hydrological system.

3. Mixed events: flood events that had a combination of snowmelt and rain-on-snow conditions were catego-
rized into Group C. These events exhibit routing characteristics influenced by both snowmelt and rainfall 
contributions.

Figure 1.  (a) Red River basin (b) USGS stations on Red River in Drayton and Grand  Forks51. The map was 
created using ArcGIS Pro 2.8.0 (https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- pro/ overv iew).

Table 1.  Characteristics of the spring snowmelt flood events at two Red River stream gauging stations.

Flood groups Years No. of floods’ occurrence Frequency of data

A 1997, 2001, 2005, 2006, 2009, 2010, 2018, and 2020 8 Daily

B 1999, 2004, 2013, and 2022 4 Daily

C 2011 and 2019 2 Daily

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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By categorizing the flood events into these distinct groups, it was possible to calibrate the model separately 
for each flood type, considering the specific routing behaviors associated with each category. Group A and 
Group B exhibit distinct variations in terms of precipitation amounts. Specifically, Group A demonstrates a lower 
range of monthly precipitation, ranging from 57. 2 to 141.0 mm during the selected years. In contrast, Group 
B showcases a higher range of monthly precipitation, ranging from 187.3 to 276.4 mm, observed specifically in 
the years 1999, 2004, 2013, and 2022.

Distributed nonlinear Muskingum model incorporating lateral inflows
Nonlinear Muskingum models consist of a series of nonlinear Muskingum reaches, which are further subdivided 
into equal nonlinear Muskingum sub-reaches. The distributed nonlinear Muskingum model, as depicted in Fig. 2, 
provides an illustrative representation of this arrangement. Only one set of hydrological model parameters (K, 
x, and m) needs to be calibrated and used in the nonlinear routing calculations. The flood hydrograph is routed 
from the main inflow hydrograph at the upstream section to the downstream section of the first sub-reach. The 
outcome is treated as the inflow for the second sub-reach and is routed subsequently to the downstream section 
of the second sub-reach52. To get the flood hydrograph at the downstream section of the final sub-reach, this 
process is repeated sequentially. The number of sub-reaches (NR) can be determined by trying different options 
and selecting the one that gives the best results. An objective function value and other performance evaluation 
criteria can be used to compare the different NR options. The continuity and storage equations used in the dis-
tributed nonlinear Muskingum model that includes lateral inflows are presented as follows:

where the lateral inflows varied linearly along the river reach and could be represented as a ratio of the inflow rate 
by considering the β parameter. β allows for the consideration of lateral inflow or outflow from the main channel 
during flood events. It represents the ratio of the inflow or outflow to the main channel flow within the reach. 
One of the assumptions used in the modeling process is that β is constant in time that means hydrograph shape of 
the lateral inflow wave is proportional to the upstream hydrograph inflow. t is the measure of time between zero 
and the flood’s finish time. The spatial index between 2 and NR + 1 is called j. The following stages are used in the 
routing strategy for the distributed nonlinear Muskingum model utilizing the fourth order Runge–Kutta method:

1. Choose one, two, three, or more sub-reaches as NR and assume random values for the hydrological model 
parameters K, x, and m, as well as β.

2. Use Eq. (8) to estimate the starting storage. The starting flow rate at each sub-reach’s downstream part is the 
same as the initial flow rate at the sub-reach’s upstream section. Calculate the next storage.

3. The next storage is computed by the present value plus the product of the size of the interval, Δt, and an 
estimated slope. The slope will be a weighted average of the following slopes using the Fourth order Runge–
Kutta method:

(7)dS
j
t

dt
= (1+ β)Q

j−1
t − Q

j
t

(8)S
j
t = K

[
(1+ β)xQ

j−1
t + (1− x)Q

j
t

]m

Figure 2.  Models for distributed nonlinear Muskingum model: (a) single reach with no sub-reaches, (b) two 
sub-reaches within a reach, (c) three sub-reaches within a reach, and (d) multi-interval sub-reach within a 
reach.
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By weight averaging these four slopes, one can calculate the next storage by using the following equation:

4. Calculate the next outflow by using the following equation:
5. Repeat Steps 3 and 4 for the following time intervals.
6. Repeat Steps 2 and 5 for subsequent sub-reaches.

Salp swarm algorithm (SSA)
The Salp swarm algorithm (SSA) is a population-based swarm intelligence algorithm developed in 2017 by Mir-
jalili et al.37. The food source, which is the objective of the swarm, is represented by F. The leader of the swarm 
updates its position using a specific equation below:

where x1j  is the position of leader in jth dimension, Ubj are the upper and lower boundary at jth dimension, Fj is 
the food source position. The coefficient c1 plays an important role in SSA balancing exploration and exploita-
tion. During the process of optimization, exploration refers to searching the search space thoroughly to find 
better solutions, while exploitation refers to utilizing the information present in the local region to improve the 
current solution. The parameter c1 is gradually decreased over iterations and can be calculated using the follow-
ing formula.

where l is the current iteration and L is the maximum number of iterations. The parameters c2 and c3 are random 
numbers generated within the interval [0,1]. c3 is responsible for indicating whether the next position of current 
leader salp should be toward + ∞ or -− ∞. The other members of the salp swarm update their positions based on 
Newton’s law of motion, which is expressed using the following equation:

where i ≥ 2 , xij is the position of the ith follower in the jth dimension, t is the time, v0 is the initial speed, and 
a =

vfinal
v0

  where v = (x − x0)/t.
Since the time is considered as iterations and v0 = 0 , Eq. (15) can be reformulated as the equation below:

where i ≥ 2 , xij is the position of the ith follower in the jth dimension.
The main steps of the SSA can be summarized as follows (see Fig. 3):

• Parameter initialization: the algorithm starts by initializing the parameters such as the population size N, 
number of the iterations t and the maximum number of iterations maxitr.

• Initial population: we generate the initial population xi , i = {1, ..., n} randomly in the range [u,l], where u and 
l are the upper and lower boundaries, respectively.
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• Individual evaluations: every individual (solution) within the population is assessed by determining its value 
using the objective function, and the best overall solution is designated as F.

• Exploration and exploitation: to balance between the exploration and the exploitation of the algorithm, the 
value of the parameter c1 is updated as shown in Eq. (16).

• Update the position of the solutions: the position of the leader solution and the other follower solutions are 
updated as shown in Eqs. (15) and (18), respectively.

• Boundary violations: boundary violations occur when a solution goes beyond the allowable range of the 
search space while updating, and it is then adjusted to fall within the problem’s range.

• Termination criteria: the number of iterations t is increased gradually until it reaches to the maximum number 
of iterations maxitr . Then the algorithm terminates the search process and produces the overall best solution 
found.

Statistical performance evaluation criteria
Statistical performance evaluation criteria are metrics used to assess the accuracy and reliability of mathemati-
cal models, such as hydrological or hydraulic models. Some common statistical performance evaluation criteria 
used in the papers  referenced5,14,53–59 are applied to assess the performance of the SSA-based routing results. 
These criteria are described below.

Figure 3.  Optimization algorithm flowchart for salp swarm algorithm (SSA).
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Sum of squared errors (SSE): the SSE measures the sum of the squared differences between predicted and 
observed values. It measures the model’s overall error and indicates how well the model fits the observed data.

where Qi and Q̂ι respectively are the observed and calculated outflow rates at the ith time, and N is the number 
of data.

The sum of absolute differences (SAD): the SAD measures the sum of the absolute differences between pre-
dicted and observed values. It is a measure of the overall deviation of the model from the observed data and is 
useful for evaluating the model’s performance under conditions where large errors may have a significant impact.

Difference of peak observed (DPO): the DPO measures the difference between the predicted discharge values 
from the observed peak discharge values. It is a measure of the model’s ability to accurately predict extreme 
events, such as floods or droughts, that may have a significant impact on the environment or  society53.

The deviation of peak time of routed and actual outflows (DPOT).

Tpobs and Tpest denote the observed and estimated times to peak discharge, respectively. All the criteria pre-
sented are measurements of the accuracy of a routing model, with the optimum value at 0.

Results
Table 2 presents estimates of hydrologic parameters and performance evaluation criteria (PEC) values for Group 
A, considering different numbers of sub-reaches. The table encompasses sub-reach configurations ranging from 1 
to 4, each characterized by Muskingum parameters (k, x, m, and β). The performance evaluation criteria include 
SSE, SAD, DPO, and DPOT.

The table clearly demonstrates that the number of sub-reaches employed has a substantial influence on both 
the estimates of hydrologic parameters and the corresponding PEC values. Analysis of the performance criteria 
indicates that the optimal performance is achieved when the Red River at Drayton station is considered as a 
single sub-reach. This is primarily due to the single sub-reach model exhibiting the lowest SSE values. Using the 
current study algorithm for Group A flood, the optimized parameters were determined to be K = 0.54, x = 0.24, 
m = 1.478, and β = 0.19 for NR = 1.

The hydrologic parameters estimates and performance evaluation criteria (PEC) values for Group B were 
investigated using various numbers of sub-reaches, ranging from 1 to 4. Each sub-reach was characterized by 
Muskingum parameters, namely K, x, m, and β. These findings are presented in Table 3, along with performance 
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Table 2.  Hydrologic parameters estimates and PEC values for different numbers of sub-reaches applied for 
Group A. Significant values are in [bold].

Number of sub-reaches

Model parameters PEC

x K m β SSE SAD DPO DPOT

1 0.24 0.54 1.38 0.19 404,942,172.92 111,755.01 2,686.62 0

2 0.08 0.35 1.24 0.09 524,984,042.89 136,482.56 608.52 1

3 0.09 0.20 1.26 0.05 679,360,429.21 157,998.12 1,030.29 1

4 0.14 0.12 1.27 0.04 774,514,517.49 169,371.14 1,958.94 1

Table 3.  Hydrologic parameters estimates and PEC values for different numbers of sub-reaches applied for 
Group B. Significant values are in [bold].

Number of sub-reaches

Model parameters PEC

x K m β SSE SAD DPO DPOT

1 0.12 0.08 1.60 0.39 785,220,033.00 192,284.99 4,180.37 1

2 0.06 0.06 1.46 0.16 730,213,882.59 197,004.36 3,425.99 1

3 0.02 0.05 1.37 0.10 773,926,769.66 205,472.96 2,035.31 2

4 0.00 0.04 1.29 0.07 840,716,718.70 211,969.22 1,175.80 2
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metrics including SSE, SAD, DPO, and DPOT. The analysis of performance criteria revealed that the optimal 
performance was achieved when employing two sub-reaches (NR = 2). This was primarily attributed to the fact 
that NR = 2 yielded the lowest SSE values. It is noteworthy that the Muskingum parameters for NR = 2 were 
determined as follows: K = 0.06, x = 0.06, m = 1.46, and β = 0.16.

The calculation of performance evaluation criteria (PEC) values necessitates the availability of at least one year 
of observed flood data for the corresponding validation period. Unfortunately, for Group C, no year of observed 
data was available, rendering the calculation of PEC values impossible. However, the hydrologic parameters 
estimate provided in Table 4 can still be employed to evaluate the performance of the model. These estimates 
allow for comparisons between the model’s predictions and those of other models. The Muskingum parameters 
determined using the SSA technique are presented in Table 4.

For evaluation of the developed model in real field condition validation step has been considered. Tables 5 
and 6 present examples of calibration simulation for Group A and B, respectively. Table 5 presents the meas-
ured inflow data from the Grand Forks USGS station, measured outflow data from the Drayton USGS station, 
and the corresponding routed outflow values for Group A, specifically when using a single sub-reach (NR = 1). 
The calibration years considered for Group A include 1997, 2001, 2005, 2006, 2009, 2010, and 2018. Similarly, 
Table 6 displays the measured inflow data from the Grand Forks USGS station, measured outflow data from 
the Drayton USGS station, and the associated routed outflow values for Group B. For Group B, the calibration 
years selected are 1999, 2004, and 2013, and these results correspond to the scenario where two sub-reaches are 
utilized (NR = 2).

These tables provide essential data for the calibration and validation of the respective models and facilitate the 
comparison between the simulated and observed flow values during the specified calibration years for each group.

Table 7 displays the validated inflow data from the Grand Forks USGS station, measured outflow data from 
the Drayton USGS station, and the corresponding routed outflow values for Group A in the year 2020 in Drayton, 
specifically when utilizing a single sub-reach (NR = 1).

Likewise, Table 8 presents the validated inflow data from the Grand Forks USGS station, measured outflow 
data from the Drayton USGS station, and the associated routed outflow values for Group B in the year 2022 in 
Drayton. For Group B, the model configuration involved two sub-reaches (NR = 2).

Furthermore, during the evaluation of the model’s performance, it was observed that the model accurately 
predicted the maximum outflow discharge for both Group A in 2020 (NR = 1) and Group B in 2022 (NR = 2). 
Specifically, for Group A, the model’s prediction of the maximum outflow discharge on April 14th exhibited only 
a 3.7% difference compared to the measured value. Similarly, for the 2022 flood classified as Group B with NR = 2, 
the difference was 2.84%. These minimal differences indicate a close agreement between the model’s predictions 
and the actual measured values, suggesting a high level of accuracy in the model’s ability to forecast future floods.

Figures 4 and 5 complement the information found in Tables 7 and 8 by presenting a visual depiction of 
the validation results for the flood data of Group A and B. The figures provide a graphical representation that 
enhances the understanding and analysis of the validation outcomes for the respective datasets.

Figures 4 and 5 serve as visual representations of the validation results for the flood data of Group A and B, 
respectively. These figures complement the information presented in Tables 7 and 8 by providing a graphical 
depiction of the validation outcomes. By utilizing visual representations, it becomes easier to comprehend and 
analyze the results of the validation process for each dataset. These figures display important information such 
as observed and simulated flood hydrographs, peak flow values, and timing of peak flows. They also show how 
well the simulated hydrographs match the observed data, indicating the accuracy of the routing model.

Upon careful examination of Tables 2, 3 and 4  it is evident that during the validation phase, the maximum 
deviation in peak time between the routed and actual outflows was only 2 units. This observation aligns with 
our previous experiences and findings, where we have encountered similar discrepancies when employing a 
dynamic wave model that considers all the necessary inputs for flood  modeling1,34. It is worth noting that when 
soft computing models are brought into the equation, such errors tend to be more pronounced.

It is essential to note that the absence of attenuation in the flood peak on the downstream side could be due to 
various factors. These include the absence of significant floodplain storage, a sufficiently large channel capacity, 
the lack of hydraulic controls such as dams or levees, and specific hydrological conditions such as continuous 
heavy rainfall or rapid snowmelt.

Table 4.  Hydrologic parameters estimates and PEC values for different numbers of sub-reaches applied for 
Group C.

Number of sub-reaches

Model Parameters

x K m β

1 0.19 2.49 1.33 0.05

2 0.19 1.16 1.26 0.02

3 0.16 0.76 1.21 0.01

4 0.25 0.63 1.10 0.01
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Discussion
In our recent paper, we conducted an existing case study to assess the performance of the proposed model using 
the inflow-outflow hydrograph data from  Wilson60, which represents a smooth single-peak hydrograph. The 
distributed Muskingum method, implemented with the WOA algorithm, was employed for the routing process. 
Table 9 provides an overview of the Muskingum model routing parameters and performance evaluation criteria 
(PEC) obtained for the nonlinear Muskingum model parameters, as described in the material and methods sec-
tion of the paper. The optimal parameter values for the Wilson flood data were determined using our research 
technique, yielding K = 0.865, x = 0.043, m = 1.478, and β = − 0.008 for NR = 3.

Table 5.  Calibration and calculations for single-reach Muskingum flood routing applied to Data of Group A.

Date

Q  (m3/s)

Grand Forks Drayton
Drayton
NR = 1

3/26/2006 131.11 159.99 131.11

3/27/2006 131.39 161.41 138.33

3/28/2006 133.09 162.82 143.92

3/29/2006 139.04 164.24 148.58

3/30/2006 189.72 168.49 152.54

3/31/2006 331.31 186.89 167.42

4/1/2006 622.97 277.51 214.98

4/2/2006 1163.82 396.44 327.72

4/3/2006 1667.86 679.60 570.42

4/4/2006 1917.05 931.62 908.92

4/5/2006 2033.15 1090.20 1244.44

4/6/2006 2035.98 1319.57 1538.94

4/7/2006 1970.85 1656.54 1768.14

4/8/2006 1880.24 1979.35 1926.40

4/9/2006 1786.79 2169.07 2022.18

4/10/2006 1699.01 2217.21 2068.85

4/11/2006 1611.23 2191.72 2079.58

4/12/2006 1506.46 2135.09 2063.19

4/13/2006 1404.52 2067.13 2020.48

4/14/2006 1296.91 1976.52 1958.62

4/15/2006 1155.33 1885.90 1881.24

4/16/2006 1030.73 1783.96 1780.70

4/17/2006 928.79 1673.53 1667.06

4/18/2006 829.68 1432.83 1550.41

4/19/2006 747.56 1234.61 1431.86

4/20/2006 665.45 1127.01 1317.20

4/21/2006 588.99 1064.71 1205.38

4/22/2006 523.86 1016.57 1097.19

4/23/2006 470.06 974.10 995.03

4/24/2006 433.25 934.46 900.59

4/25/2006 396.44 883.49 817.45

4/26/2006 356.79 835.35 743.09

4/27/2006 314.32 781.54 674.65

4/28/2006 276.37 722.08 609.75

4/29/2006 250.60 662.61 548.62

4/30/2006 238.43 594.65 493.86

5/1/2006 240.41 526.69 447.85

5/2/2006 257.97 461.56 412.60

5/3/2006 282.89 424.75 390.32

5/4/2006 311.49 393.60 380.22

5/5/2006 339.80 359.62 380.66

5/6/2006 351.13 325.64 389.61

5/7/2006 351.13 297.33 400.07

5/8/2006 348.30 283.17 408.20
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Furthermore, we analyzed the impact of varying the number of sub-reaches (NR) on the model’s performance. 
The maximum outflow discharge, occurring at the 60th hour of the flood data, was examined for NR values 
ranging from 1 to 5. The results showed that the difference in peak discharge varied as follows: − 1.67%, 1.01%, 
0.13%, 1.18%, and 0.96% for NR = 1 to NR = 5, respectively. Notably, NR = 3 exhibited the lowest difference in 
peak discharge compared to the Wilson flood data.

It is clear from comparing the findings of this case study with prior studies that the proposed model demon-
strates consistent accuracy in predicting peak discharge across different datasets. Both the Group A and Group 
B case studies, along with the Wilson flood data, indicate close agreement between the model’s predictions and 
the observed values. This reaffirms the model’s reliability and its potential for effectively predicting future floods.

In comparison to the previous studies, our research offers distinctive findings. While Ayvaz and  Gurarslan61 
introduced a novel partitioning approach for flood routing models, our study focuses on analyzing the impact 
of varying the number of sub-reaches on the performance of the nonlinear Muskingum model. In contrast to 
the primary emphasis of Hirpurkar and  Ghare62  on parameter estimation, our research evaluates the accuracy 
of peak discharge predictions using the proposed model. Furthermore, while Barbetta et al.63 addresses river 
discharge estimation and rating curve development, our study concentrates on peak discharge prediction and the 
model’s reliability across diverse datasets. Importantly, our study distinguishes itself by utilizing a specific case 
study with real flood data, providing a unique and valuable contribution to the field. By analyzing actual data, 
our findings offer practical insights, showcasing the effectiveness of the proposed model in real-world scenarios. 
This emphasis on practicality enhances the applicability and relevance of our research.

Table 6.  Calibration and calculations for single-reach Muskingum flood routing applied to Data of Group B.

Date

Q  (m3/s)

Grand Forks Drayton
Drayton
NR = 2

4/15/2013 54.65 61.45 54.65

4/16/2013 55.50 61.45 45.57

4/17/2013 57.77 63.71 50.61

4/18/2013 62.01 65.98 53.57

4/19/2013 67.96 69.94 65.15

4/20/2013 84.95 73.91 90.55

4/21/2013 102.79 83.53 114.68

4/22/2013 141.30 112.70 144.54

4/23/2013 206.15 173.58 185.68

4/24/2013 342.63 300.16 247.21

4/25/2013 484.22 424.75 326.65

4/26/2013 620.14 543.68 415.03

4/27/2013 809.86 699.43 509.28

4/28/2013 1027.90 809.86 610.92

4/29/2013 1158.16 880.65 717.68

4/30/2013 1226.12 951.45 823.28

5/1/2013 1217.62 1010.91 921.98

5/2/2013 1146.83 1059.05 1009.42

5/3/2013 1067.55 1107.19 1082.76

5/4/2013 988.26 1146.83 1140.94

5/5/2013 923.13 1183.64 1184.26

5/6/2013 860.83 1200.63 1213.71

5/7/2013 795.70 1194.97 1230.26

5/8/2013 730.57 1158.16 1234.61

5/9/2013 673.94 1121.35 1227.36

5/10/2013 620.14 1090.20 1209.21

5/11/2013 555.01 1059.05 1180.60

5/12/2013 472.89 1030.73 1141.13

5/13/2013 382.28 996.75 1089.22

5/14/2013 314.32 959.94 1022.93

5/15/2013 269.86 911.80 941.60

5/16/2013 242.96 855.17 846.81

5/17/2013 231.35 792.87 742.88

5/18/2013 232.48 722.08 637.49

5/19/2013 254.85 648.46 542.29

5/20/2013 248.91 583.33 467.36
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Table 7.  Validation and calculations for single-reach Muskingum flood routing applied to Data of Group A.

Date

Q  (m3/s)

Grand Forks Drayton
Drayton
NR = 1

3/26/2020 156.31 163.39 156.31

3/27/2020 166.50 175.28 168.96

3/28/2020 178.68 194.25 181.50

3/29/2020 199.35 230.78 195.46

3/30/2020 250.32 291.66 215.71

3/31/2020 396.44 387.94 256.34

4/1/2020 574.83 515.37 334.13

4/2/2020 792.87 651.29 443.19

4/3/2020 993.92 753.23 579.26

4/4/2020 1197.80 815.53 729.68

4/5/2020 1407.35 863.66 891.29

4/6/2020 1512.12 920.30 1060.44

4/7/2020 1548.93 1019.41 1213.40

4/8/2020 1741.49 1169.49 1343.34

4/9/2020 2007.66 1384.69 1488.63

4/10/2020 2035.98 1650.87 1659.17

4/11/2020 1951.03 1840.60 1801.78

4/12/2020 1837.76 1970.85 1900.31

4/13/2020 1710.34 2035.98 1958.06

4/14/2020 1582.91 2055.80 1979.73

4/15/2020 1452.65 2050.14 1971.51

4/16/2020 1291.25 1979.35 1937.57

4/17/2020 1152.50 1883.07 1875.29

4/18/2020 1042.06 1781.13 1793.57

4/19/2020 948.61 1682.02 1701.19

4/20/2020 863.66 1599.90 1603.26

4/21/2020 781.54 1483.80 1502.31

4/22/2020 719.25 1345.05 1399.54

4/23/2020 662.61 1217.62 1299.62

4/24/2020 614.48 1121.35 1203.51

4/25/2020 574.83 1064.71 1112.74

4/26/2020 540.85 1005.25 1028.57

4/27/2020 504.04 937.29 951.22

4/28/2020 472.89 883.49 879.11

4/29/2020 444.57 838.18 812.79

4/30/2020 424.75 790.04 752.32

5/1/2020 399.27 739.07 698.48

5/2/2020 379.45 699.43 648.96

5/3/2020 359.62 656.95 604.36

5/4/2020 339.80 614.48 563.74

5/5/2020 319.98 574.83 526.30

5/6/2020 305.82 543.68 491.75

5/7/2020 302.99 506.87 461.61

5/8/2020 317.15 478.55 438.96

5/9/2020 325.64 455.90 426.07

5/10/2020 328.48 436.08 418.78

5/11/2020 325.64 419.09 413.89

5/12/2020 325.64 402.10 409.55

5/13/2020 322.81 387.94 406.14

5/14/2020 317.15 370.95 402.52

5/15/2020 311.49 356.79 398.02

5/16/2020 308.65 336.97 393.06

5/17/2020 305.82 325.64 388.48

5/18/2020 297.33 319.98 383.79

5/19/2020 288.83 308.65 377.55



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21356  | https://doi.org/10.1038/s41598-023-48895-8

www.nature.com/scientificreports/

Date

Q  (m3/s)

Grand Forks Drayton
Drayton
NR = 2

4/14/2022 679.60 716.42 679.60

4/15/2022 719.25 744.73 745.99

4/16/2022 722.08 773.05 808.32

4/17/2022 682.44 787.21 858.74

4/18/2022 608.81 790.04 889.08

4/19/2022 532.36 781.54 893.53

4/20/2022 461.56 753.23 870.98

4/21/2022 416.26 710.75 825.62

4/22/2022 464.40 671.11 771.37

4/23/2022 713.58 713.58 743.17

4/24/2022 1115.68 858.00 786.16

4/25/2022 1608.40 965.60 918.29

4/26/2022 1820.77 1056.22 1115.66

4/27/2022 1795.29 1203.47 1332.97

4/28/2022 1693.35 1407.35 1532.31

4/29/2022 1577.25 1622.56 1694.83

4/30/2022 1548.93 1823.60 1817.00

5/1/2022 1619.72 1976.52 1906.85

5/2/2022 1707.51 2098.28 1978.41

5/3/2022 1707.51 2191.72 2041.80

5/4/2022 1614.06 2248.36 2097.12

5/5/2022 1497.96 2254.02 2137.59

5/6/2022 1390.36 2220.04 2157.01

5/7/2022 1291.25 2157.74 2153.09

5/8/2022 1200.63 2050.14 2126.48

5/9/2022 1141.17 1968.02 2079.93

5/10/2022 1152.50 1888.73 2019.44

5/11/2022 1209.13 1823.60 1955.41

5/12/2022 1243.11 1795.29 1898.65

5/13/2022 1220.46 1826.44 1853.65

5/14/2022 1152.50 1826.44 1816.68

5/15/2022 1104.36 1840.60 1780.83

5/16/2022 1064.71 1832.10 1742.07

5/17/2022 1033.56 1795.29 1699.93

5/18/2022 1005.25 1744.32 1655.35

5/19/2022 985.43 1696.18 1609.78

5/20/2022 959.94 1682.02 1564.58

5/21/2022 931.62 1614.06 1520.30

5/22/2022 897.64 1551.76 1476.53

5/23/2022 863.66 1486.63 1432.46

5/24/2022 829.68 1427.17 1387.45

5/25/2022 792.87 1364.87 1341.14

5/26/2022 761.72 1299.74 1293.42

5/27/2022 730.57 1251.60 1244.72

5/28/2022 699.43 1214.79 1195.59

5/29/2022 673.94 1175.15 1146.56

5/30/2022 651.29 1138.34 1098.57

5/31/2022 642.79 1110.02 1053.17

6/1/2022 651.29 1076.04 1013.24

6/2/2022 682.44 1053.39 983.06

6/3/2022 707.92 1036.40 966.09

6/4/2022 713.58 1022.24 961.34

6/5/2022 702.26 1008.08 963.33

6/6/2022 682.44 991.09 965.72

6/7/2022 659.78 974.10 964.18

Continued
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Date

Q  (m3/s)

Grand Forks Drayton
Drayton
NR = 2

6/8/2022 637.13 951.45 956.82

6/9/2022 614.48 928.79 943.53

6/10/2022 591.82 900.48 925.03

6/11/2022 563.51 869.33 901.97

6/12/2022 535.19 835.35 874.55

6/13/2022 504.04 795.70 842.90

6/14/2022 487.05 753.23 808.14

6/15/2022 467.23 713.58 772.58

6/16/2022 447.41 668.28 737.80

6/17/2022 438.91 622.97 704.91

6/18/2022 430.42 580.50 675.63

6/19/2022 416.26 538.02 650.32

6/20/2022 407.76 498.38 628.00

6/21/2022 399.27 461.56 608.23

6/22/2022 399.27 427.58 591.49

6/23/2022 407.76 399.27 579.40

6/24/2022 402.10 387.94 572.20

6/25/2022 390.77 402.10 566.75

6/26/2022 421.92 413.43 563.48

Table 8.  Validation and calculations for multi-reach Muskingum flood routing applied to Data of Group B.

Figure 4.  Validation for Data of Group A, 2020 flood data.

Figure 5.  Validation for Data of Group B, 2022 flood data.
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Conclusion
This study aims to develop and evaluate a nonlinear Muskingum model for river modeling, with a specific focus 
on enhancing accuracy through the incorporation of lateral inflow. The Grand Forks and Drayton USGS stations 
serve as case studies for parameter estimation using the distributed Muskingum method. The results demonstrate 
that the developed nonlinear Muskingum model effectively routes floods through these stations. Our selection of 
this area is rooted in a prior spatial analysis we conducted, which highlighted a particular region’s vulnerability. 
This area, situated between Grafton city, Grand Forks, and Emerson, demonstrated a high susceptibility to severe 
floods when we examined the permanent water area (PWA) and seasonal water area (SWA). Building upon 
these previous findings, our current research hones in on this specific locale, aiming to delve deeper into flood 
dynamics and comprehensively grasp the underlying factors that make it exceptionally  vulnerable42.

Through an analysis of hydrologic parameters and model performance, the study underscores the signifi-
cant impact of the number of sub-reaches on parameter estimation and modeling precision. Optimal model 
performance varies between case studies, underscoring the importance of selecting the appropriate number of 
sub-reaches for precise peak discharge predictions.

For Group A, where snowmelt is the primary driver with minimal rain-on-snow impact, the findings indicate 
that a single sub-reach provides the best performance in accurately predicting peak discharge. This suggests that 
a simplified representation of the river system adequately captures the routing characteristics of this flood type. 
In contrast, for Group B, representing flood events primarily characterized by rain-on-snow conditions, the study 
reveals that employing two sub-reaches optimizes model performance. This implies that considering additional 
sub-reaches is essential for accurately capturing the routing dynamics and behavior of this specific flood type.

The findings hold practical significance for flood prediction and management, offering valuable insights to 
decision-makers and stakeholders involved in flood mitigation. The proposed model holds potential for broader 
application beyond the specific case studies, contributing to enhanced river system modeling and flood man-
agement practices. For future studies, non-linear Muskingum model and Muskingum-Cunge approach should 
be compared in real field case studies to better understand their abilities compare to each other. Moreover, β 
parameter of the proposed model can be consider variable to examine effects of its variation on the model pre-
diction performance.

Data availability
Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request. These data include flood data for Drayton and Grand Forks.

Received: 20 September 2023; Accepted: 30 November 2023

Table 9.  Comparison of the outflow hydrographs calculated for the Wilson flood data.

Time

Q  (m3/s)

Qin Qobs Qmodel, NR = 3

0 22 22 22

6 23 21 21.88

12 35 21 22.52

18 71 26 25.82

24 103 34 33.13

30 111 44 43.66

36 109 55 55.38

42 100 66 66.40

48 86 75 75.44

54 71 82 81.66

60 59 85 84.53

66 47 84 83.90

72 39 80 79.91

78 32 73 73.05

84 28 64 64.10

90 24 54 54.16

96 22 44 44.37

102 21 36 35.82

108 20 30 29.24

114 19 25 24.74

120 19 22 21.89

126 18 19 20.15
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